51
|
Gabaldón T. Grand Challenges in Fungal Genomics and Evolution. FRONTIERS IN FUNGAL BIOLOGY 2020; 1:594855. [PMID: 37743874 PMCID: PMC10512400 DOI: 10.3389/ffunb.2020.594855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 09/26/2023]
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Center (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
52
|
Frøsig MM, Costa SR, Liesche J, Østerberg JT, Hanisch S, Nintemann S, Sørensen H, Palmgren M, Pomorski TG, López-Marqués RL. Pseudohyphal growth in Saccharomyces cerevisiae involves protein kinase-regulated lipid flippases. J Cell Sci 2020; 133:jcs235994. [PMID: 32661085 DOI: 10.1242/jcs.235994] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid flippases of the P4 ATPase family establish phospholipid asymmetry in eukaryotic cell membranes and are involved in many essential cellular processes. The yeast Saccharomyces cerevisiae contains five P4 ATPases, among which Dnf3p is poorly characterized. Here, we demonstrate that Dnf3p is a flippase that catalyzes translocation of major glycerophospholipids, including phosphatidylserine, towards the cytosolic membrane leaflet. Deletion of the genes encoding Dnf3p and the distantly related P4 ATPases Dnf1p and Dnf2p results in yeast mutants with aberrant formation of pseudohyphae, suggesting that the Dnf1p-Dnf3p proteins have partly redundant functions in the control of this specialized form of polarized growth. Furthermore, as previously demonstrated for Dnf1 and Dnf2p, the phospholipid flipping activity of Dnf3p is positively regulated by flippase kinase 1 (Fpk1p) and Fpk2p. Phylogenetic analyses demonstrate that Dnf3p belongs to a subfamily of P4 ATPases specific for fungi and are likely to represent a hallmark of fungal evolution.
Collapse
Affiliation(s)
- Merethe Mørch Frøsig
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sara Rute Costa
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Susanne Hanisch
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Sebastian Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| | - Thomas Günther Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK - 1871 Frederiksberg C, Denmark
| |
Collapse
|
53
|
Fisher RM, Shik JZ, Boomsma JJ. The evolution of multicellular complexity: the role of relatedness and environmental constraints. Proc Biol Sci 2020; 287:20192963. [PMID: 32693719 PMCID: PMC7423666 DOI: 10.1098/rspb.2019.2963] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
A major challenge in evolutionary biology has been to explain the variation in multicellularity across the many independently evolved multicellular lineages, from slime moulds to vertebrates. Social evolution theory has highlighted the key role of relatedness in determining multicellular complexity and obligateness; however, there is a need to extend this to a broader perspective incorporating the role of the environment. In this paper, we formally test Bonner's 1998 hypothesis that the environment is crucial in determining the course of multicellular evolution, with aggregative multicellularity evolving more frequently on land and clonal multicellularity more frequently in water. Using a combination of scaling theory and phylogenetic comparative analyses, we describe multicellular organizational complexity across 139 species spanning 14 independent transitions to multicellularity and investigate the role of the environment in determining multicellular group formation and in imposing constraints on multicellular evolution. Our results, showing that the physical environment has impacted the way in which multicellular groups form, highlight that environmental conditions might have affected the major evolutionary transition to obligate multicellularity.
Collapse
Affiliation(s)
- R. M. Fisher
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| | - J. Z. Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - J. J. Boomsma
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
54
|
Martínez-Soto D, Ortiz-Castellanos L, Robledo-Briones M, León-Ramírez CG. Molecular Mechanisms Involved in the Multicellular Growth of Ustilaginomycetes. Microorganisms 2020; 8:E1072. [PMID: 32708448 PMCID: PMC7409079 DOI: 10.3390/microorganisms8071072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Multicellularity is defined as the developmental process by which unicellular organisms became pluricellular during the evolution of complex organisms on Earth. This process requires the convergence of genetic, ecological, and environmental factors. In fungi, mycelial and pseudomycelium growth, snowflake phenotype (where daughter cells remain attached to their stem cells after mitosis), and fruiting bodies have been described as models of multicellular structures. Ustilaginomycetes are Basidiomycota fungi, many of which are pathogens of economically important plant species. These fungi usually grow unicellularly as yeasts (sporidia), but also as simple multicellular forms, such as pseudomycelium, multicellular clusters, or mycelium during plant infection and under different environmental conditions: Nitrogen starvation, nutrient starvation, acid culture media, or with fatty acids as a carbon source. Even under specific conditions, Ustilago maydis can form basidiocarps or fruiting bodies that are complex multicellular structures. These fungi conserve an important set of genes and molecular mechanisms involved in their multicellular growth. In this review, we will discuss in-depth the signaling pathways, epigenetic regulation, required polyamines, cell wall synthesis/degradation, polarized cell growth, and other cellular-genetic processes involved in the different types of Ustilaginomycetes multicellular growth. Finally, considering their short life cycle, easy handling in the laboratory and great morphological plasticity, Ustilaginomycetes can be considered as model organisms for studying fungal multicellularity.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Los Reyes, Los Reyes 60300, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| | - Mariana Robledo-Briones
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain;
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36821, Mexico; (L.O.-C.); (C.G.L.-R.)
| |
Collapse
|
55
|
Niklas KJ, Newman SA. The many roads to and from multicellularity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3247-3253. [PMID: 31819969 PMCID: PMC7289717 DOI: 10.1093/jxb/erz547] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/07/2019] [Indexed: 05/02/2023]
Abstract
The multiple origins of multicellularity had far-reaching consequences ranging from the appearance of phenotypically complex life-forms to their effects on Earth's aquatic and terrestrial ecosystems. Yet, many important questions remain. For example, do all lineages and clades share an ancestral developmental predisposition for multicellularity emerging from genomic and biophysical motifs shared from a last common ancestor, or are the multiple origins of multicellularity truly independent evolutionary events? In this review, we highlight recent developments and pitfalls in understanding the evolution of multicellularity with an emphasis on plants (here defined broadly to include the polyphyletic algae), but also draw upon insights from animals and their holozoan relatives, fungi and amoebozoans. Based on our review, we conclude that the evolution of multicellular organisms requires three phases (origination by disparate cell-cell attachment modalities, followed by integration by lineage-specific physiological mechanisms, and autonomization by natural selection) that have been achieved differently in different lineages.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Correspondence:
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
56
|
Laundon D, Chrismas N, Wheeler G, Cunliffe M. Chytrid rhizoid morphogenesis resembles hyphal development in multicellular fungi and is adaptive to resource availability. Proc Biol Sci 2020; 287:20200433. [PMID: 32517626 PMCID: PMC7341943 DOI: 10.1098/rspb.2020.0433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the ecological prominence of fungi is their distinctive cell biology, our understanding of which has been principally based on dikaryan hyphal and yeast forms. The early-diverging Chytridiomycota (chytrids) are ecologically important and a significant component of fungal diversity, yet their cell biology remains poorly understood. Unlike dikaryan hyphae, chytrids typically attach to substrates and feed osmotrophically via anucleate rhizoids. The evolution of fungal hyphae appears to have occurred from rhizoid-bearing lineages and it has been hypothesized that a rhizoid-like structure was the precursor to multicellular hyphae. Here, we show in a unicellular chytrid, Rhizoclosmatium globosum, that rhizoid development exhibits striking similarities with dikaryan hyphae and is adaptive to resource availability. Rhizoid morphogenesis exhibits analogous patterns to hyphal growth and is controlled by β-glucan-dependent cell wall synthesis and actin polymerization. Chytrid rhizoids growing from individual cells also demonstrate adaptive morphological plasticity in response to resource availability, developing a searching phenotype when carbon starved and spatial differentiation when interacting with particulate organic matter. We demonstrate that the adaptive cell biology and associated developmental plasticity considered characteristic of hyphal fungi are shared more widely across the Kingdom Fungi and therefore could be conserved from their most recent common ancestor.
Collapse
Affiliation(s)
- Davis Laundon
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Glen Wheeler
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Cunliffe
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
57
|
Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun 2020; 11:2594. [PMID: 32444651 PMCID: PMC7244713 DOI: 10.1038/s41467-020-16072-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Development of multicellularity was one of the major transitions in evolution and occurred independently multiple times in algae, plants, animals, and fungi. However recent comparative genome analyses suggest that fungi followed a different route to other eukaryotic lineages. To understand the driving forces behind the transition from unicellular fungi to hyphal forms of growth, we develop a comparative model of osmotrophic resource acquisition. This predicts that whenever the local resource is immobile, hard-to-digest, and nutrient poor, hyphal osmotrophs outcompete motile or autolytic unicellular osmotrophs. This hyphal advantage arises because transporting nutrients via a contiguous cytoplasm enables continued exploitation of remaining resources after local depletion of essential nutrients, and more efficient use of costly exoenzymes. The model provides a mechanistic explanation for the origins of multicellular hyphal organisms, and explains why fungi, rather than unicellular bacteria, evolved to dominate decay of recalcitrant, nutrient poor substrates such as leaf litter or wood.
Collapse
Affiliation(s)
- Luke L M Heaton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.,Department of Mathematics, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Nick S Jones
- Department of Mathematics, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
58
|
Abstract
Filamentous fungi grow by adding cell wall and membrane exclusively at the apex of tubular structures called hyphae. Growth was previously believed to occur only through exocytosis at the Spitzenkörper, an organised body of secretory macro- and microvesicles found only in growing hyphae. More recent work has indicated that an area deemed the sub-apical collar is enriched for endocytosis and is also required for hyphal growth. It is now generally believed that polarity of filamentous fungi is achieved through the balancing of the processes of endocytosis and exocytosis at these two areas. This review is an update on the current progress and understanding surrounding the occurrence of endocytosis and its spatial regulation as they pertain to growth and pathogenicity in filamentous fungi.
Collapse
Affiliation(s)
- Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
59
|
Perez R, Luccioni M, Kamakaka R, Clamons S, Gaut N, Stirling F, Adamala KP, Silver PA, Endy D. Enabling community-based metrology for wood-degrading fungi. Fungal Biol Biotechnol 2020; 7:2. [PMID: 32206323 PMCID: PMC7081594 DOI: 10.1186/s40694-020-00092-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lignocellulosic biomass could support a greatly-expanded bioeconomy. Current strategies for using biomass typically rely on single-cell organisms and extensive ancillary equipment to produce precursors for downstream manufacturing processes. Alternative forms of bioproduction based on solid-state fermentation and wood-degrading fungi could enable more direct means of manufacture. However, basic methods for cultivating wood-degrading fungi are often ad hoc and not readily reproducible. Here, we developed standard reference strains, substrates, measurements, and methods sufficient to begin to enable reliable reuse of mycological materials and products in simple laboratory settings. RESULTS We show that a widely-available and globally-regularized consumer product (Pringles™) can support the growth of wood-degrading fungi, and that growth on Pringles™-broth can be correlated with growth on media made from a fully-traceable and compositionally characterized substrate (National Institute of Standards and Technology Reference Material 8492 Eastern Cottonwood Whole Biomass Feedstock). We also establish a Relative Extension Unit (REU) framework that is designed to reduce variation in quantification of radial growth measurements. So enabled, we demonstrate that five laboratories were able to compare measurements of wood-fungus performance via a simple radial extension growth rate assay, and that our REU-based approach reduced variation in reported measurements by up to ~ 75%. CONCLUSIONS Reliable reuse of materials, measures, and methods is necessary to enable distributed bioproduction processes that can be adopted at all scales, from local to industrial. Our community-based measurement methods incentivize practitioners to coordinate the reuse of standard materials, methods, strains, and to share information supporting work with wood-degrading fungi.
Collapse
Affiliation(s)
- Rolando Perez
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Room 252, Shriram Center, 443 Via Ortega, Stanford, CA 94305 USA
| | - Marina Luccioni
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Room 252, Shriram Center, 443 Via Ortega, Stanford, CA 94305 USA
| | - Rohinton Kamakaka
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - Samuel Clamons
- Department of Chemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd, MC 138-78, Pasadena, CA 91125 USA
- Department of Control and Dynamical Systems, California Institute of Technology, 1200 E. California Blvd, MC 138-78, Pasadena, CA 91125 USA
| | - Nathaniel Gaut
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, 420 Washington Ave. SE, 5-178 MCB, Minneapolis, MN 55455 USA
| | - Finn Stirling
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, 420 Washington Ave. SE, 5-178 MCB, Minneapolis, MN 55455 USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
| | - Drew Endy
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Room 252, Shriram Center, 443 Via Ortega, Stanford, CA 94305 USA
| |
Collapse
|
60
|
Nagy LG, Merényi Z, Hegedüs B, Bálint B. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. Nucleic Acids Res 2020; 48:2209-2219. [PMID: 31943056 PMCID: PMC7049691 DOI: 10.1093/nar/gkz1241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Ongoing large-scale genome sequencing projects are forecasting a data deluge that will almost certainly overwhelm current analytical capabilities of evolutionary genomics. In contrast to population genomics, there are no standardized methods in evolutionary genomics for extracting evolutionary and functional (e.g. gene-trait association) signal from genomic data. Here, we examine how current practices of multi-species comparative genomics perform in this aspect and point out that many genomic datasets are under-utilized due to the lack of powerful methodologies. As a result, many current analyses emphasize gene families for which some functional data is already available, resulting in a growing gap between functionally well-characterized genes/organisms and the universe of unknowns. This leaves unknown genes on the 'dark side' of genomes, a problem that will not be mitigated by sequencing more and more genomes, unless we develop tools to infer functional hypotheses for unknown genes in a systematic manner. We provide an inventory of recently developed methods capable of predicting gene-gene and gene-trait associations based on comparative data, then argue that realizing the full potential of whole genome datasets requires the integration of phylogenetic comparative methods into genomics, a rich but underutilized toolbox for looking into the past.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| |
Collapse
|
61
|
Zhu W, Hu J, Li Y, Yang B, Guan Y, Xu C, Chen F, Chi J, Bao Y. Comparative Proteomic Analysis of Pleurotus ostreatus Reveals Great Metabolic Differences in the Cap and Stipe Development and the Potential Role of Ca 2+ in the Primordium Differentiation. Int J Mol Sci 2019; 20:ijms20246317. [PMID: 31847351 PMCID: PMC6940972 DOI: 10.3390/ijms20246317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus around the world. At present, studies on the developmental process of the fruiting body are limited. In our study, we compared the differentially expressed proteins (DEPs) in the stipe and cap of the fruiting body by high-throughput proteomics. GO and pathway analysis revealed the great differences in the metabolic levels, including sucrose and starch metabolism, and sphingolipid signaling and metabolism, and the differences of 16 important DEPs were validated further by qPCR analysis in expression level. In order to control the cap and stipe development, several chemical inducers were applied to the primordium of the fruiting body according to the pathway enrichment results. We found that CaCl2 can affect the primordium differentiation through inhibiting the stipe development. EGTA (ethyleneglycol bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid) treatment confirmed the inhibitory role of Ca2+ in the stipe development. Our study not only shows great metabolic differences during the cap and stipe development but also reveals the underlying mechanism directing the primordium differentiation in the early development of the fruiting body for the first time. Most importantly, we provide a reliable application strategy for the cultivation and improvement of the Pleurotus ostreatus, which can be an example and reference for a more edible fungus.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yanli Guan
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Food and Environmental Science and Technology, Dalian University of Technology, Panjin 12421, China
- Correspondence: ; Tel.: +86-411-8470-6344; Fax: +86-411-8470-6365
| |
Collapse
|