51
|
Tarzia A, Lewis JEM, Jelfs KE. High-Throughput Computational Evaluation of Low Symmetry Pd 2 L 4 Cages to Aid in System Design*. Angew Chem Int Ed Engl 2021; 60:20879-20887. [PMID: 34254713 PMCID: PMC8518684 DOI: 10.1002/anie.202106721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Unsymmetrical ditopic ligands can self-assemble into reduced-symmetry Pd2 L4 metallo-cages with anisotropic cavities, with implications for high specificity and affinity guest-binding. Mixtures of cage isomers can form, however, resulting in undesirable system heterogeneity. It is paramount to be able to design components that preferentially form a single isomer. Previous data suggested that computational methods could predict with reasonable accuracy whether unsymmetrical ligands would preferentially self-assemble into single cage isomers under constraints of geometrical mismatch. We successfully apply a collaborative computational and experimental workflow to mitigate costly trial-and-error synthetic approaches. Our rapid computational workflow constructs unsymmetrical ligands and their Pd2 L4 cage isomers, ranking the likelihood for exclusively forming cis-Pd2 L4 assemblies. From this narrowed search space, we successfully synthesised four new, low-symmetry, cis-Pd2 L4 cages.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, Wood LaneLondonW12 0BZUK
| |
Collapse
|
52
|
Preston D. Discrete Self-Assembled Metallo-Foldamers with Heteroleptic Sequence Specificity. Angew Chem Int Ed Engl 2021; 60:20027-20035. [PMID: 34263526 DOI: 10.1002/anie.202108456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 01/23/2023]
Abstract
Discrete and structurally diverse foldamer sequences are constructed in both natural and abiotic systems primarily using inert connectivity with irreversible organic covalent bonds, serving to preserve the identity of the sequence. The formation of sequences under thermodynamic control using labile coordination bonds would be attractive for synthetic ease and modular capability, but this presents issues regarding sequence preservation. Here is presented an approach integrating palladium(II) metal ions into the sequence itself, with fidelity maintained through use of complementary pairings of ligand arrangements at the metal centre. This is accomplished using sites of different denticity and/or hydrogen bonding capability. In this fashion, discrete and ordered metallo-sequences are formed as thermodynamic products in a single step, and these then fold into defined conformations due to π-π interactions between electron-rich and -poor aromatic regions of the combined componentry.
Collapse
Affiliation(s)
- Dan Preston
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
53
|
Preston D. Discrete Self‐Assembled Metallo‐Foldamers with Heteroleptic Sequence Specificity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Preston
- Research School of Chemistry Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
54
|
Timmer BJJ, Bobylev EO, Mooibroek TJ. Comparison of [Pd 2L 4][BF 4] 4 cages for binding of n-octyl glycosides and nitrate (L = isophthalamide or dipicolinamide linked dipyridyl ligand). Org Biomol Chem 2021; 19:6633-6637. [PMID: 34286795 DOI: 10.1039/d1ob01185e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two dipyridyl ligands were synthesized, where the pyridyl donor fragments were separated by an isophthalamide (1) or a dipicolinamide moiety (2). Both ligands formed [Pd2(Ligand)4][BF4]4 complexes in CD2Cl2 containing 5% dmso-d6. It was found that while [Pd2(1)4][BF4]4 readily binds to n-octyl glycosides and to nitrate anions, [Pd2(2)4][BF4]4 did not. The difference in binding properties could be rationalized based on the reduced flexibility and size of the [Pd2(2)4]2+ cage and/or stronger interior binding of a BF4- counter anion.
Collapse
Affiliation(s)
- Brian J J Timmer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Tiddo J Mooibroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
55
|
Li RJ, Fadaei-Tirani F, Scopelliti R, Severin K. Tuning the Size and Geometry of Heteroleptic Coordination Cages by Varying the Ligand Bent Angle. Chemistry 2021; 27:9439-9445. [PMID: 33998736 DOI: 10.1002/chem.202101057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Spherical assemblies of the type [Pdn L2n ]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [Pdn Ln L'n ]2n+ , for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3 CN)4 ](BF4 )2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8 L8 L'8 ]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
56
|
Zhang M, He S, Zou Q, Li ZA, Lai Y, Chen K, Ma L, Yin JF, Li M, He C, Ke Y, Yin P. Unique Dynamics of Hierarchical Constrained Macromolecular Ligands on Coordination Nanocage Surface Promotes Facile and Precise Assembly of Polymers. J Phys Chem Lett 2021; 12:5395-5403. [PMID: 34080876 DOI: 10.1021/acs.jpclett.1c01278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With access to the solution structures of nanocomposites of coordination nanocages (CNCs) via scattering and chromatography techniques, their mysterious solution dynamics have been, for the first time, resolved, and interestingly, the surface macromolecules can be substituted by extra free macromolecules in solutions. Obvious exchange of macromolecules can be observed in the solution mixtures of CNC nanocomposites at high temperatures, revising the understanding of the dynamics of CNC nanocomposites. Being distinct from nanocomposites of a simple coordination complex, the quantified solution dynamics of CNC nanocomposites indicates a typical logarithmic time dependence with the dissociation of surface macromolecules as the thermodynamically limiting step, suggesting strongly coupled and hierarchically constrained dynamics among the surface macromolecules. Their dynamics can be activated only upon application of high temperature or selected solvents, and therefore, the rational design of polymer assemblies, for example, hybrid-arm star polymers with precisely controlled compositions and reprocessable, robust CNC-cross-linked supramolecular polymer networks, is facilitated.
Collapse
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuqian He
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qin Zou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zi-Ang Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Litao Ma
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Chunyong He
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan 523000, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan 523000, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
57
|
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemische Freisetzung nichtkovalent gebundener Gäste aus einem mit Polymerketten dekorierten supramolekularen Käfig. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Dustin Rasch
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 1 52074 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| |
Collapse
|
58
|
Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemical Release of Non-Covalently Bound Guests from a Polymer-Decorated Supramolecular Cage. Angew Chem Int Ed Engl 2021; 60:13626-13630. [PMID: 33729649 PMCID: PMC8251918 DOI: 10.1002/anie.202102383] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Supramolecular coordination cages show a wide range of useful properties including, but not limited to, complex molecular machine-like operations, confined space catalysis, and rich host-guest chemistries. Here we report the uptake and release of non-covalently encapsulated, pharmaceutically-active cargo from an octahedral Pd cage bearing polymer chains on each vertex. Six poly(ethylene glycol)-decorated bipyridine ligands are used to assemble an octahedral PdII6 (TPT)4 cage. The supramolecular container encapsulates progesterone and ibuprofen within its hydrophobic nanocavity and is activated by shear force produced by ultrasonication in aqueous solution entailing complete cargo release upon rupture, as shown by NMR and GPC analyses.
Collapse
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Dustin Rasch
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| |
Collapse
|
59
|
Pullen S, Tessarolo J, Clever GH. Increasing structural and functional complexity in self-assembled coordination cages. Chem Sci 2021; 12:7269-7293. [PMID: 34163819 PMCID: PMC8171321 DOI: 10.1039/d1sc01226f] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host-guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems.
Collapse
Affiliation(s)
- Sonja Pullen
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
60
|
Tessarolo J, Lee H, Sakuda E, Umakoshi K, Clever GH. Integrative Assembly of Heteroleptic Tetrahedra Controlled by Backbone Steric Bulk. J Am Chem Soc 2021; 143:6339-6344. [PMID: 33900773 PMCID: PMC8154538 DOI: 10.1021/jacs.1c01931] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/20/2022]
Abstract
A bent fluorenone-based dipyridyl ligand LA reacts with PdII cations to a solvent-dependent dynamic library of [PdnL2n] assemblies, constituted by a [Pd3LA6] ring and a [Pd4LA8] tetrahedron as major components, and a [Pd6LA12] octahedron as minor component. Introduction of backbone steric hindrance in ligand LB allows exclusive formation of the [Pd6LB12] octahedron. Combining equimolar amounts of both ligands results in integrative self-sorting to give an unprecedented [Pd4LA4LB4] heteroleptic tetrahedron. Key to the non-statistical assembly outcome is exploiting the structural peculiarity of the [Pd4L8] tetrahedral topology, where the four lean ligands occupy two doubly bridged edges and the bulky ligands span the four remaining, singly bridged edges. Hence, the system finds a compromise between the entropic drive to form an assembly smaller than the octahedron and the enthalpic prohibition of pairing two bulky ligands on the same edge of the triangular ring. The emission of luminescent LA is maintained in both homoleptic [Pd3LA6] and heteroleptic [Pd4LA4LB4].
Collapse
Affiliation(s)
- Jacopo Tessarolo
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Haeri Lee
- Department
of Chemistry, Hannam University, 1646, Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Eri Sakuda
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Keisuke Umakoshi
- Division
of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
61
|
Wu K, Zhang B, Drechsler C, Holstein JJ, Clever GH. Rückgrat‐verknüpfte Liganden erhöhen die Vielfalt in heteroleptischen Koordinationskäfigen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kai Wu
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Bo Zhang
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Christoph Drechsler
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
62
|
Li RJ, Tessarolo J, Lee H, Clever GH. Multi-stimuli Control over Assembly and Guest Binding in Metallo-supramolecular Hosts Based on Dithienylethene Photoswitches. J Am Chem Soc 2021; 143:3865-3873. [PMID: 33673736 PMCID: PMC7975281 DOI: 10.1021/jacs.0c12188] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
It is difficult to
assemble multi-component metallo-supramolecular
architectures in a non-statistical fashion, which limits their development
toward functional materials. Herein, we report a system of interconverting
bowls and cages that are able to respond to various selective stimuli
(light, ligands, anions), based on the self-assembly of a photochromic
dithienylethene (DTE) ligand, La, with PdII cations. By combining the concept of “coordination
sphere engineering”, relying on bulky quinoline donors, with
reversible photoswitching between the ligand’s open (o-La) and closed (c-La) forms, a [Pd2(o-La)4] cage (o-C) and a [Pd2(c-La)3] bowl (c-B) were obtained,
respectively. This structural rearrangement modulates the system’s
guest uptake capabilities. Among three bis-sulfonate guests (G1, G2, and G3), the cage can encapsulate
only the smallest (G1), while the bowl binds all of them.
Bowl c-B was further used to synthesize
a series of heteroleptic cages, [Pd2LA3LB], representing a motif never reported before. Additional
ligands (Lc-f), with short
or long arms, tune the cavity size, thus enabling or preventing guest
uptake. Addition of Br–/Ag+ makes it
possible to change the overall charge, again triggering guest uptake
and release, as well as fourth ligand de-/recomplexation. In combination,
site-selective introduction of functionality and application of external
stimuli lead to an intricate system of hosts with different guest
preferences. A high degree of complexity is achieved through cooperativity
between only a few components.
Collapse
Affiliation(s)
- Ru-Jin Li
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Jacopo Tessarolo
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Haeri Lee
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Guido H Clever
- Faculty of Chemistry & Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
63
|
Sudan S, Li RJ, Jansze SM, Platzek A, Rudolf R, Clever GH, Fadaei-Tirani F, Scopelliti R, Severin K. Identification of a Heteroleptic Pd 6L 6L' 6 Coordination Cage by Screening of a Virtual Combinatorial Library. J Am Chem Soc 2021; 143:1773-1778. [PMID: 33476512 DOI: 10.1021/jacs.0c12793] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of structurally defined heteroleptic coordination cages is a challenging task, and only few examples are known to date. Here we describe a selection approach that allowed the identification of a novel hexanuclear Pd cage containing two types of dipyridyl ligands. A virtual combinatorial library of [PdnL2n](BF4)2n complexes was prepared by mixing six different dipyridyl ligands with substoichiometric amounts of [Pd(CH3CN)4](BF4)2. Analysis of the equilibrated reaction mixture revealed the preferential formation of a heteroleptic [Pd6L6L'6](BF4)12 assembly. The complex was prepared on a preparative scale by a targeted synthesis, and its structure was elucidated by single-crystal X-ray diffraction. It features an unprecedented trigonal-antiprismatic cage structure with two triangular Pd3L3 macrocycles bridged by six L' ligands. A related but significantly larger [Pd6L6L'6](BF4)12 cage was obtained by using metalloligands instead of organic dipyridyl ligands.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - André Platzek
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Robin Rudolf
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Guido H Clever
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
64
|
Cheng PM, Cai LX, Li SC, Hu SJ, Yan DN, Zhou LP, Sun QF. Guest-Reaction Driven Cage to Conjoined Twin-Cage Mitosis-Like Host Transformation. Angew Chem Int Ed Engl 2020; 59:23569-23573. [PMID: 32902925 DOI: 10.1002/anie.202011474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/12/2022]
Abstract
We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4 L2 cage 1 to a conjoined Pd6 L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol (G1), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2'-dihydroxy-1,1'-dinaphthylmethane (G2) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2, confirming the induced-fit transformation mechanism. The structure of the (G2)2 ⊂2 host-guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,College of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Shao-Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
65
|
Wu K, Zhang B, Drechsler C, Holstein JJ, Clever GH. Backbone-Bridging Promotes Diversity in Heteroleptic Cages. Angew Chem Int Ed Engl 2020; 60:6403-6407. [PMID: 33113268 PMCID: PMC7986237 DOI: 10.1002/anie.202012425] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/17/2023]
Abstract
The combination of shape-complementary bis-monodentate ligands LA and LB with PdII cations yields heteroleptic cages cis-[Pd2 LA 2 LB 2 ] by self-sorting. Herein, we report how such assemblies can be diversified by introduction of covalent backbone bridges between two LA units. Together with solvent and guest effects, the flexibility of these linkers can modulate nuclearity, topology, and number of cavities in a family of four structurally diverse assemblies. Ligand LA1 , with flexible linker, reacts in CH3 CN with its LB counterpart to a tetranuclear dimer D1. In DMSO, however, a trinuclear pseudo-tetrahedron T1 is formed. The product of LA2 , with rigid linker, looks similar to D1, but with a rotated ligand arrangement. In presence of an anionic guest, this dimer D2 transforms and a hexanuclear prismatic barrel P2 crystallizes. We demonstrate how controlling a ligand's coordination mode can trigger structural differentiation and increase complexity in metallo-supramolecular assembly.
Collapse
Affiliation(s)
- Kai Wu
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Bo Zhang
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Christoph Drechsler
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
66
|
Vasdev RAS, Findlay JA, Turner DR, Crowley JD. Self-Assembly of a Redox Active, Metallosupramolecular [Pd 3 L 6 ] 6+ Complex Using a Rotationally Flexible Ferrocene Ligand. Chem Asian J 2020; 16:39-43. [PMID: 33251757 DOI: 10.1002/asia.202001277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
A new ferrocene-containing [Pd3 (L4EFc )6 ]6+ (X- )6 (C ⋅ BF4 and C ⋅ SbF6 where X=BF4 - or SbF6 - ) self-assembled double-walled triangle has been synthesized from the known, rotationally flexible, 1,1'-bis(4-pyridylethynyl)ferrocene ligand (L4EFc ), and characterized by 1 H, 13 C and diffusion ordered (DOSY) NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), X-ray crystallography and cyclic voltammetry (CV). The molecular structures confirmed that double-walled triangle cage systems (C ⋅ BF4 and C ⋅ SbF6 ) were generated. C ⋅ BF4 was shown to interact with the anionic guest, p-toluenesulfonate. CV experiments revealed that the triangles were redox active, however addition of the guest did not influence the redox potentials.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - James A Findlay
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David R Turner
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
67
|
Lee J, Lim S, Kim D, Jung OS, Lee YA. Flexibility and anion exchange of [(X)@Pd 2L 4] cages for recognition of size and charge of polyatomic anions. Dalton Trans 2020; 49:15002-15008. [PMID: 33094791 DOI: 10.1039/d0dt03005h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of Pd(NO3)2 with L (L = 1,2-bis(dimethyl(pyridin-3-yl)silyl)ethane) gives rise to [PdL2](NO3)2 in high yields. Anion exchange of [PdL2](NO3)2 with X- (X- = BF4-, ClO4-, and PF6-) changes the skeleton into a cage of [(X)@Pd2L4](X)3. Successive anion exchange of [(X)@Pd2L4](X)3 (X- = BF4-, ClO4-, and PF6-) with X- (X- = ReO4- and SiF62-) produces [(ReO4)@Pd2L4](ReO4)3 and [(SiF6)@Pd2L4](SiF6), respectively, irrespective of anion charge. The flexible nature and conformation of cages are significantly dependent on the nestled polyatomic anions. Thus, this system can be used as a molecular recognizer of the size and charge of ubiquitous polyatomic anions.
Collapse
Affiliation(s)
- Jeyeong Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | | | | | | | | |
Collapse
|
68
|
Legrand A, Wang Z, Troyano J, Furukawa S. Directional asymmetry over multiple length scales in reticular porous materials. Chem Sci 2020; 12:18-33. [PMID: 34163581 PMCID: PMC8178947 DOI: 10.1039/d0sc05008c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In nature and synthetic materials, asymmetry is a useful tool to create complex and functional systems constructed from a limited number of building blocks. Reticular chemistry has allowed the synthesis of a wide range of discrete and extended structures, from which modularity permits the controlled assembly of their constituents to generate asymmetric configurations of pores or architectures. In this perspective, we present the different strategies to impart directional asymmetry over nano/meso/macroscopic length scales in porous materials and the resulting novel properties and applications. Design strategies for the controlled assembly of discrete and extended reticular materials with asymmetric configurations of pores or architectures.![]()
Collapse
Affiliation(s)
- Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
69
|
Cheng P, Cai L, Li S, Hu S, Yan D, Zhou L, Sun Q. Guest‐Reaction Driven Cage to Conjoined Twin‐Cage Mitosis‐Like Host Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pei‐Ming Cheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- College of Chemistry and Material Science Fujian Normal University Fuzhou 350007 PR China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
| | - Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
70
|
Phukon U, Priyatharsini M, Sathiyendiran M. Self-assembly of rhenium core-based conjoined bicyclic supramolecule from pyrazole and flexible hexatopic pyrazolyl ligands. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
71
|
Mishra SS, Kompella SVK, Krishnaswamy S, Balasubramanian S, Chand DK. Low-Symmetry Self-Assembled Coordination Complexes with Exclusive Diastereoselectivity: Experimental and Computational Studies. Inorg Chem 2020; 59:12884-12894. [DOI: 10.1021/acs.inorgchem.0c01964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Srabani S. Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srinath V. K. Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shobhana Krishnaswamy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dillip K. Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
72
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
73
|
Zhang YW, Bai S, Wang YY, Han YF. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J Am Chem Soc 2020; 142:13614-13621. [DOI: 10.1021/jacs.0c06470] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
74
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020; 59:13516-13520. [DOI: 10.1002/anie.202004112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
75
|
Miroslaw B. Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands. Int J Mol Sci 2020; 21:E3493. [PMID: 32429112 PMCID: PMC7278988 DOI: 10.3390/ijms21103493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118-119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed.
Collapse
Affiliation(s)
- Barbara Miroslaw
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
76
|
Lewis JEM, Crowley JD. Metallo‐Supramolecular Self‐Assembly with Reduced‐Symmetry Ligands. Chempluschem 2020; 85:815-827. [DOI: 10.1002/cplu.202000153] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Indexed: 12/20/2022]
Affiliation(s)
- James E. M. Lewis
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub 80 Wood Lane London W12 0BZ United Kingdom
| | - James. D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
77
|
Kolien J, Inglis AR, Vasdev RAS, Howard BI, Kruger PE, Preston D. Exploiting the labile site in dinuclear [Pd2L2]n+ metallo-cycles: multi-step control over binding affinity without alteration of core host structure. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00901f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic metallosupramolecular systems have generally been binary (on/off) when they have control over molecular recognition. This report details a dipalladium(ii) system with four-step graduated control over recognition for a guest.
Collapse
Affiliation(s)
- James Kolien
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Amanda R. Inglis
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | | | - Ben I. Howard
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| |
Collapse
|
78
|
Sarada G, Kim A, Kim D, Jung OS. Diverse anion exchange of pliable [X 2@Pd 3L 4] 4+ double cages: a molecular ruler for recognition of polyatomic anions. Dalton Trans 2020; 49:6183-6190. [PMID: 32301465 DOI: 10.1039/d0dt01027h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reaction of Pd(BF4)2 with L (L = bis(pyridin-3-yl-propyl)pyridine-3,5-dicarboxylate) in the 1 : 2 mole ratio gives rise to a spiro-type [PdL2]·(BF4)2·2C6H6·2CH3CN, and further self-assembly of [PdL2]·(BF4)2·2C6H6·2CH3CN with Pd(NO3)2 in the 2 : 1 mole ratio in Me2SO at 90 °C produces a uniquely pliable double cage of [(NO3)2(H2O)2@Pd3L4](BF4)4·6C3H7NO. Both the encapsulated NO3- and the outside BF4- anions are exchanged by X- to form [(X)2@Pd3L4](X')4 (X- = PF6-, ClO4-, and/or NO3-; X'- = BF4-, PF6-, ClO4-, and NO3-) with all-inclusive pure or mixed anions. The pliable and characteristic properties of the double cages were confirmed by anion exchange of the nestled or outside anions in the present study. This system can be used as a ruler for recognition of ubiquitous polyatomic anions.
Collapse
Affiliation(s)
- Ganguri Sarada
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Ahreum Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Dongwon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|