51
|
Binder DK, Boison D, Eid T, Frankel WN, Mingorance A, Smith BN, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Curr 2020; 20:14S-22S. [PMID: 31937124 PMCID: PMC7031802 DOI: 10.1177/1535759719895274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Area II of the 2014 Epilepsy Research Benchmarks aims to establish goals for preventing the development and progression of epilepsy. In this review, we will highlight key advances in Area II since the last summary of research progress and opportunities was published in 2016. We also highlight areas of investigation that began to develop before 2016 and in which additional progress has been made more recently.
Collapse
Affiliation(s)
- Devin K Binder
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Neurosurgery and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Wayne N Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Bret N Smith
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
52
|
Abstract
Microglia are the resident immune cells and professional phagocytes of the central nervous system. However, little is known about the contribution of their phagocytic signaling to the neuropathology and pathophysiology of epilepsy. Here, we summarize and discuss the implications of recent evidence supporting that aberrant microglia phagocytic activity and alterations in phagocytosis signaling molecules occur in association with microglia-neuronal contacts, neuronal/synaptic loss, and spontaneous recurrent seizures in human and preclinical models of epilepsy. This body of evidence provides strong support that the microglial contribution to epileptogenic networks goes beyond inflammation, and suggests that phagocytic signaling molecules may be novel therapeutic targets for epilepsy.
Collapse
Affiliation(s)
| | - Amy L. Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
53
|
Réda C, Kaufmann E, Delahaye-Duriez A. Machine learning applications in drug development. Comput Struct Biotechnol J 2019; 18:241-252. [PMID: 33489002 PMCID: PMC7790737 DOI: 10.1016/j.csbj.2019.12.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the huge amount of biological and medical data available today, along with well-established machine learning algorithms, the design of largely automated drug development pipelines can now be envisioned. These pipelines may guide, or speed up, drug discovery; provide a better understanding of diseases and associated biological phenomena; help planning preclinical wet-lab experiments, and even future clinical trials. This automation of the drug development process might be key to the current issue of low productivity rate that pharmaceutical companies currently face. In this survey, we will particularly focus on two classes of methods: sequential learning and recommender systems, which are active biomedical fields of research.
Collapse
Affiliation(s)
- Clémence Réda
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, Paris 75019, France
- Université Paris Diderot, Université de Paris, Sorbonne Paris Cité, 5, rue Thomas Mann, Paris 75013, France
| | - Emilie Kaufmann
- Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
| | - Andrée Delahaye-Duriez
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, Paris 75019, France
- Université Paris 13, Sorbonne Paris Cité, UFR de santé, médecine et biologie humaine, Bobigny 93000, France
- Service histologie-embryologie-cytogénétique-biologie de la reproduction-CECOS, Hôpital Jean Verdier, AP-HP, Bondy 93140, France
| |
Collapse
|
54
|
Johnson MR, Kaminski RM. A systems-level framework for anti-epilepsy drug discovery. Neuropharmacology 2019; 170:107868. [PMID: 31785261 DOI: 10.1016/j.neuropharm.2019.107868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Modern anti-seizure drug development yielded benefits in terms of improved pharmacokinetics, safety and tolerability profiles, but offered no advances in efficacy compared to previous older generations of anti-seizure drugs. Despite significant advances in our understanding of the genetic bases to epilepsy, and a welcome renewed interest on the severe monogenic epilepsies, modern genetics has yet to directly inform more effective or disease-modifying anti-seizure drugs. Here, we describe a new approach to the identification of novel disease modifying anti-epilepsy drugs. The systems genetics approach aims to first identify pathophysiological mechanisms by integrating polygenic risk with cellular gene expression profiles and then to relate these molecular mechanisms to druggable targets using a gene regulatory (regulome) framework. The approach offers an exciting and flexible framework for future drug discovery in epilepsy, and is applicable to any disease for which appropriate cell-type and disease-context specific data exist. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Michael R Johnson
- Department of Brain Sciences, Imperial College London, Room E419, Burlington Danes Building, Hammersmith Hospital Campus 160 Du Cane Road, London, W12 0NN, United Kingdom.
| | - Rafal M Kaminski
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, 124 4070, Basel, Switzerland.
| |
Collapse
|
55
|
Laaniste L, Srivastava PK, Stylianou J, Syed N, Cases-Cunillera S, Shkura K, Zeng Q, Rackham OJL, Langley SR, Delahaye-Duriez A, O'Neill K, Williams M, Becker A, Roncaroli F, Petretto E, Johnson MR. Integrated systems-genetic analyses reveal a network target for delaying glioma progression. Ann Clin Transl Neurol 2019; 6:1616-1638. [PMID: 31420939 PMCID: PMC6764637 DOI: 10.1002/acn3.50850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To identify a convergent, multitarget proliferation characteristic for astrocytoma transformation that could be targeted for therapy discovery. Methods Using an integrated functional genomics approach, we prioritized networks associated with astrocytoma progression using the following criteria: differential co‐expression between grade II and grade III IDH1‐mutated and 1p/19q euploid astrocytomas, preferential enrichment for genetic risk to cancer, association with patient survival and sample‐level genomic features. Drugs targeting the identified multitarget network characteristic for astrocytoma transformation were computationally predicted using drug transcriptional perturbation data and validated using primary human astrocytoma cells. Results A single network, M2, consisting of 177 genes, was associated with glioma progression on the basis of the above criteria. Functionally, M2 encoded physically interacting proteins regulating cell cycle processes and analysis of genome‐wide gene‐regulatory interactions using mutual information and DNA–protein interactions revealed the known regulators of cell cycle processes FoxM1, B‐Myb, and E2F2 as key regulators of M2. These results suggest functional disruption of M2 via gene mutation or altered expression as a convergent pathway regulating astrocytoma transformation. By considering M2 as a multitarget drug target regulating astrocytoma transformation, we identified several drugs that are predicted to restore M2 expression in anaplastic astrocytoma toward its low‐grade profile and of these, we validated the known antiproliferative drug resveratrol as down‐regulating multiple nodes of M2 including at nanomolar concentrations achievable in human cerebrospinal fluid by oral dosing. Interpretation Our results identify M2 as a multitarget network characteristic for astrocytoma progression and encourage M2‐based drug screening to identify new compounds for preventing glioma transformation.
Collapse
Affiliation(s)
- Liisi Laaniste
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Julianna Stylianou
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Qingyu Zeng
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | | | - Sarah R Langley
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.,Duke-NUS Medical School, Singapore
| | - Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, France
| | - Kevin O'Neill
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew Williams
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Centre, Bonn, Germany
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore.,MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| |
Collapse
|
56
|
Carvill GL, Dulla CG, Lowenstein DH, Brooks-Kayal AR. The path from scientific discovery to cures for epilepsy. Neuropharmacology 2019; 167:107702. [PMID: 31301334 DOI: 10.1016/j.neuropharm.2019.107702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
The epilepsies are a complex group of disorders that can be caused by a myriad of genetic and acquired factors. As such, identifying interventions that will prevent development of epilepsy, as well as cure the disorder once established, will require a multifaceted approach. Here we discuss the progress in scientific discovery propelling us towards this goal, including identification of genetic risk factors and big data approaches that integrate clinical and molecular 'omics' datasets to identify common pathophysiological signatures and biomarkers. We discuss the many animal and cellular models of epilepsy, what they have taught us about pathophysiology, and the cutting edge cellular, optogenetic, chemogenetic and anti-seizure drug screening approaches that are being used to find new cures in these models. Finally, we reflect on the work that still needs to be done towards identify at-risk individuals early, targeting and stopping epileptogenesis, and optimizing promising treatment approaches. Ultimately, developing and implementing cures for epilepsy will require a coordinated and immense effort from clinicians and basic scientists, as well as industry, and should always be guided by the needs of individuals affected by epilepsy and their families. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gemma L Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Dan H Lowenstein
- Department of Neurology, University of California, San Francisco, CA, 94941, USA
| | - Amy R Brooks-Kayal
- Department of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| |
Collapse
|
57
|
Delahaye-Duriez A, Réda C, Gressens P. [Identification of therapeutic targets and drug repurposing via gene network analysis]. Med Sci (Paris) 2019; 35:515-518. [PMID: 31274080 DOI: 10.1051/medsci/2019108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrée Delahaye-Duriez
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, 75019 Paris, France. - Université Paris 13, Sorbonne Paris Cité, UFR de santé, médecine et biologie humaine, 93000 Bobigny, France. - Service histologie-embryologie-cytogénétique-biologie de la reproduction-CECOS, Hôpital Jean Verdier, AP-HP, 93140 Bondy, France
| | - Clémence Réda
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, 75019 Paris, France. - École Normale Supérieure Paris-Saclay, 94230 Cachan, France
| | - Pierre Gressens
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
58
|
Mahoney JM, Mills JD, Muhlebner A, Noebels J, Potschka H, Simonato M, Kobow K. 2017 WONOEP appraisal: Studying epilepsy as a network disease using systems biology approaches. Epilepsia 2019; 60:1045-1053. [DOI: 10.1111/epi.15216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- John M. Mahoney
- Department of Neurological Sciences Department of Computer Science University of Vermont Larner College of Medicine Burlington Vermont
| | - James D. Mills
- Department of (Neuro)Pathology Amsterdam University Medical CenterUniversity of Amsterdam Amsterdam The Netherlands
| | - Angelika Muhlebner
- Department of (Neuro)Pathology Amsterdam University Medical CenterUniversity of Amsterdam Amsterdam The Netherlands
| | - Jeffrey Noebels
- Department of Neurology Baylor College of Medicine Houston Texas
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy Ludwig Maximilian University of Munich Munich Germany
| | - Michele Simonato
- Department of Medical Sciences University of Ferrara and School of Medicine University Vita‐Salute San Raffaele Milan Italy
| | - Katja Kobow
- Department of Neuropathology Universitätsklinikum ErlangenFriedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
59
|
Brueggeman L, Sturgeon ML, Martin RM, Grossbach AJ, Nagahama Y, Zhang A, Howard MA, Kawasaki H, Wu S, Cornell RA, Michaelson JJ, Bassuk AG. Drug repositioning in epilepsy reveals novel antiseizure candidates. Ann Clin Transl Neurol 2019; 6:295-309. [PMID: 30847362 PMCID: PMC6389756 DOI: 10.1002/acn3.703] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Epilepsy treatment falls short in ~30% of cases. A better understanding of epilepsy pathophysiology can guide rational drug development in this difficult to treat condition. We tested a low-cost, drug-repositioning strategy to identify candidate epilepsy drugs that are already FDA-approved and might be immediately tested in epilepsy patients who require new therapies. Methods Biopsies of spiking and nonspiking hippocampal brain tissue from six patients with unilateral mesial temporal lobe epilepsy were analyzed by RNA-Seq. These profiles were correlated with transcriptomes from cell lines treated with FDA-approved drugs, identifying compounds which were tested for therapeutic efficacy in a zebrafish seizure assay. Results In spiking versus nonspiking biopsies, RNA-Seq identified 689 differentially expressed genes, 148 of which were previously cited in articles mentioning seizures or epilepsy. Differentially expressed genes were highly enriched for protein-protein interactions and formed three clusters with associated GO-terms including myelination, protein ubiquitination, and neuronal migration. Among the 184 compounds, a zebrafish seizure model tested the therapeutic efficacy of doxycycline, metformin, nifedipine, and pyrantel tartrate, with metformin, nifedipine, and pyrantel tartrate all showing efficacy. Interpretation This proof-of-principle analysis suggests our powerful, rapid, cost-effective approach can likely be applied to other hard-to-treat diseases.
Collapse
Affiliation(s)
- Leo Brueggeman
- Department of PsychiatryCarver College of MedicineUniversity of IowaIowa CityIowa
| | - Morgan L. Sturgeon
- The Interdisciplinary Graduate Program in Molecular MedicineCarver College of MedicineUniversity of IowaIowa CityIowa
| | | | | | | | - Angela Zhang
- Department of BiostatisticsUniversity of WashingtonSeattleWashington
| | | | | | - Shu Wu
- Department of PediatricsUniversity of IowaIowa CityIowa
| | - Robert A. Cornell
- Department of Anatomy and Cell BiologyUniversity of IowaIowa CityIowa
| | - Jacob J. Michaelson
- Department of PsychiatryCarver College of MedicineUniversity of IowaIowa CityIowa
| | | |
Collapse
|
60
|
|
61
|
Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes⁻4. Molecules 2018; 24:molecules24010130. [PMID: 30602690 PMCID: PMC6337331 DOI: 10.3390/molecules24010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 11/17/2022] Open
|