51
|
Liang K, Li D, Ren H, Zhao M, Wang H, Ding M, Xu G, Zhao X, Long S, Zhu S, Sheng P, Li W, Lin X, Zhu B. Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect. NANO-MICRO LETTERS 2021; 13:164. [PMID: 34342729 PMCID: PMC8333237 DOI: 10.1007/s40820-021-00694-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Metal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the "coffee-ring" effect. Here, we report a novel approach to print high-performance indium tin oxide (ITO)-based TFTs and logic inverters by taking advantage of such notorious effect. ITO has high electrical conductivity and is generally used as an electrode material. However, by reducing the film thickness down to nanometers scale, the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors. The ultrathin (~10-nm-thick) ITO film in the center of the coffee-ring worked as semiconducting channels, while the thick ITO ridges (>18-nm-thick) served as the contact electrodes. The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V-1 s-1 and a low subthreshold swing of 105 mV dec-1. In addition, the devices exhibited excellent electrical stability under positive bias illumination stress (PBIS, ΔVth = 0.31 V) and negative bias illuminaiton stress (NBIS, ΔVth = -0.29 V) after 10,000 s voltage bias tests. More remarkably, fully printed n-type metal-oxide-semiconductor (NMOS) inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V, promising for advanced electronics applications.
Collapse
Affiliation(s)
- Kun Liang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Zhejiang University, Hangzhou, 310027, China
| | - Dingwei Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Zhejiang University, Hangzhou, 310027, China
| | - Huihui Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Zhejiang University, Hangzhou, 310027, China
| | - Momo Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xian, 710071, China
| | - Hong Wang
- Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xian, 710071, China
| | - Mengfan Ding
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangwei Xu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Siyuan Zhu
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Pei Sheng
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Wenbin Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiao Lin
- School of Science, Westlake University, Hangzhou, 310024, China
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
52
|
Magnozzi M, Pflug T, Ferrera M, Pace S, Ramó L, Olbrich M, Canepa P, Ağircan H, Horn A, Forti S, Cavalleri O, Coletti C, Bisio F, Canepa M. Local Optical Properties in CVD-Grown Monolayer WS 2 Flakes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:16059-16065. [PMID: 34484552 PMCID: PMC8411805 DOI: 10.1021/acs.jpcc.1c04287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Indexed: 06/10/2023]
Abstract
Excitons dominate the light absorption and re-emission spectra of monolayer transition-metal dichalcogenides (TMD). Microscopic investigations of the excitonic response in TMD almost invariably extract information from the radiative recombination step, which only constitutes one part of the picture. Here, by exploiting imaging spectroscopic ellipsometry (ISE), we investigate the spatial dependence of the dielectric function of chemical vapor deposition (CVD)-grown WS2 flakes with a microscopic lateral resolution, thus providing information about the spatially varying, exciton-induced light absorption in the monolayer WS2. Comparing the ISE results with imaging photoluminescence spectroscopy data, the presence of several correlated features was observed, along with the unexpected existence of a few uncorrelated characteristics. The latter demonstrates that the exciton-induced absorption and emission features are not always proportional at the microscopic scale. Microstructural modulations across the flakes, having a different influence on the absorption and re-emission of light, are deemed responsible for the effect.
Collapse
Affiliation(s)
- Michele Magnozzi
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, via Dodecaneso 33, 16146 Genova, Italy
- Istituto
Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Theo Pflug
- Laserinstitut
Hochschule Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
- Technische
Universität Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Marzia Ferrera
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Simona Pace
- Center
for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Lorenzo Ramó
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Markus Olbrich
- Laserinstitut
Hochschule Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
| | - Paolo Canepa
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Hasret Ağircan
- Center
for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Engineering
Department, Istanbul Technical University, Maslak 34467, Istanbul, Turkey
| | - Alexander Horn
- Laserinstitut
Hochschule Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
| | - Stiven Forti
- Center
for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ornella Cavalleri
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation IIT@NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Maurizio Canepa
- OptMatLab,
Dipartimento di Fisica, Università
di Genova, via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
53
|
Realization and training of an inverter-based printed neuromorphic computing system. Sci Rep 2021; 11:9554. [PMID: 33953238 PMCID: PMC8099883 DOI: 10.1038/s41598-021-88396-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022] Open
Abstract
Emerging applications in soft robotics, wearables, smart consumer products or IoT-devices benefit from soft materials, flexible substrates in conjunction with electronic functionality. Due to high production costs and conformity restrictions, rigid silicon technologies do not meet application requirements in these new domains. However, whenever signal processing becomes too comprehensive, silicon technology must be used for the high-performance computing unit. At the same time, designing everything in flexible or printed electronics using conventional digital logic is not feasible yet due to the limitations of printed technologies in terms of performance, power and integration density. We propose to rather use the strengths of neuromorphic computing architectures consisting in their homogeneous topologies, few building blocks and analog signal processing to be mapped to an inkjet-printed hardware architecture. It has remained a challenge to demonstrate non-linear elements besides weighted aggregation. We demonstrate in this work printed hardware building blocks such as inverter-based comprehensive weight representation and resistive crossbars as well as printed transistor-based activation functions. In addition, we present a learning algorithm developed to train the proposed printed NCS architecture based on specific requirements and constraints of the technology.
Collapse
|
54
|
A Review of RFID Sensors, the New Frontier of Internet of Things. SENSORS 2021; 21:s21093138. [PMID: 33946500 PMCID: PMC8124958 DOI: 10.3390/s21093138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
A review of technological solutions for RFID sensing and their current or envisioned applications is presented. The fundamentals of the wireless sensing technology are summarized in the first part of the work, and the benefits of adopting RFID sensors for replacing standard sensor-equipped Wi-Fi nodes are discussed. Emphasis is put on the absence of batteries and the lower cost of RFID sensors with respect to other sensor solutions available on the market. RFID sensors are critically compared by separating them into chipped and chipless configurations. Both categories are further analyzed with reference to their working mechanism (electronic, electromagnetic, and acoustic). RFID sensing through chip-equipped tags is now a mature technological solution, which is continuously increasing its presence on the market and in several applicative scenarios. On the other hand, chipless RFID sensing represents a relatively new concept, which could become a disruptive solution in the market, but further research in this field is necessary for customizing its employment in specific scenarios. The benefits and limitations of several tag configurations are shown and discussed. A summary of the most suitable applicative scenarios for RFID sensors are finally illustrated. Finally, a look at some sensing solutions available on the market are described and compared.
Collapse
|
55
|
Liu Y, Gu F. A wafer-scale synthesis of monolayer MoS 2 and their field-effect transistors toward practical applications. NANOSCALE ADVANCES 2021; 3:2117-2138. [PMID: 36133770 PMCID: PMC9419721 DOI: 10.1039/d0na01043j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 05/11/2023]
Abstract
Molybdenum disulfide (MoS2) has attracted considerable research interest as a promising candidate for downscaling integrated electronics due to the special two-dimensional structure and unique physicochemical properties. However, it is still challenging to achieve large-area MoS2 monolayers with desired material quality and electrical properties to fulfill the requirement for practical applications. Recently, a variety of investigations have focused on wafer-scale monolayer MoS2 synthesis with high-quality. The 2D MoS2 field-effect transistor (MoS2-FET) array with different configurations utilizes the high-quality MoS2 film as channels and exhibits favorable performance. In this review, we illustrated the latest research advances in wafer-scale monolayer MoS2 synthesis by different methods, including Au-assisted exfoliation, CVD, thin film sulfurization, MOCVD, ALD, VLS method, and the thermolysis of thiosalts. Then, an overview of MoS2-FET developments was provided based on large-area MoS2 film with different device configurations and performances. The different applications of MoS2-FET in logic circuits, basic memory devices, and integrated photodetectors were also summarized. Lastly, we considered the perspective and challenges based on wafer-scale monolayer MoS2 synthesis and MoS2-FET for developing practical applications in next-generation integrated electronics and flexible optoelectronics.
Collapse
Affiliation(s)
- Yuchun Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
56
|
Azpeitia J, Frisenda R, Lee M, Bouwmeester D, Zhang W, Mompean F, van der Zant HSJ, García-Hernández M, Castellanos-Gomez A. Integrating superconducting van der Waals materials on paper substrates. MATERIALS ADVANCES 2021; 2:3274-3281. [PMID: 34124682 PMCID: PMC8142649 DOI: 10.1039/d1ma00118c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Paper has the potential to dramatically reduce the cost of electronic components. In fact, paper is 10 000 times cheaper than crystalline silicon, motivating the research to integrate electronic materials on paper substrates. Among the different electronic materials, van der Waals materials are attracting the interest of the scientific community working on paper-based electronics because of the combination of high electrical performance and mechanical flexibility. Up to now, different methods have been developed to pattern conducting, semiconducting and insulating van der Waals materials on paper but the integration of superconductors remains elusive. Here, the deposition of NbSe2, an illustrative van der Waals superconductor, on standard copy paper is demonstrated. The deposited NbSe2 films on paper display superconducting properties (e.g. observation of Meissner effect and resistance drop to zero-resistance state when cooled down below its critical temperature) similar to those of bulk NbSe2.
Collapse
Affiliation(s)
- Jon Azpeitia
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Riccardo Frisenda
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Martin Lee
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Damian Bouwmeester
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Wenliang Zhang
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Federico Mompean
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Mar García-Hernández
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Andres Castellanos-Gomez
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| |
Collapse
|
57
|
Ahmad W, Gong Y, Abbas G, Khan K, Khan M, Ali G, Shuja A, Tareen AK, Khan Q, Li D. Evolution of low-dimensional material-based field-effect transistors. NANOSCALE 2021; 13:5162-5186. [PMID: 33666628 DOI: 10.1039/d0nr07548e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-effect transistors (FETs) have tremendous applications in the electronics industry due to their outstanding features such as small size, easy fabrication, compatibility with integrated electronics, high sensitivity, rapid detection and easy measuring procedures. However, to meet the increasing demand of the electronics industry, efficient FETs with controlled short channel effects, enhanced surface stability, reduced size, and superior performances based on low-dimensional materials are desirable. In this review, we present the developmental roadmap of FETs from conventional to miniaturized devices and highlight their prospective applications in the field of optoelectronic devices. Initially, a detailed study of the general importance of bulk and low-dimensional materials is presented. Then, recent advances in low-dimensional material heterostructures, classification of FETs, and the applications of low-dimensional materials in field-effect transistors and photodetectors are presented in detail. In addition, we also describe current issues in low-dimensional material-based FETs and propose potential approaches to address these issues, which are crucial for developing electronic and optoelectronic devices. This review will provide guidelines for low-dimensional material-based FETs with high performance and advanced applications in the future.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Youning Gong
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Maaz Khan
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ghafar Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad, Pakistan
| | - Ahmed Shuja
- Centre for Advanced Electronics & Photovoltaic Engineering, International Islamic University, Islamabad, Pakistan
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qasim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Delong Li
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
58
|
Lu S, Franklin AD. Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications. NANOSCALE 2020; 12:23371-23390. [PMID: 33216106 DOI: 10.1039/d0nr06231f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Printing technologies have attracted significant attention owing to their potential use in the low-cost manufacturing of custom or large-area flexible electronics. Among the many printable electronic materials that have been explored, semiconducting carbon nanotubes (CNTs) have shown increasing promise based on their exceptional electrical and mechanical properties, relative stability in air, and compatibility with several printing techniques to form semiconducting thin films. These attractive attributes make printed CNT thin films promising for applications including, but not limited to, sensors and display backplanes - at the heart of which is electronics' most versatile device: the transistor. In this review, we present a summary of recent advancements in the field of printed carbon nanotube thin-film transistors (CNT-TFTs). In addition to an introduction of different printing techniques, together with their strengths and limitations, we discuss key aspects of ink/material selection and processing of various device components, including the CNT channels, contacts, and gate insulators. It is clear that printed CNT-TFTs are rapidly advancing, but there remain challenges, which are discussed along with current techniques to resolve them and future developments towards practical applications from these devices. There has been interest in low-cost, printable transistors for many years and the CNT-TFTs show great promise for delivering, but will not become a reality without further research advancement.
Collapse
Affiliation(s)
- Shiheng Lu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
59
|
Abdolmaleki H, Agarwala S. PVDF-BaTiO 3 Nanocomposite Inkjet Inks with Enhanced β-Phase Crystallinity for Printed Electronics. Polymers (Basel) 2020; 12:E2430. [PMID: 33096805 PMCID: PMC7589867 DOI: 10.3390/polym12102430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Polyvinylidene difluoride (PVDF) and its copolymers are promising electroactive polymers showing outstanding ferroelectric, piezoelectric, and pyroelectric properties in comparison with other organic materials. They have shown promise for applications in flexible sensors, energy-harvesting transducers, electronic skins, and flexible memories due to their biocompatibility, high chemical stability, bending and stretching abilities. PVDF can crystallize at five different phases of α, β, γ, δ, and ε; however, ferro-, piezo-, and pyroelectric properties of this polymer only originate from polar phases of β and γ. In this research, we reported fabrication of PVDF inkjet inks with enhanced β-phase crystallinity by incorporating barium titanate nanoparticles (BaTiO3). BaTiO3 not only acts as a nucleating agent to induce β-phase crystallinity, but it also improves the electric properties of PVDF through synergistic a ferroelectric polarization effect. PVDF-BaTiO3 nanocomposite inkjet inks with different BaTiO3 concentrations were prepared by wet ball milling coupled with bath ultrasonication. It was observed that the sample with 5 w% of BaTiO3 had the highest β-phase crystallinity, while in higher ratios overall crystallinity deteriorated progressively, leading to more amorphous structures.
Collapse
Affiliation(s)
| | - Shweta Agarwala
- Department of Engineering, Aarhus University, 8200 Aarhus, Denmark;
| |
Collapse
|