51
|
McCormack M, Dillon E, O’Connor I, MacCarthy E. Investigation of the Initial Host Response of Naïve Atlantic Salmon ( Salmo salar) Inoculated with Paramoeba perurans. Microorganisms 2021; 9:microorganisms9040746. [PMID: 33918228 PMCID: PMC8066739 DOI: 10.3390/microorganisms9040746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the ectoparasite Paramoeba perurans is characterised by hyperplasia of the gill epithelium and lamellar fusion. In this study, the initial host response of naïve Atlantic salmon (Salmo salar) inoculated with P. perurans was investigated. Using gel-free proteomic techniques and mass spectrometry gill and serum samples were analysed at 7 timepoints (2, 3, 4, 7, 9, 11 and 14 days) post-inoculation with P. perurans. Differential expression of immune related proteins was assessed by comparison of protein expression from each time point against naïve controls. Few host immune molecules associated with innate immunity showed increased expression in response to gill colonisation by amoebae. Furthermore, many proteins with roles in immune signalling, phagocytosis and T-cell proliferation were found to be inhibited upon disease progression. Initially, various immune factors demonstrated the anticipated increase in expression in response to infection in the serum while some immune inhibition became apparent at the later stages of disease progression. Taken together, the pro-immune trend observed in serum, the lack of a robust early immune response in the gill and the diversity of those proteins in the gill whose altered expression negatively impact the immune response, support the concept of a pathogen-derived suppression of the host response.
Collapse
Affiliation(s)
- Michelle McCormack
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| |
Collapse
|
52
|
The 14-3-3ζ-c-Src-integrin-β3 complex is vital for platelet activation. Blood 2021; 136:974-988. [PMID: 32584951 DOI: 10.1182/blood.2019002314] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Several adaptor molecules bind to cytoplasmic tails of β-integrins and facilitate bidirectional signaling, which is critical in thrombosis and hemostasis. Interfering with integrin-adaptor interactions spatially or temporally to inhibit thrombosis without affecting hemostasis is an attractive strategy for the development of safe antithrombotic drugs. We show for the first time that the 14-3-3ζ-c-Src-integrin-β3 complex is formed during platelet activation. 14-3-3ζ-c-Src interaction is mediated by the -PIRLGLALNFSVFYYE- fragment (PE16) on the 14-3-3ζ and SH2-domain on c-Src, whereas the 14-3-3ζ-integrin-β3 interaction is mediated by the -ESKVFYLKMKGDYYRYL- fragment (EL17) on the 14-3-3ζ and -KEATSTF- fragment (KF7) on the β3-integrin cytoplasmic tail. The EL17-motif inhibitor, or KF7 peptide, interferes with the formation of the 14-3-3ζ-c-Src-integrin-β3 complex and selectively inhibits β3 outside-in signaling without affecting the integrin-fibrinogen interaction, which suppresses thrombosis without causing significant bleeding. This study characterized a previously unidentified 14-3-3ζ-c-Src-integrin-β3 complex in platelets and provided a novel strategy for the development of safe and effective antithrombotic treatments.
Collapse
|
53
|
Ya F, Li K, Chen H, Tian Z, Fan D, Shi Y, Song F, Xu X, Ling W, Adili R, Yang Y. Protocatechuic Acid Protects Platelets from Apoptosis via Inhibiting Oxidative Stress-Mediated PI3K/Akt/GSK3β Signaling. Thromb Haemost 2021; 121:931-943. [PMID: 33545736 DOI: 10.1055/s-0040-1722621] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oxidative stress plays crucial roles in initiating platelet apoptosis that facilitates the progression of cardiovascular diseases (CVDs). Protocatechuic acid (PCA), a major metabolite of anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g), exerts cardioprotective effects. However, underlying mechanisms responsible for such effects remain unclear. Here, we investigate the effect of PCA on platelet apoptosis and the underlying mechanisms in vitro. Isolated human platelets were treated with hydrogen peroxide (H2O2) to induce apoptosis with or without pretreatment with PCA. We found that PCA dose-dependently inhibited H2O2-induced platelet apoptosis by decreasing the dissipation of mitochondrial membrane potential, activation of caspase-9 and caspase-3, and decreasing phosphatidylserine exposure. Additionally, the distributions of Bax, Bcl-xL, and cytochrome c mediated by H2O2 in the mitochondria and the cytosol were also modulated by PCA treatment. Moreover, the inhibitory effects of PCA on platelet caspase-3 cleavage and phosphatidylserine exposure were mainly mediated by downregulating PI3K/Akt/GSK3β signaling. Furthermore, PCA dose-dependently decreased reactive oxygen species (ROS) generation and the intracellular Ca2+ concentration in platelets in response to H2O2. N-Acetyl cysteine (NAC), a ROS scavenger, markedly abolished H2O2-stimulated PI3K/Akt/GSK3β signaling, caspase-3 activation, and phosphatidylserine exposure. The combination of NAC and PCA did not show significant additive inhibitory effects on PI3K/Akt/GSK3β signaling and platelet apoptosis. Thus, our results suggest that PCA protects platelets from oxidative stress-induced apoptosis through downregulating ROS-mediated PI3K/Akt/GSK3β signaling, which may be responsible for cardioprotective roles of PCA in CVDs.
Collapse
Affiliation(s)
- Fuli Ya
- Department of Nutrition and Food Safety, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China
| | - Kongyao Li
- Department of Nutrition and Food Safety, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China
| | - Hong Chen
- Department of Nutrition and Food Safety, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China
| | - Zezhong Tian
- Department of Nutrition and Food Safety, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China
| | - Die Fan
- Department of Nutrition and Food Safety, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China
| | - Yilin Shi
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China.,Department of Nutrition, School of Public Health (Northern Campus), Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fenglin Song
- Department of Food Safety, School of Food Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xiping Xu
- Renal Division, National Clinical Research Center for Kidney Disease, Southern Medical University, Nanfang Hospital, Guangzhou, Guangdong Province, China
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China.,Department of Nutrition, School of Public Health (Northern Campus), Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States
| | - Yan Yang
- Department of Nutrition and Food Safety, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province, China
| |
Collapse
|
54
|
Zuo X, Li Q, Ya F, Ma LJ, Tian Z, Zhao M, Fan D, Zhao Y, Mao YH, Wan JB, Yang Y. Ginsenosides Rb2 and Rd2 isolated from Panax notoginseng flowers attenuate platelet function through P2Y 12-mediated cAMP/PKA and PI3K/Akt/Erk1/2 signaling. Food Funct 2021; 12:5793-5805. [PMID: 34041517 DOI: 10.1039/d1fo00531f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Saponins derived from Panax notoginseng root are widely used as herbal medicines and dietary supplements due to their wide range of health benefits. However, the effects of those from Panax notoginseng flowers (PNF) on platelet function and thrombus formation remain largely unknown. Using a series of platelet function assays, we found that G-Rb2 and G-Rd2, among the ten PNF saponin monomers, significantly inhibited human platelet aggregation and activation induced by adenosine diphosphate (ADP) in vitro. The 50% inhibitory concentration (IC50) of G-Rb2 and G-Rd2 against ADP-induced platelet aggregation was 85.5 ± 4.5 μg mL-1 and 51.4 ± 4.6 μg mL-1, respectively. Mechanistically, G-Rb2 and G-Rd2 could effectively modulate platelet P2Y12-mediated signaling by up-regulating cAMP/PKA signaling and down-regulating PI3K/Akt/Erk1/2 signaling pathways. Co-incubation of the P2Y12 antagonist cangrelor with either G-Rb2 or G-Rd2 did not show significant additive inhibitory effects. G-Rb2 and G-Rd2 also substantially suppressed thrombus growth in a FeCl3-induced murine arteriole thrombosis model in vivo. Interestingly, G-Rd2 generally exhibited more potent inhibitory effects on platelet function and thrombus formation than G-Rb2. Thus, our data suggest that PNF-derived G-Rb2 and G-Rd2 effectively attenuate platelet hyperactivity through modulating signaling pathways downstream of P2Y12, which indicates G-Rb2 and G-Rd2 may play important preventive roles in thrombotic diseases.
Collapse
Affiliation(s)
- Xiao Zuo
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Qing Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Fuli Ya
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Mingzhu Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Die Fan
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Yu-Heng Mao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province 510080, China. and Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, China and Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, Guangdong Province 510080, China
| |
Collapse
|
55
|
Long C, Liu M, Tian H, Li Y, Wu F, Mwangi J, Lu Q, Mohamed Abd El-Aziz T, Lai R, Shen C. Potential Role of Platelet-Activating C-Type Lectin-Like Proteins in Viper Envenomation Induced Thrombotic Microangiopathy Symptom. Toxins (Basel) 2020; 12:E749. [PMID: 33260875 PMCID: PMC7760373 DOI: 10.3390/toxins12120749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Envenomation by viperid snakes may lead to severe bleeding, consumption coagulopathy, and thrombotic microangiopathy symptoms. The exact etiology or toxins responsible for thrombotic microangiopathy symptoms after snake envenomation remain obscure. Snake C-type lectin-like proteins (snaclecs) are one of the main non-enzymatic protein constituents in viper venoms, of which a majority are considered as modulators of thrombosis and hemostasis. In this study, we demonstrated that two snaclecs (mucetin and stejnulxin), isolated and identified from Protobothrops mucrosquamatus and Trimeresurus stejnegeri venoms, directly induced platelet degranulation and clot-retraction in vitro, and microvascular thrombosis has been confirmed in various organs in vivo. These snaclecs reduced cerebral blood flow and impaired motor balance and spatial memories in mice, which partially represent the thrombotic microangiopathy symptoms in some snakebite patients. The functional blocking of these snaclecs with antibodies alleviated the viper venom induced platelet activation and thrombotic microangiopathy-like symptoms. Understanding the pathophysiology of thrombotic microangiopathy associated with snake envenoming may lead to emerging therapeutic strategies.
Collapse
Affiliation(s)
- Chengbo Long
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Huiwen Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
| | - Ya Li
- Key Laboratory of Laboratory Medicine of Yunnan Province/Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China;
| | - Feilong Wu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100009, China
| | - James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100009, China
| | - Qiumin Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming 650051, China
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
- Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming 650223, China
| | - Chuanbin Shen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (C.L.); (H.T.); (F.W.); (J.M.); (Q.L.); (R.L.)
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
56
|
Lei X, MacKeigan DT, Ni H. Control of data variations in intravital microscopy thrombosis models. J Thromb Haemost 2020; 18:2823-2825. [PMID: 33463084 DOI: 10.1111/jth.15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Daniel Thomas MacKeigan
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
57
|
Khan H, Gallant RC, Zamzam A, Jain S, Afxentiou S, Syed M, Kroezen Z, Shanmuganathan M, Britz-McKibbin P, Rand ML, Ni H, Al-Omran M, Qadura M. Personalization of Aspirin Therapy Ex Vivo in Patients with Atherosclerosis Using Light Transmission Aggregometry. Diagnostics (Basel) 2020; 10:diagnostics10110871. [PMID: 33114560 PMCID: PMC7693608 DOI: 10.3390/diagnostics10110871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Acetylsalicylic acid (ASA), also known as aspirin, appears to be ineffective in inhibiting platelet aggregation in 20-30% of patients. Light transmission aggregometry (LTA) is a gold standard platelet function assay. In this pilot study, we used LTA to personalize ASA therapy ex vivo in atherosclerotic patients. Patients were recruited who were on 81 mg ASA, presenting to ambulatory clinics at St. Michael's Hospital (n = 64), with evidence of atherosclerotic disease defined as clinical symptoms and diagnostic findings indicative of symptomatic peripheral arterial disease (PAD), with an ankle brachial index (ABI) of <0.9 (n = 52) or had diagnostic features of asymptomatic carotid arterial stenosis (CAS), with >50% stenosis of internal carotid artery on duplex ultrasound (n = 12). ASA compliance was assessed via multisegmented injection-capillary electrophoresis-mass spectrometry based on measuring the predominant urinary ASA metabolite, salicyluric acid. LTA with arachidonic acid was used to test for ASA sensitivity. Escalating ASA dosages of 162 mg and 325 mg were investigated ex vivo for ASA dose personalization. Of the 64 atherosclerotic patients recruited, 8 patients (13%) were non-compliant with ASA. Of ASA compliant patients (n = 56), 9 patients (14%) were non-sensitive to their 81 mg ASA dosage. Personalizing ASA therapy in 81 mg ASA non-sensitive patients with escalating dosages of ASA demonstrated that 6 patients became sensitive to a dosage equivalent to 162 mg ASA and 3 patients became sensitive to a dosage equivalent to 325 mg ASA. We were able to personalize ASA dosage ex vivo in all ASA non-sensitive patients with escalating dosages of ASA within 1 h of testing.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
| | - Reid C. Gallant
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (R.C.G.); (H.N.)
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
| | - Shubha Jain
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
| | - Sherri Afxentiou
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
| | - Muzammil Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada; (Z.K.); (M.S.); (P.B.-M.)
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada; (Z.K.); (M.S.); (P.B.-M.)
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada; (Z.K.); (M.S.); (P.B.-M.)
| | - Margaret L. Rand
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M4B 1B3, Canada;
- Departments of Biochemistry and Pediatrics, University of Toronto, Toronto, ON M4B 1B3, Canada
- Translational Medicine, Research Institute, Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M4B 1B3, Canada
| | - Heyu Ni
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (R.C.G.); (H.N.)
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M4B 1B3, Canada;
| | - Mohammed Al-Omran
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (R.C.G.); (H.N.)
- Department of Surgery, University of Toronto, Toronto, ON M4B 1B3, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (H.K.); (A.Z.); (S.J.); (S.A.); (M.S.); (M.A.-O.)
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M4B 1B3, Canada; (R.C.G.); (H.N.)
- Department of Surgery, University of Toronto, Toronto, ON M4B 1B3, Canada
- Correspondence: ; Tel.: +1-416-864-6047
| |
Collapse
|
58
|
Khan H, Gallant R, Jain S, Al-Omran M, De Mestral C, Greco E, Wheatcroft M, Alazonni A, Abdin R, Rand ML, Ni H, Qadura M. Ticagrelor as an Alternative Antiplatelet Therapy in Cardiac Patients Non-Sensitive to Aspirin. ACTA ACUST UNITED AC 2020; 56:medicina56100519. [PMID: 33023261 PMCID: PMC7600331 DOI: 10.3390/medicina56100519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Aspirin (acetylsalicylic acid-ASA) is a first-line antiplatelet therapy provided to patients with coronary artery disease (CAD). However, it has been demonstrated that 20-30% of these patients are non-sensitive to their ASA therapy. ASA non-sensitivity is a phenomenon where low-dose ASA (81-325 mg) does not completely inhibit arachidonic-acid-induced platelet aggregation, putting patients at risk of adverse cardio-thrombotic events. Ticagrelor is a P2Y12 receptor inhibitor and alternative antiplatelet that has been approved to reduce the risk of stroke, myocardial infarction, and overall cardiovascular-related death. In this study, we aimed to identify ASA non-sensitive patients and evaluate if they would be sensitive to ticagrelor. Materials and Methods: For this pilot study, thirty-eight patients with CAD taking 81 mg ASA were recruited. Blood samples were collected from each patient and platelet rich plasma (PRP) from each sample was isolated. Light-transmission aggregometry (LTA) was used to determine baseline ASA sensitivity in each patient using 0.5 mg/mL arachidonic acid as a platelet agonist. Patients with ≥20% maximal platelet aggregation after activation were considered ASA non-sensitive. Fresh PRP samples from all patients were then spiked with a clinical dosage of ticagrelor (3 μM-approximately equivalent to a loading dose of 180 mg ticagrelor). Sensitivity was determined using LTA and 5 μM ADP as a platelet agonist. Patients with ≥46% maximal platelet aggregation were considered ticagrelor non-sensitive. Results: Of the 38 CAD patients taking 81 mg ASA, 32% (12/38) were non-sensitive to their 81 mg ASA therapy. All 38 of the recruited patients (100%) were sensitive to ticagrelor ex vivo. In conclusion, we were able to identify ASA non-sensitivity using LTA and determine that ASA non-sensitive patients were sensitive to ticagrelor. Conclusions: Our results suggest that ticagrelor is a promising alternative therapy for patients who are non-sensitive to ASA.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
| | - Reid Gallant
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (R.G.); (H.N.)
| | - Shubha Jain
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
| | - Mohammed Al-Omran
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (R.G.); (H.N.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Charles De Mestral
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (R.G.); (H.N.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Elisa Greco
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Mark Wheatcroft
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ashraf Alazonni
- Division of Cardiology, Scarborough Health Network, Toronto, ON M1P 2T7, Canada;
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Margaret L. Rand
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Departments of Biochemistry and Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
- Translational Medicine, Research Institute; Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Heyu Ni
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (R.G.); (H.N.)
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (S.J.); (M.A.-O.); (C.D.M.); (E.G.); (M.W.)
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (R.G.); (H.N.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Correspondence: ; Tel.: +1-416-864-6047
| |
Collapse
|
59
|
Zhou J, Zhao L, Meng L, Liang H, Zhou T, Ye S, Qi Z, Huang X, Zhou P, Fu W. Acupuncture treatment for carotid atherosclerotic plaques: study protocol for a pilot randomized, single blinded, controlled clinical trial. Trials 2020; 21:768. [PMID: 32894190 PMCID: PMC7487889 DOI: 10.1186/s13063-020-04709-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Carotid atherosclerosis disease (CAD) is generally associated with the occurrence of cardiovascular and cerebrovascular accidents. However, CAD has not been taken seriously enough in the clinic, which, coupled with the single treatment and prevention of CAD, has led to a generally low level of patient compliance. Therefore, acupuncture is expected to be a safe and effective therapy that can be maintained in the long term for patients with CAD. The study objective is to evaluate the efficiency and reliability of acupuncture to relieve CAD and provide a new therapeutic idea for the clinical treatment of CAD. METHODS This is a three-arm randomized clinical trial in China. Three groups (TA, SA, and MC) will be randomly allocated at a 1:1:1 ratio. The study will enrol 105 cervical atherosclerosis plaque patients in total on a voluntary basis, with 35 patients in each group. The treatment will last for 12 weeks, with two treatments per week for twenty-four treatments in total. RESULTS Two 3D ultrasound indicators will be measured as the primary outcomes: the total plaque volume (PV) of the carotid artery on each side and the grey-scale median (GSM). The secondary outcomes will include intima-media thickness (IMT), lipid levels, apolipoprotein A-IV level, platelet count (PLT), fibrinogen (FIB), and platelet aggregation rate (PAR). All the outcomes will be assessed before treatment, after treatment, and after a 12-week follow-up period. This study will utilize per-protocol (PP) and intention-to-treat (ITT) analysis principles. CONCLUSIONS This trial is to evaluate the efficacy and reliability of acupuncture in relieving carotid atherosclerotic plaques by establishing acupuncture (TA), sham acupuncture (SA), and medication (MC) groups. ETHICS AND DISSEMINATION This study was approved by the Institutional Ethics Committee of Guangdong Provincial Hospital of Traditional Chinese Medicine (no. YF2018-107-01). All data and findings will be provided by the principal investigator via email. TRIAL REGISTRATION ChiCTR, ChiCTR1800019259 . Registered on 1 November 2018-retrospectively registered, http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Junhe Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lin Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lingcui Meng
- Ultrasonography Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Huitao Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ting Zhou
- Ultrasonography Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Siting Ye
- Ultrasonography Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhiqi Qi
- Acupuncture Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xichang Huang
- Acupuncture Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng Zhou
- Shenzhen Bao'an Research Centre for Acupuncture and Moxibustion, Shenzhen, China.
| | - Wenbin Fu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
- Acupuncture Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.
| |
Collapse
|
60
|
Shen C, Liu M, Tian H, Li J, Xu R, Mwangi J, Lu Q, Hao X, Lai R. Conformation-Specific Blockade of αIIbβ3 by a Non-RGD Peptide to Inhibit Platelet Activation without Causing Significant Bleeding and Thrombocytopenia. Thromb Haemost 2020; 120:1432-1441. [PMID: 32717755 DOI: 10.1055/s-0040-1714215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bleeding and thrombocytopenia to readministration are the most serious side effects of clinical integrin αIIbβ3 antagonists such as RGD-containing peptides. Here we show that a non-RGD peptide ZDPI, identified from skin secretions of Amolops loloensis, inhibited platelet aggregation induced by agonists, such as adenosine diphosphate, collagen, arachidonic acid, PAR1AP, and integrin αIIbβ3 allosteric activator, and reduces soluble fibrinogen binding to activated platelets without perturbing adhesion numbers on immobilized fibrinogen. Further study showed that ZDPI preferred to bind to the active conformation of integrin αIIbβ3, and thus inhibited c-Src-mediated integrin signaling transduction. In contrast to currently used clinical blockers of integrin αIIbβ3, which are all conformation-unspecific blockers, ZDPI conformation specifically binds to activated integrin αIIbβ3, subsequently suppressing platelet spreading. In vivo study revealed that ZDPI inhibited carotid arterial thrombosis with limited bleeding and thrombocytopenia. A non-RGD peptide which targets the active conformation of integrin αIIbβ3, such as ZDPI, might be an excellent candidate or template to develop antithrombotics without significant bleeding and thrombocytopenia side effects.
Collapse
Affiliation(s)
- Chuanbin Shen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiwen Tian
- Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiameng Li
- Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Runjia Xu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiumin Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Zoology, Life Sciences College of Nanjing Agricultural University, Nanjing, Jiangsu, China.,Sino-African Joint Research Center, CAS, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
61
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
62
|
Bricout N, Chai F, Sobocinski J, Hertault A, Laure W, Ung A, Woisel P, Lyskawa J, Blanchemain N. Immobilisation of an anti-platelet adhesion and anti-thrombotic drug (EP224283) on polydopamine coated vascular stent promoting anti-thrombogenic properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110967. [PMID: 32487386 DOI: 10.1016/j.msec.2020.110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 11/24/2022]
Abstract
Current vascular drug-eluting stents based on immuno-proliferative drugs would reduce the rate of in-stent restenosis (ISR) but may be associated with a higher risk of acute stent thrombosis due to non-selective activity. In this paper, we aimed to develop a polydopamine (PDA) coated chromium‑cobalt (CoCr) stent functionalised with EP224283 (Endotis Pharma SA), which combines both a GPIIbIIIa antagonist (tirofiban moiety) and a factor Xa inhibitor (idraparinux moiety) to reduce acute stent thrombosis. PDA-coated chromium‑cobalt (CoCr) samples were first immersed in a polyethylenimine (PEI, pH 8.5) solution to increase amine function density (36.0 ± 0.1 nmol/cm2) on the CoCr surface. In a second step, avidin was grafted onto CoCr-PDA-PEI through the biotin linkage (strategy 1) or directly by coupling reactions (strategy 2). The HABA titration proved the fixation of biotin onto CoCr-PDA-PEI surface with a density of 0.74 nmol/cm2. The fixation of avidin was demonstrated by water contact angle (WCA) and surface plasmon resonance (SPR). SEM micrograph shows the flexibility of the thin layer coated onto the stent after balloon inflation. Independently of the strategy, a qualitative SEM analysis showed a reduction in platelet activation when the molecule EP224283 was immobilised on avidin. In parallel, the measurement of anticoagulant activity (anti-Xa) revealed a higher anti-factor Xa activity (2.24 IU/mL vs. 0.09 IU/mL in control) when EP224283 was immobilised on avidin. Interestingly, after seven days of degradation, the anticoagulant activity was persistent in both strategies and looked more important with the strategy 2 than in strategy 1. Throughout this work, we developed an innovative vascular stent through the immobilisation of EP224283 onto CoCr-PDA-PEI-(avidin) system, which provides a promising solution to reduce ISR and thrombosis after stent implantation.
Collapse
Affiliation(s)
- Nicolas Bricout
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Feng Chai
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Jonathan Sobocinski
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - Adrien Hertault
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - William Laure
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Alexandre Ung
- Service Hémostase, Regional Hospital Center University of Lille (CHRU-Lille), 2 Avenue Oscar Lambret, 59000 Lille, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Joel Lyskawa
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
| | - Nicolas Blanchemain
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France.
| |
Collapse
|
63
|
Zhu Q, Weng J, Shen M, Fish J, Shen Z, Coschigano KT, Davidson WS, Tso P, Shi H, Lo CC. Apolipoprotein A-IV Enhances Fatty Acid Uptake by Adipose Tissues of Male Mice via Sympathetic Activation. Endocrinology 2020; 161:5802681. [PMID: 32157301 PMCID: PMC7100924 DOI: 10.1210/endocr/bqaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biology, Miami University, Oxford, OH
| | - Jonathan Weng
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Minqian Shen
- Department of Biology, Miami University, Oxford, OH
| | - Jace Fish
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Zhujun Shen
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Karen T Coschigano
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH
| | - Chunmin C Lo
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
- Correspondence: Chunmin C Lo, Department of Biomedical Sciences, Irvine Hall 228, 1 Ohio University, Athens, OH 45701-2979. E-mail:
| |
Collapse
|
64
|
Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
|
65
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
66
|
Ya F, Xu XR, Tian Z, Gallant RC, Song F, Shi Y, Wu Y, Wan J, Zhao Y, Adili R, Ling W, Ni H, Yang Y. Coenzyme Q10 attenuates platelet integrin αIIbβ3 signaling and platelet hyper-reactivity in ApoE-deficient mice. Food Funct 2020; 11:139-152. [DOI: 10.1039/c9fo01686d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CoQ10 supplementation in ApoE−/− mice attenuates high-fat diet-induced platelet hyper-reactivity via down-regulating platelet αIIbβ3 signaling, and thus protecting against atherothrombosis.
Collapse
|
67
|
Zhu C, Kong Z, Wang B, Cheng W, Wu A, Meng X. ITGB3/CD61: a hub modulator and target in the tumor microenvironment. Am J Transl Res 2019; 11:7195-7208. [PMID: 31934272 PMCID: PMC6943458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
β3 integrin (ITGB3), also known as CD61 or GP3A, is one of the most widely studied components in the integrin family. As an adhesion receptor on the cell surface, ITGB3 participates in reprogramming tumor metabolism, shaping the stromal and immune microenvironment, facilitating epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (End-MT) and maintaining tumor stemness, etc. Recent studies proposed various intervention strategies against ITGB3 and have achieved promising outcomes in several types of tumor. Here, we review the adaption response and cellular crosstalk in the tumor microenvironment mediated by ITGB3, as well as its upstream and downstream signaling pathways. Lastly, we focus on the inhibitors of ITGB3, ultimately indicating that ITGB3 is a promising target in the tumor microenvironment.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Ziqing Kong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| |
Collapse
|
68
|
Ya F, Xu XR, Shi Y, Gallant RC, Song F, Zuo X, Zhao Y, Tian Z, Zhang C, Xu X, Ling W, Ni H, Yang Y. Coenzyme Q10 Upregulates Platelet cAMP/PKA Pathway and Attenuates Integrin αIIbβ3 Signaling and Thrombus Growth. Mol Nutr Food Res 2019; 63:e1900662. [PMID: 31512815 DOI: 10.1002/mnfr.201900662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Platelet integrin αIIbβ3 is the key mediator of atherothrombosis. Supplementation of coenzyme Q10 (CoQ10), a fat-soluble molecule that exists in various foods, exerts protective cardiovascular effects. This study aims to investigate whether and how CoQ10 acts on αIIbβ3 signaling and thrombosis, the major cause of cardiovascular diseases. METHODS AND RESULTS Using a series of platelet functional assays in vitro, it is demonstrated that CoQ10 reduces human platelet aggregation, granule secretion, platelet spreading, and clot retraction. It is further demonstrated that CoQ10 inhibits platelet integrin αIIbβ3 outside-in signaling. These inhibitory effects are mainly mediated by upregulating cAMP/PKA pathway, where CoQ10 stimulates the A2A adenosine receptor and decreases phosphodiesterase 3A phosphorylation. Moreover, CoQ10 attenuates murine thrombus growth and vessel occlusion in a ferric chloride (FeCl3 )-induced thrombosis model in vivo. Importantly, the randomized, double-blind, placebo-controlled clinical trial in dyslipidemic patients demonstrates that 24 weeks of CoQ10 supplementation increases platelet CoQ10 concentrations, enhances the cAMP/PKA pathway, and attenuates αIIbβ3 outside-in signaling, leading to decreased platelet aggregation and granule release. CONCLUSION Through upregulating the platelet cAMP/PKA pathway, and attenuating αIIbβ3 signaling and thrombus growth, CoQ10 supplementation may play an important protective role in patients with risks of cardiovascular diseases.
Collapse
Affiliation(s)
- Fuli Ya
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Yilin Shi
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Fenglin Song
- School of Food Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510006, China
| | - Xiao Zuo
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Yimin Zhao
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Zezhong Tian
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| | - Cheng Zhang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, 510080, China.,Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Ontario, M5G 2M1, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Yan Yang
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, China.,Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, Guangdong Province, 510080, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
69
|
Houck KL, Yuan H, Tian Y, Solomon M, Cramer D, Liu K, Zhou Z, Wu X, Zhang J, Oehler V, Dong JF. Physical proximity and functional cooperation of glycoprotein 130 and glycoprotein VI in platelet membrane lipid rafts. J Thromb Haemost 2019; 17:1500-1510. [PMID: 31145836 DOI: 10.1111/jth.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Clinical and laboratory studies have demonstrated that platelets become hyperactive and prothrombotic in conditions of inflammation. We have previously shown that the proinflammatory cytokine interleukin (IL)-6 forms a complex with soluble IL-6 receptor α (sIL-6Rα) to prime platelets for activation by subthreshold concentrations of collagen. Upon being stimulated with collagen, the transcription factor signal transducer and activator of transcription (STAT) 3 in platelets is phosphorylated and dimerized to act as a protein scaffold to facilitate the catalytic action between the kinase Syk and the substrate phospholipase Cγ2 (PLCγ2) in collagen-induced signaling. However, it remains unknown how collagen induces phosphorylation and dimerization of STAT3. METHODS AND RESULTS We conducted complementary in vitro experiments to show that the IL-6 receptor subunit glycoprotein 130 (GP130) was in physical proximity to the collagen receptor glycoprotein VI (GPVI in membrane lipid rafts of platelets. This proximity allows collagen to induce STAT3 activation and dimerization, and the IL-6-sIL-6Rα complex to activate the kinase Syk and the substrate PLCγ2 in the GPVI signal pathway, resulting in an enhanced platelet response to collagen. Disrupting lipid rafts or blocking GP130-Janus tyrosine kinase (JAK)-STAT3 signaling abolished the cross-activation and reduced platelet reactivity to collagen. CONCLUSION These results demonstrate cross-talk between collagen and IL-6 signal pathways. This cross-talk could potentially provide a novel mechanism for inflammation-induced platelet hyperactivity, so the IL-6-GP130-JAK-STAT3 pathway has been identified as a potential target to block this hyperactivity.
Collapse
Affiliation(s)
| | - Hengjie Yuan
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | | | - Drake Cramer
- Bloodworks Research Institute, Seattle, Washington
| | - Kitty Liu
- Bloodworks Research Institute, Seattle, Washington
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
| | - Xiaoping Wu
- Bloodworks Research Institute, Seattle, Washington
| | - Jianning Zhang
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Vivian Oehler
- Clinical Research Division, Hutchison Cancer Center, Seattle, Washington
- Seattle Cancer Alliances, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
70
|
Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, Nagumo R, Satoh K, Izumi T, Hla T. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res 2019; 60:1912-1921. [PMID: 31462513 DOI: 10.1194/jlr.ra119000277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
HDL-bound ApoM and albumin are protein chaperones for the circulating bioactive lipid, sphingosine 1-phosphate (S1P); in this role, they support essential extracellular S1P signaling functions in the vascular and immune systems. We previously showed that ApoM- and albumin-bound S1P exhibit differences in receptor activation and biological functions. Whether the physiological functions of S1P require chaperones is not clear. We examined ApoM-deficient, albumin-deficient, and double-KO (DKO) mice for circulatory S1P and its biological functions. In albumin-deficient mice, ApoM was upregulated, thus enabling S1P functions in embryonic development and postnatal adult life. The Apom:Alb DKO mice reproduced, were viable, and exhibited largely normal vascular and immune functions, which suggested sufficient extracellular S1P signaling. However, Apom:Alb DKO mice had reduced levels (∼25%) of plasma S1P, suggesting that novel S1P chaperones exist to mediate S1P functions. In this study, we report the identification of ApoA4 as a novel S1P binding protein. Recombinant ApoA4 bound to S1P, activated multiple S1P receptors, and promoted vascular endothelial barrier function, all reflective of its function as a S1P chaperone in the absence of ApoM and albumin. We suggest that multiple S1P chaperones evolved to support complex and essential extracellular signaling functions of this lysolipid mediator in a redundant manner.
Collapse
Affiliation(s)
- Hideru Obinata
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Yukata Wada
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Steven Swendeman
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Catherine H Liu
- Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Victoria A Blaho
- Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Rieko Nagumo
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | - Takashi Izumi
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
71
|
Zhang W, Ma Q, Siraj S, Ney PA, Liu J, Liao X, Yuan Y, Li W, Liu L, Chen Q. Nix-mediated mitophagy regulates platelet activation and life span. Blood Adv 2019; 3:2342-2354. [PMID: 31391167 PMCID: PMC6693007 DOI: 10.1182/bloodadvances.2019032334] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/14/2019] [Indexed: 01/17/2023] Open
Abstract
Platelet activation requires fully functional mitochondria, which provide a vital energy source and control the life span of platelets. Previous reports have shown that both general autophagy and selective mitophagy are critical for platelet function. However, the underlying mechanisms remain incompletely understood. Here, we show that Nix, a previously characterized mitophagy receptor that plays a role in red blood cell maturation, also mediates mitophagy in platelets. Genetic ablation of Nix impairs mitochondrial quality, platelet activation, and FeCl3-induced carotid arterial thrombosis without affecting the expression of platelet glycoproteins (GPs) such as GPIb, GPVI, and αIIbβ3 Metabolic analysis revealed decreased mitochondrial membrane potential, enhanced mitochondrial reactive oxygen species level, diminished oxygen consumption rate, and compromised adenosine triphosphate production in Nix -/- platelets. Transplantation of wild-type (WT) bone marrow cells or transfusion of WT platelets into Nix-deficient mice rescued defects in platelet function and thrombosis, suggesting a platelet-autonomous role (acting on platelets, but not other cells) of Nix in platelet activation. Interestingly, loss of Nix increases the life span of platelets in vivo, likely through preventing autophagic degradation of the mitochondrial protein Bcl-xL. Collectively, our findings reveal a novel mechanistic link between Nix-mediated mitophagy, platelet life span, and platelet physiopathology. Our work suggests that targeting platelet mitophagy Nix might provide new antithrombotic strategies.
Collapse
Affiliation(s)
- Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Ma
- State Key Laboratory of Membrane Biology and
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Sami Siraj
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Paul A Ney
- Department of Cell and Molecular Biology and
- Lindsley Kimball Research Institute, New York Blood Center, New York, NY
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, Shanghai, China
| | - Xudong Liao
- Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects and
- MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital/Capital Medical University/National Center for Children's Health, Beijing, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing, China; and
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects and
- MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital/Capital Medical University/National Center for Children's Health, Beijing, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing, China; and
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Quan Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
72
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
73
|
Głogowska-Ligus J, Dąbek J. Expression profile of integrin family genes in patients with myocardial infarction and in healthy subjects: an oligonucleotide microarray and QRT-PCR assessment. Preliminary results. Minerva Med 2019; 110:224-231. [PMID: 30784245 DOI: 10.23736/s0026-4806.19.05842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pathogenesis and clinical course of all known cardiovascular diseases are rooted in endothelial dysfunction. Coronary thrombosis which can aggravate the coronary condition leading to myocardial infarction (MI) is closely linked to cellular adhesion processes involving numerous adhesion molecules. The goal of our study was to find and quantitate the expression of integrin genes that differentiate between MI patients and healthy subjects. METHODS The study included 171 individuals, among whom 8 were chosen to provide study material for the oligonucleotide microarray investigation (4 MI patients and 4 healthy subjects). The investigated material consisted of RNA isolated from peripheral blood mononuclear cells. RESULTS Analysis of gene expression data from eight HG-U133A microarrays allowed identification of three genes differentiating the examined groups. The differentiating genes were found using the Bland-Altman method. Two of them showed increased expression (beta 2 integrin and beta 7 integrin genes), whereas expression level of the third (beta 3 integrin gene) was decreased. CONCLUSIONS The differences in integrin gene expression levels that were observed in MI patients, as compared to healthy individuals, might be responsible for endothelial dysfunction as well as rise in adhesion and aggregation processes in this group of patients and might lead to coronary vessel occlusion by thrombi and myocardial infarction.
Collapse
Affiliation(s)
- Joanna Głogowska-Ligus
- Department of Epidemiology, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland -
| | - Józefa Dąbek
- Department of Cardiology, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
74
|
Peng J, Li XP. Apolipoprotein A-IV: A potential therapeutic target for atherosclerosis. Prostaglandins Other Lipid Mediat 2018; 139:87-92. [PMID: 30352313 DOI: 10.1016/j.prostaglandins.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Apolipoprotein A-IV is lipid-binding protein, which is synthesized by the intestine and secreted into mesenteric lymph. ApoA-IV is correlated with chylomicrons and high density lipoprotein, but a large portion is free-lipoprotein, in circulation. Studies showed that apoA-IV has anti-inflammatory and anti-oxidative properties, and is able to mediate reverse cholesterol transport, which suggest that it may has anti-atherosclerotic effects and be related to protection from atherosclerotic cardiovascular disease. This article focus on current studies and the possible anti-atherogenic mechanism related to apoA-IV, in order to provide a new therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Peng
- Department of Cardiovascular Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiang-Ping Li
- Department of Cardiovascular Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
75
|
Su QP, Ju LA. Biophysical nanotools for single-molecule dynamics. Biophys Rev 2018; 10:1349-1357. [PMID: 30121743 PMCID: PMC6233351 DOI: 10.1007/s12551-018-0447-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
The focus of the cell biology field is now shifting from characterizing cellular activities to organelle and molecular behaviors. This process accompanies the development of new biophysical visualization techniques that offer high spatial and temporal resolutions with ultra-sensitivity and low cell toxicity. They allow the biology research community to observe dynamic behaviors from scales of single molecules, organelles, cells to organoids, and even live animal tissues. In this review, we summarize these biophysical techniques into two major classes: the mechanical nanotools like dynamic force spectroscopy (DFS) and the optical nanotools like single-molecule and super-resolution microscopy. We also discuss their applications in elucidating molecular dynamics and functionally mapping of interactions between inter-cellular networks and intra-cellular components, which is key to understanding cellular processes such as adhesion, trafficking, inheritance, and division.
Collapse
Affiliation(s)
- Qian Peter Su
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.
| | - Lining Arnold Ju
- Charles Perkins Centre and Heart Research Institute, University of Sydney, Camperdown, New South Wales, 2006, Australia.
| |
Collapse
|