51
|
Koll FJ, Metzger E, Hamann J, Ramos-Triguero A, Bankov K, Köllermann J, Döring C, Chun FKH, Schüle R, Wild PJ, Reis H. Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer. Cells 2023; 12:cells12040589. [PMID: 36831256 PMCID: PMC9954512 DOI: 10.3390/cells12040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is associated with limited response rates to systemic therapy leading to a significant risk of recurrence and death. A recently discovered histone methyltransferase KMT9, acts as an epigenetic regulator of carcinogenesis in different tumor entities. In this study, we investigated the presence and association of histological and molecular subtypes and their impact on the survival of KMT9α in MIBC. We performed an immunohistochemical (IHC) analysis of KMT9α in 135 MIBC patients undergoing radical cystectomy. KMT9α was significantly overexpressed in the nucleus in MIBC compared to normal urothelium and low-grade urothelial cancer. Using the HTG transcriptome panel, we assessed mRNA expression profiles to determine molecular subtypes and identify differentially expressed genes. Patients with higher nuclear and nucleolar KMT9α expression showed basal/squamous urothelial cancer characteristics confirmed by IHC and differentially upregulated KRT14 expression. We identified a subset of patients with nucleolar expression of KMT9α, which was associated with an increased risk of death in uni- and multivariate analyses (HR 2.28, 95%CI 1.28-4.03, p = 0.005). In conclusion, basal-like MIBC and the squamous histological subtype are associated with high nuclear KMT9α expression. The association with poor survival makes it a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Florestan J. Koll
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-86496
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), 79106 Freiburg, Germany
| | - Jana Hamann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Felix K. H. Chun
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), 79106 Freiburg, Germany
| | - Peter J. Wild
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
52
|
Shah SD, Gillard BM, Wrobel MM, Karasik E, Moser MT, Mastri M, Long MD, Sule N, Brackett CM, Huss WJ, Foster BA. Syngeneic model of carcinogen-induced tumor mimics basal/squamous, stromal-rich, and neuroendocrine molecular and immunological features of muscle-invasive bladder cancer. Front Oncol 2023; 13:1120329. [PMID: 36816919 PMCID: PMC9936245 DOI: 10.3389/fonc.2023.1120329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Bladder cancer is a heterogenous disease and the emerging knowledge on molecular classification of bladder tumors may impact treatment decisions based on molecular subtype. Pre-clinical models representing each subtype are needed to test novel therapies. Carcinogen-induced bladder cancer models represent heterogeneous, immune-competent, pre-clinical testing options with many features found in the human disease. Methods Invasive bladder tumors were induced in C57BL/6 mice when continuously exposed to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Tumors were excised and serially passed by subcutaneous implantation into sex-matched syngeneic C57BL/6 hosts. Eight lines were named BBN-induced Urothelium Roswell Park (BURP) tumor lines. BURP lines were characterized by applying consensus molecular classification to RNA expression, histopathology, and immune profiles by CIBERSORT. Two lines were further characterized for cisplatin response. Results Eight BURP tumor lines were established with 3 male and 3 female BURP tumor lines, having the basal/squamous (BaSq) molecular phenotype and morphology. BURP-16SR was established from a male mouse and has a stromal-rich (SR) molecular phenotype and a sarcomatoid carcinoma morphology. BURP-19NE was established from a male mouse and has a neuroendocrine (NE)-like molecular phenotype and poorly differentiated morphology. The established BURP tumor lines have unique immune profiles with fewer immune infiltrates compared to their originating BBN-induced tumors. The immune profiles of the BURP tumor lines capture some of the features observed in the molecular classifications of human bladder cancer. BURP-16SR growth was inhibited by cisplatin treatment, while BURP-24BaSq did not respond to cisplatin. Discussion The BURP lines represent several molecular classifications, including basal/squamous, stroma-rich, and NE-like. The stroma-rich (BURP-16SR) and NE-like (BURP-19NE) represent unique immunocompetent models that can be used to test novel treatments in these less common bladder cancer subtypes. Six basal/squamous tumor lines were established from both male and female mice. Overall, the BURP tumor lines have less heterogeneity than the carcinogen-induced tumors and can be used to evaluate treatment response without the confounding mixed response often observed in heterogeneous tumors. Additionally, basal/squamous tumor lines were established and maintained in both male and female mice, thereby allowing these tumor lines to be used to compare differential treatment responses between sexes.
Collapse
Affiliation(s)
- Shruti D. Shah
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bryan M. Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michelle M. Wrobel
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michael T. Moser
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Norbert Sule
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| | - Wendy J. Huss
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| | - Barbara A. Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States,*Correspondence: Craig M. Brackett, ; Wendy J. Huss, ; Barbara A. Foster,
| |
Collapse
|
53
|
Liedberg F, Abrahamsson J, Bernardo C, Bläckberg M, Edsjö A, Heidenblad M, Larsson C, Sjödahl G, Eriksson P. UROSCAN and UROSCANSEQ: a large-scale multicenter effort towards translation of molecular bladder cancer subtypes into clinical practice - from biobank to RNA-sequencing in real time. Scand J Urol 2023; 57:2-9. [PMID: 36540001 DOI: 10.1080/21681805.2022.2159519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer is molecularly one of the most heterogenous malignancies characterized by equally heterogenous clinical outcomes. Standard morphological assessment with pathology and added immunohistochemical analyses is unable to fully address the heterogeneity, but up to now treatment decisions have been made based on such information only. Bladder cancer molecular subtypes will likely provide means for a more personalized bladder cancer care. METHODS To facilitate further development of bladder cancer molecular subtypes and clinical translation, the UROSCAN-biobank was initiated in 2013 to achieve systematic biobanking of preoperative blood and fresh frozen tumor tissue in a population-based setting. In a second phase, we established in 2018 a parallel logistic pipeline for molecular profiling by RNA-sequencing, to develop and validate clinical implementation of molecular subtyping and actionable molecular target identification in real-time. RESULTS Until June 2021, 1825 individuals were included in the UROSCAN-biobank, of which 1650 (90%) had primary bladder cancer, 127 (7%) recurrent tumors, and 48 (3%) unknown tumor status. In 159 patients, multiple tumors were sampled, and metachronous tumors were collected in 83 patients. Between 2016 and 2020 the UROSCAN-biobanking included 1122/2999 (37%) of all primary bladder cancer patients in the Southern Healthcare Region. Until June 2021, the corresponding numbers subjected to RNA-sequencing and molecular subtyping was 605 (UROSCANSEQ), of which 52 (9%) samples were not sequenced due to inadequate RNA-quality (n = 47) or technical failure/lost sample (n = 5). CONCLUSIONS The UROSCAN-biobanking and UROSCANSEQ-infrastructure for molecular subtyping by real-time RNA-sequencing represents, to our knowledge, the largest effort of evaluating population-wide molecular classification of bladder cancer.
Collapse
Affiliation(s)
- Fredrik Liedberg
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Johan Abrahamsson
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mats Bläckberg
- Department of Urology, Helsingborg County Hospital, Helsingborg, Sweden
| | - Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden.,Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Markus Heidenblad
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, SciLifeLab, Lund, Sweden
| | - Christer Larsson
- Division of Translational Research, Lund University, Lund, Sweden
| | - Gottfrid Sjödahl
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
54
|
Erlmeier F, Klümper N, Landgraf L, Strissel PL, Strick R, Sikic D, Taubert H, Wach S, Geppert CI, Bahlinger V, Breyer J, Ritter M, Bolenz C, Roghmann F, Erben P, Schwamborn K, Wirtz RM, Horn T, Wullich B, Hölzel M, Hartmann A, Gschwend JE, Weichert W, Eckstein M. Spatial Immunephenotypes of Distant Metastases but not Matched Primary Urothelial Carcinomas Predict Response to Immune Checkpoint Inhibition. Eur Urol 2023; 83:133-142. [PMID: 36372626 DOI: 10.1016/j.eururo.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The value of programmed cell death ligand-1 (PD-L1) to predict durable responses to immune checkpoint inhibitors (ICIs) in metastatic urothelial carcinoma (mUC) is inconsistent. We hypothesize that the use of archived primary tumor material (PRIM) for PD-L1 testing in clinical trials not properly reflecting the metastatic disease status (MET) contributes to this clinical issue. OBJECTIVE To analyze the predictive and prognostic value of PD-L1, spatial immunephenotypes, and major histocompatibility complex class I (MHC-I) determined in patient-matched PRIM/MET. DESIGN, SETTING, AND PARTICIPANTS PD-L1, spatial immunephenotypes, and MHC-I were examined in 154 mUC patients with at least one available pretreatment MET (138 patient-matched PRIM/MET pairs). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS PD-L1, spatial immunephenotype, and MHC-I status of (patient-matched PRIM and) pretreatment MET were correlated with chemotherapy and ICI response and outcomes. RESULTS AND LIMITATIONS Discordance rates in patient-matched PRIM/MET were 25/30%, 36%, and 49% for PD-L1 (CPS10/IC5%), immunephenotypes, and MHC-I (loss vs preserved), respectively. Correlations with chemotherapy and ICI responses were observed for immunephenotypes and MHC-I status determined in MET (not for PD-L1 alone), but not in PRIM. In case of ICIs, patients with cytotoxic tumor immune microenvironment (TIME) showed durable responses with disease control rates of 90% and a hazard ratio for disease progression/death of 0.05 (95% confidence interval: 0.01-0.65) versus patients with immunedepleted MET (disease control rate 29%). MET MHC-I status added an incremental value to predict durable ICI responses. Limitations include the partly retrospective design and the lack of MET multisampling on individual patient level. CONCLUSIONS The TIME is subject to substantial dynamics during metastatic evolution. MET immunephenotypes and MHC-I statuses show promising potential to predict chemotherapy and durable ICI responses, while the PRIM TIME does not. Thus, future clinical trials should rather rely on pretreatment MET biopsies reflecting the current immunological disease state than on PRIM. PATIENT SUMMARY Prediction of chemotherapy and responses to immune checkpoint inhibitors might be possible using representative pretreatment metastatic biopsies.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Institute of Pathology, Technical University Munich, Munich, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany; Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology, Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Laura Landgraf
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Danijel Sikic
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Veronika Bahlinger
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Johannes Breyer
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology, University of Regensburg, Caritas St. Josef, Regensburg, Germany
| | - Manuel Ritter
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology, Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Christian Bolenz
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Florian Roghmann
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Philipp Erben
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwamborn
- Institute of Pathology, Technical University Munich, Munich, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Ralph M Wirtz
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; STRATIFYER Molecular Pathology, Cologne, Germany
| | - Thomas Horn
- Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology, Technical University Munich, Munich, Germany
| | - Bernd Wullich
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology, Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Jürgen E Gschwend
- Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology, Technical University Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany.
| |
Collapse
|
55
|
Reike MJ, Contreras-Sanz A, Black PC. Biological Stratification of Invasive and Advanced Urothelial Carcinoma. Urol Clin North Am 2023; 50:69-80. [DOI: 10.1016/j.ucl.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Nikkola J, Black P. Predictive Biomarkers of Response to Neoadjuvant Therapy in Muscle Invasive Bladder Cancer. Methods Mol Biol 2023; 2684:229-247. [PMID: 37410238 DOI: 10.1007/978-1-0716-3291-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Neoadjuvant cisplatin-based chemotherapy is recommended prior to surgical removal of the bladder for patients with non-metastatic muscle invasive bladder cancer. Despite a survival benefit, approximately half of patients do not respond to chemotherapy and are exposed potentially unnecessarily to substantial toxicity and delay in surgery. Therefore, biomarkers to identify likely responders before initiating chemotherapy would be a helpful clinical tool. Furthermore, biomarkers may be able to identify patients who do not need subsequent surgery after clinical complete response to chemotherapy. To date, there are no clinically approved predictive biomarkers of response to neoadjuvant therapy. Recent advances in the molecular characterization of bladder cancer have shown the potential role for DNA damage repair (DDR) gene alterations and molecular subtypes to guide therapy, but these need validation from prospective clinical trials. This chapter reviews candidate predictive biomarkers of response to neoadjuvant therapy in muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Jussi Nikkola
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Peter Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
57
|
Olah C, Szarvas T. A Panel-Based Method for the Reproduction of Distinct Molecular Subtype Classifications of Muscle-Invasive Urothelial Bladder Cancer. Methods Mol Biol 2023; 2684:27-43. [PMID: 37410226 DOI: 10.1007/978-1-0716-3291-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Transcriptome-based molecular subtype classification of muscle-invasive urothelial bladder cancer was shown to have prognostic and therapy-predictive relevance and thus may help to inform therapeutic decision-making. However, current classification systems rely on whole transcriptome analysis, which is expensive, requires higher amounts of tissue samples, and therefore is not compatible with the daily clinical routine. Therefore, we developed a simple and robust gene panel-based classifier method to reproduce various relevant molecular classification systems (TCGA, MDA, GSC, LundTax, and Consensus). This approach was then tested on institutional cohorts of frozen and formalin-fixed and paraffin-embedded tissue samples using reverse transcription quantitative PCR and NanoString analyses. Here, we provide a step-by-step description of our panel-based subtype classifier method.
Collapse
Affiliation(s)
- Csilla Olah
- Department of Urology, University of Duisburg-Essen, Essen, Germany
| | - Tibor Szarvas
- Department of Urology, University of Duisburg-Essen, Essen, Germany.
- Department of Urology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
58
|
Mau B, Johnson B, Hansel DE, McConkey DJ. The Many Faces of Muscle-Invasive Bladder Cancer: Histopathological and Molecular Characterization. Semin Radiat Oncol 2023; 33:1-11. [PMID: 36517188 DOI: 10.1016/j.semradonc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Brian Mau
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR
| | - Burles Johnson
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD
| | - Donna E Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR; Present address: Division Head, Pathology and Laboratory Medicine, U.T. M.D. Anderson Cancer Center, Houston, Texas 77030 USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD.
| |
Collapse
|
59
|
Özgen Ö, Özen Eroğlu G, Küçükhüseyin Ö, Akdeniz N, Hepokur C, Kuruca S, Yaylım İ. Vitamin D increases the efficacy of cisplatin on bladder cancer cell lines. Mol Biol Rep 2023; 50:697-706. [PMID: 36370297 DOI: 10.1007/s11033-022-08044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND 1,25(OH)2D3(Calcitriol), which is a broad regulatory molecule, plays a role in changing the efficacy of chemotherapeutic drugs. Cisplatin is one of a current standard chemotherapy regimen for bladder cancer. Increasing the effectiveness of the treatment and reducing the side effects to chemotherapeutics are of great importance in bladder cancer. We aimed to investigate the effect of the combination of cisplatin and calcitriol in order to create a possible advantage in treatment of bladder cancer. METHODS T24, ECV-304 and HUVEC cell lines were treated with calcitriol and cisplatin individually and in combination. Dose determination and combination treatments of calcitriol and cisplatin were evaluated using the MTT assay for cytotoxicity analysis on the cells. Annexin V-PI staining method was used for apoptosis determination by flow cytometry. Also the P-gp expression levels were determined by flow cytometry. RESULTS The combination treatment increased the anti-proliferative efficacy compared to the efficacy in cisplatin alone in T24 cells and reduced the cytotoxicity in the HUVEC healthy cells compared to cisplatin alone. Combination treatment achieved significantly higher apoptosis rate in T24 cells compared with the rates in treatment of cisplatin alone. However apoptosis decreased in HUVEC cell line. P-gp ratios were increased in HUVEC and decreased in T24 cells with combination treatment compared to the numbers in the control cells. The rate of apoptosis and P-gp levels showed no significant change in ECV-304 cells. CONCLUSION Our study revealed that the combination of calcitriol and cisplatin allows the use of cisplatin at lower doses in T24 bladder cancer cell line.
Collapse
Affiliation(s)
- Özge Özgen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey.
| | - Güneş Özen Eroğlu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey
| | - Özlem Küçükhüseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey
| | - Nilgün Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ceylan Hepokur
- Department of Medical Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Serap Kuruca
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey
| |
Collapse
|
60
|
Ma Z, Li X, Mao Y, Wei C, Huang Z, Li G, Yin J, Liang X, Liu Z. Interferon-dependent SLC14A1 + cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell 2022; 40:1550-1565.e7. [PMID: 36459995 DOI: 10.1016/j.ccell.2022.11.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a role in response to cancer treatment and patient prognosis. CAFs show phenotypic and functional heterogeneity and differ widely in tumors of different tissue origin. Here, we use single-cell RNA sequencing of bladder cancer (BC) patient samples and report a CAF subpopulation characterized by overexpression of the urea transporter SLC14A1. This population is induced by interferon signaling and confers stemness to BC cells via the WNT5A paracrine pathway. Activation of cGAS-STING signaling in tumor cells drives interferon production, thereby revealing a link between cGAS-STING signaling and SLC14A1+ CAF differentiation. Furthermore, the inhibition of SLC14A1+ CAF formation via targeting of STAT1 or STING sensitizes tumor cells to chemotherapy. More important, BC patients with high proportions of intratumoral SLC14A1+ CAFs show cancer stage-independent poor outcome and a worse response rate to neoadjuvant chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Zikun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Guangzhou 510060, China
| | - Xiangdong Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Guangzhou 510060, China
| | - Yize Mao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Guangzhou 510060, China
| | - Chen Wei
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoli Huang
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibo Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China
| | | | - Xiaoyu Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Guangzhou 510060, China.
| |
Collapse
|
61
|
Zhang Y, Li J, Yang F, Zhang X, Ren X, Wei F. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol 2022; 112:1591-1603. [PMID: 35501298 DOI: 10.1002/jlb.5ma0322-746r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
IL-33, an epithelial-derived cytokine, functions as an alarmin for the immune system in the tumor microenvironment (TME). However, the expression and role of IL-33 on cervical cancer remain unclear. The aim of this study was to investigate the expression of IL-33 and its relationship with clinicopathologic features, tertiary lymphoid structures (TLS), and programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) immune checkpoints by immunohistochemistry in 93 cervical cancer patient specimens. Down-regulation of IL-33 expression was observed in tumor tissues compared with adjacent tissues. More importantly, IL-33 was detected in the cytoplasm of tumor fraction. IL-33 expression in tumor cytoplasm was associated with tumor size and the invasive depth of tumors (p < 0.05). Meanwhile, IL-33 expression in tumor cytoplasm was positively correlated with infiltration of CD3+ T cells, CD8+ T cells, and PD-L1 expression in tumor tissues (p < 0.05). The number of TLS strongly correlated with the depth of tumor invasion, preoperative chemotherapy, human papillomavirus infection, and high level of PD-1 (p < 0.05). However, there was no significant relationship between IL-33 and TLS. Kaplan-Meier survival curves showed that the formation of TLS was associated with a better prognosis (p = 0.008). In multivariable Cox regression modeling, high expression of PD-L1 in tumor tissues was correlated with poor prognosis (HR = 0.128; 95% CI: 0.026-0.646; p = 0.013), whereas the high expression of IL-33 in tumor tissues was associated with better prognosis (HR = 5.097; 95% CI:1.050-24.755; p = 0.043). These results indicate that IL-33, TLS, and PD-L1 are potentially valuable prognostic predictor for cervical cancer. IL-33 has potential for combination with PD-L1-related antitumor therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jing Li
- Department of Pediatrics, Union Hospital, Tongji medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
62
|
Papadopoulou K, Koliou GA, Tsimiliotis D, Kotoula V, Foukas P, Goussia A, Tsiatas M, Visvikis A, Chatzopoulos K, Nifora M, Charchanti A, Koumarianou A, Christodoulou C, Pectasides D, Psyrri A, Fostira F, Fountzilas G, Samantas E. Investigation of prognostic biomarkers in patients with urothelial carcinoma treated with platinum-based regimens. Urol Oncol 2022; 40:538.e15-538.e24. [PMID: 36041976 DOI: 10.1016/j.urolonc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a heterogeneous malignancy with dismal outcome. PATIENTS AND METHODS Mutations in genes, altered or linked to platinum sensitivity in BC, were examined in 66 patients' tumors along with tumor infiltrating lymphocytes (TILs) density and MMR, PD-L1 and CD8 protein expression, as well as basal and luminal subtypes, defined by protein expression of markers, including CK5/6 and GATA3 or CK20, respectively. RESULTS 41 tumors harbored mutations, mainly in TP53 (38%), ARID1A (17%) and the DNA damage response and repair (DDR) genes ERCC2 (17%) and BRCA2 (15%). Mutations in other DDR relevant genes were also present. Age showed unfavorable prognosis for overall survival (HR=1.07, P = 0.026); no benefit was seen for patients with TP53, ARID1A, ERCC2 or BRCA2 mutations or mutations in 1 or more DDR genes. PD-L1 status positively correlated with stromal (rho=0.46, P < 0.001) and intratumoral (rho=0.53, P < 0.001) CD8 expression or TILs (rho=0.29, P = 0.018); none associated with overall survival (OS). A statistically significant difference was observed between PD-L1 status and immunohistochemistry (IHC)‑based subtypes, with tumors classified as luminal (GATA3+ and/or CK20+ and CK5/6-) showing lower PD-L1 expression relative to basal (CK5/6+ and GATA3- and/or CK20-) (median value 0 vs. 2.5, P = 0.029). Concerning OS, no statistically significant difference was seen among patients with basal or luminal tumors. CONCLUSION No association was seen herein between DDR mutations, TILs, PD-L1, CD8 expression or IHC-based subtypes and patient survival; these observations warrant validation within a larger cohort.
Collapse
Affiliation(s)
- Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Haidari, Greece
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Marinos Tsiatas
- Department of Oncology, Athens Medical Center, Marousi, Greece
| | - Anastasios Visvikis
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Kyriakos Chatzopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Martha Nifora
- Second Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Haidari, Greece
| | - Antonia Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | | | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Section of Medical Oncology, Athens, Greece
| | - Amanda Psyrri
- Attikon University Hospital, Faculty of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, InRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece; Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Medical Oncology, German Oncology Center, Limassol, Cyprus
| | - Epaminontas Samantas
- Third Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| |
Collapse
|
63
|
Zeng F, Lan Y, Wang N, Huang X, Zhou Q, Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 2022; 13:1043283. [PMID: 36408230 PMCID: PMC9669411 DOI: 10.3389/fphar.2022.1043283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary system cancer. The prognosis of BC is poor due to high metastasis rates and multidrug resistance. Hence, development of novel therapies targeting BC cell death is urgently needed. As a novel cell death type with strong antitumor potential, ferroptosis has been investigated by many groups for its potential in BC treatment. As an iron-dependent cell death process, ferroptosis is characterized by excessive oxidative phospholipids. The molecular mechanisms of ferroptosis include iron overload and the system Xc-GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in the metastasis, treatment, and prognosis of BC. Herein, in this review, we comprehensively summarize the mechanism of ferroptosis, address newly identified targets involved in ferroptosis, and discuss the potential of new clinical therapies targeting ferroptosis in BC.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Yunping Lan
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| |
Collapse
|
64
|
Gui Z, Ying X, Liu C. NXPH4 Used as a New Prognostic and Immunotherapeutic Marker for Muscle-Invasive Bladder Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4271409. [PMID: 36245981 PMCID: PMC9553512 DOI: 10.1155/2022/4271409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background One of the most common malignant tumors of the urinary system is muscle-invasive bladder cancer (MIBC). With the increased use of immunotherapy, its importance in the field of cancer is becoming abundantly evident. This study classifies MIBC according to GSVA score from the perspective of the GSEA immune gene set. Methods This study integrated the sequencing and clinical data of MIBC patients in TCGA and GEO databases, then scored the data using the GSVA algorithm, the CNMF algorithm was implemented to divide the subtypes of GEO and TCGA datasets, respectively, and finally screened and determined the key pathways in combination with clinical data. Simultaneously, LASSO Cox regression model was constructed based on key pathway genes to assess the model's predictive ability (ROC) and describe the immune landscape differences between high- and low-risk groups; key genes were further analyzed and verified in patient tissues. Results 404 TCGA and 297 GEO datasets were divided into C1-3 groups (TCGA-C1:120/C2:152/C3:132; GEO- C1:112/C2:101/C3:84), of which TCGA-C2 (n = 152) subtype and GEO-C1 (n = 112) subtype had the worst prognosis. LASSO Cox regression model with ROC (train set = 0.718, test set = 0.667) could be constructed. When combined with the Cancer Immunome Atlas database, it was found that patients with high-risk scores were more sensitive to PD-1 inhibitor and PD-1 inhibitor combined with CTLA-4. NXPH4, as a key gene, plays a role in MIBC with tissue validation results show that nxph4 is highly expressed in tumor. Conclusion The immune gene score of MIBC data in TCGA and GEO databases was successfully evaluated using GSVA in this research. The lasso Cox expression model was successfully constructed by screening immune genes, the high-risk group had a worse prognosis and higher sensitivity to immunotherapy, PD-1 inhibitors or PD-1 combined with CTLA-4 inhibitors can be preferentially used in high-risk patients who are sensitive to immunotherapy, and NXPH4 may be a molecular target to adjust the effect of immunotherapy.
Collapse
Affiliation(s)
- Zhiming Gui
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaoling Ying
- Laboratory of Translational Medicine, The First Affiliated Hospital of Sun Yat sen University, 510000, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
65
|
Li QL, Mao J, Meng XY. Comprehensive Characterization of Immune Landscape Based on Tumor Microenvironment for Oral Squamous Cell Carcinoma Prognosis. Vaccines (Basel) 2022; 10:vaccines10091521. [PMID: 36146599 PMCID: PMC9505673 DOI: 10.3390/vaccines10091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: This study aims to identify an immune-related signature to predict clinical outcomes of oral squamous cell carcinoma (OSCC) patients. Methods: Gene transcriptome data of both tumor and normal tissues from OSCC and the corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Tumor Immune Estimation Resource algorithm (ESTIMATE) was used to calculate the immune/stromal-related scores. The immune/stromal scores and associated clinical characteristics of OSCC patients were evaluated. Univariate Cox proportional hazards regression analyses, least absolute shrinkage, and selection operator (LASSO) and receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) function annotation were used to analysis the functions of TME-related genes. Results: Eleven predictor genes were identified in the immune-related signature and overall survival (OS) in the high-risk group was significantly shorter than in the low-risk group. An ROC analysis showed the TME-related signature could predict the total OS of OSCC patients. Moreover, GSEA and GO function annotation proved that immunity and immune-related pathways were mainly enriched in the high-risk group. Conclusions: We identified an immune-related signature that was closely correlated with the prognosis and immune response of OSCC patients. This signature may have important implications for improving the clinical survival rate of OSCC patients and provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qi-Lin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
66
|
Lee YC, Lam HM, Rosser C, Theodorescu D, Parks WC, Chan KS. The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol 2022; 19:515-533. [PMID: 35764795 PMCID: PMC10112172 DOI: 10.1038/s41585-022-00608-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder - a new concept and niche that we designate as the bladder TME (bTME) - during tumour evolution, metastatic progression and in the context of therapeutic response. Collagens and their cognate receptors, the discoidin domain receptors, have a role in various steps of the metastatic cascade and in immune checkpoint resistance. Furthermore, the presence of another TME niche, the metastatic TME (met-TME), is a novel concept that could support divergent progression of metastatic colonization in different organs, resulting in distant metastases with distinct characteristics and genetics from the primary tumour. The stroma has divergent roles in mediating therapeutic response to BCG immunotherapy and immune checkpoint inhibitors, as well as conventional chemotherapy or trimodality therapy (that is, maximal transurethral resection of bladder tumour, chemotherapy and radiotherapy). The local bTME and distant met-TME are currently conceptually and therapeutically unexploited niches that should be actively investigated. New biological insights from these TMEs will enable rational design of strategies that co-target the tumour and stroma, which are expected to improve the outcomes of patients with advanced bladder cancer.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Charles Rosser
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith Syson Chan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Academic Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
67
|
Ruiz de Porras V, Pardo JC, Etxaniz O, Font A. Neoadjuvant therapy for muscle-invasive bladder cancer: Current clinical scenario, future perspectives, and unsolved questions. Crit Rev Oncol Hematol 2022; 178:103795. [PMID: 35988856 DOI: 10.1016/j.critrevonc.2022.103795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical cystectomy is the standard treatment for patients with muscle-invasive bladder cancer (MIBC). However, the implementation of NAC is lower than desirable mainly due to its limited impact on overall survival, patients' comorbidities and the lack of predictive biomarkers to select those patients most likely to benefit from NAC. In the last decade, improved molecular MIBC characterisation, the identification of potential predictive and prognostic biomarkers as well as the incorporation of new effective therapies with a better toxicity profile, such as immunotherapy, has changed the treatment paradigm for MIBC. Therefore, the main goal for the near future is to introduce these clinical and translational advances into routine clinical practice to personalise treatment for each patient and increase the opportunity to implement bladder preservation strategies. The present review focuses on the current status of NAC in MIBC, unsolved questions and future therapeutic approaches.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Juan Carlos Pardo
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti - Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Olatz Etxaniz
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti - Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Albert Font
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti - Camí de les Escoles s/n, 08916 Badalona, Spain.
| |
Collapse
|
68
|
Lang H, Béraud C, Cabel L, Fontugne J, Lassalle M, Krucker C, Dufour F, Groeneveld CS, Dixon V, Meng X, Kamoun A, Chapeaublanc E, De Reynies A, Gamé X, Rischmann P, Bieche I, Masliah-Planchon J, Beaurepere R, Allory Y, Lindner V, Misseri Y, Radvanyi F, Lluel P, Bernard-Pierrot I, Massfelder T. Integrated molecular and pharmacological characterization of patient-derived xenografts from bladder and ureteral cancers identifies new potential therapies. Front Oncol 2022; 12:930731. [PMID: 36033544 PMCID: PMC9405192 DOI: 10.3389/fonc.2022.930731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Muscle-invasive bladder cancer (MIBC) and upper urinary tract urothelial carcinoma (UTUC) are molecularly heterogeneous. Despite chemotherapies, immunotherapies, or anti-fibroblast growth factor receptor (FGFR) treatments, these tumors are still of a poor outcome. Our objective was to develop a bank of patient-derived xenografts (PDXs) recapitulating the molecular heterogeneity of MIBC and UTUC, to facilitate the preclinical identification of therapies. Methods Fresh tumors were obtained from patients and subcutaneously engrafted into immune-compromised mice. Patient tumors and matched PDXs were compared regarding histopathology, transcriptomic (microarrays), and genomic profiles [targeted Next-Generation Sequencing (NGS)]. Several PDXs were treated with chemotherapy (cisplatin/gemcitabine) or targeted therapies [FGFR and epidermal growth factor (EGFR) inhibitors]. Results A total of 31 PDXs were established from 1 non-MIBC, 25 MIBC, and 5 upper urinary tract tumors, including 28 urothelial (UC) and 3 squamous cell carcinomas (SCCs). Integrated genomic and transcriptomic profiling identified the PDXs of three different consensus molecular subtypes [basal/squamous (Ba/Sq), luminal papillary, and luminal unstable] and included FGFR3-mutated PDXs. High histological and genomic concordance was found between matched patient tumor/PDX. Discordance in molecular subtypes, such as a Ba/Sq patient tumor giving rise to a luminal papillary PDX, was observed (n=5) at molecular and histological levels. Ten models were treated with cisplatin-based chemotherapy, and we did not observe any association between subtypes and the response. Of the three Ba/Sq models treated with anti-EGFR therapy, two models were sensitive, and one model, of the sarcomatoid variant, was resistant. The treatment of three FGFR3-mutant PDXs with combined FGFR/EGFR inhibitors was more efficient than anti-FGFR3 treatment alone. Conclusions We developed preclinical PDX models that recapitulate the molecular heterogeneity of MIBCs and UTUC, including actionable mutations, which will represent an essential tool in therapy development. The pharmacological characterization of the PDXs suggested that the upper urinary tract and MIBCs, not only UC but also SCC, with similar molecular characteristics could benefit from the same treatments including anti-FGFR for FGFR3-mutated tumors and anti-EGFR for basal ones and showed a benefit for combined FGFR/EGFR inhibition in FGFR3-mutant PDXs, compared to FGFR inhibition alone.
Collapse
Affiliation(s)
- Hervé Lang
- Department of Urology, New Civil Hospital and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | | | - Luc Cabel
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | - Jacqueline Fontugne
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Versailles, France
| | | | - Clémentine Krucker
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Florent Dufour
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Inovarion, Paris, France
| | - Clarice S. Groeneveld
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- La Ligue Contre Le Cancer, Paris, France
| | - Victoria Dixon
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Xiangyu Meng
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Elodie Chapeaublanc
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | | | - Xavier Gamé
- Department of Urology, Rangueil Hospital, Toulouse, France
| | | | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris, France
| | | | | | - Yves Allory
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Versailles, France
| | | | | | - François Radvanyi
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | - Philippe Lluel
- Urosphere, Toulouse, France
- *Correspondence: Isabelle Bernard-Pierrot, ; Philippe Lluel,
| | - Isabelle Bernard-Pierrot
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- *Correspondence: Isabelle Bernard-Pierrot, ; Philippe Lluel,
| | - Thierry Massfelder
- INSERM (French National Institute of Health and Medical Research) UMR_S1260, Université de Strasbourg, Regenerative Nanomedicine, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| |
Collapse
|
69
|
Zou Y, Wang Y, Xu S, Liu Y, Yin J, Lovejoy DB, Zheng M, Liang XJ, Park JB, Efremov YM, Ulasov I, Shi B. Brain Co-Delivery of Temozolomide and Cisplatin for Combinatorial Glioblastoma Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203958. [PMID: 35738390 DOI: 10.1002/adma.202203958] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is an intractable malignancy with high recurrence and mortality. Combinatorial therapy based on temozolomide (TMZ) and cisplatin (CDDP) shows promising potential for GBM therapy in clinical trials. However, significant challenges include limited blood-brain-barrier (BBB) penetration, poor targeting of GBM tissue/cells, and systemic side effects, which hinder its efficacy in GBM therapy. To surmount these challenges, new GBM-cell membrane camouflaged and pH-sensitive biomimetic nanoparticles (MNPs) inspired by the fact that cancer cells readily pass the BBB and localize with homologous cells, are developed. This study's results show that MNPs can efficiently co-load TMZ and CDDP, transport these across the BBB to specifically target GBM. Incorporation of pH-sensitive polymer then allows for controlled release of drug cargos at GBM sites for combination drug therapy. Mice bearing orthotopic U87MG or drug-resistant U251R GBM tumor and treated with MNPs@TMZ+CDDP show a potent anti-GBM effect, greatly extending the survival time relative to mice receiving single-drug loaded nanoparticles. No obvious side effects are apparent in histological analyses or blood routine studies. Considering these results, the study's new nanoparticle formulation overcomes multiple challenges currently limiting the efficacy of combined TMZ and CDDP GBM drug therapy and appears to be a promising strategy for future GBM combinatorial chemotherapy.
Collapse
Affiliation(s)
- Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yibin Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Sen Xu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yanjie Liu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Jinlong Yin
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - David B Lovejoy
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Xing-Jie Liang
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, South Korea
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russia
| | - Ilya Ulasov
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russia
| | - Bingyang Shi
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
70
|
Zhang Z, Yu Y, Li P, Wang M, Jiao W, Liang Y, Niu H. Identification and validation of an immune signature associated with EMT and metabolic reprogramming for predicting prognosis and drug response in bladder cancer. Front Immunol 2022; 13:954616. [PMID: 35958586 PMCID: PMC9359097 DOI: 10.3389/fimmu.2022.954616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT), one leading reason of the dismal prognosis of bladder cancer (BLCA), is closely associated with tumor invasion and metastasis. We aimed to develop a novel immune−related gene signature based on different EMT and metabolic status to predict the prognosis of BLCA. Methods Gene expression and clinical data were obtained from TCGA and GEO databases. Patients were clustered based on EMT and metabolism scores calculated by ssGSEA. The immune-related differentially expressed genes (DEGs) between the two clusters with the most obvious differences were used to construct the signature by LASSO and Cox analysis. Time-dependent receiver operating characteristic (ROC) curves and Kaplan–Meier curves were utilized to evaluate the gene signature in training and validation cohorts. Finally, the function of the signature genes AHNAK and NFATC1 in BLCA cell lines were explored by cytological experiments. Results Based on the results of ssGSEA, TCGA patients were divided into three clusters, among which cluster 1 and cluster 3 had completely opposite EMT and metabolic status. Patients in cluster 3 had a significantly worse clinical prognosis than cluster 1. Immune-related DEGs were selected between the two clusters to construct the predictive signature based on 14 genes. High-risk patients had poorer prognosis, lower proportions of CD8+ T cells, higher EMT and carbohydrate metabolism, and less sensitivity to chemotherapy and immunotherapy. Overexpression of AHNAK or NFATC1 promoted the proliferation, migration and invasion of T24 and UMUC3 cells. Silencing ANHAK or NFATC1 could effectively inhibit EMT and metabolism in T24 and UMUC3 cells. Conclusion The established immune signature may act as a promising model for generating accurate prognosis for patients and predicting their EMT and metabolic status, thus guiding the treatment of BLCA patients.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongbo Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meilan Wang
- Nursing department, Shandong Institute of Petroleum and Chemical Technology, Dongying, China
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Haitao Niu, ; Ye Liang,
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Haitao Niu, ; Ye Liang,
| |
Collapse
|
71
|
Marzouka NAD, Eriksson P, Bernardo C, Hurst CD, Knowles MA, Sjödahl G, Liedberg F, Höglund M. The Lund Molecular Taxonomy Applied to Non-Muscle-Invasive Urothelial Carcinoma. J Mol Diagn 2022; 24:992-1008. [PMID: 35853574 DOI: 10.1016/j.jmoldx.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
The precise classification of tumors into relevant molecular subtypes will facilitate both future research and optimal treatment. In the present investigation, the Lund Taxonomy system for molecular classification of urothelial carcinoma was applied to two large and independent cohorts of non-muscle-invasive tumors. Of 752 tumors classified, close to 100% were of the luminal subtypes, 95% urothelial-like (Uro; UroA, UroB, or UroC) and 5% genomically unstable. We show that the obtained subtype structure organizes the tumors into groups with specific and coherent gene mutation, genomic, and clinical profiles. The intrasubtype variability in the largest group of tumors, UroA, is caused by infiltration and proliferation, not considered as cancer cell type-defining properties. Within the UroA subtype, a HOXB/late cell-cycle gene expression polarity is described, strongly associated with FGFR3, STAG2, and TP53 mutations, as well as with chromosome 9 losses. Kaplan-Meier analyses identified the genomically unstable subtype as a progression high-risk group, also valid in the subgroup of T1 tumors. Almost all progression events occurred within 12 months in this subtype. In addition, a general progression gene signature was derived that identifies high- and low-risk tumors. All findings were demonstrated in two independent cohorts. We conclude that the Lund Taxonomy system is applicable to both non-muscle- and muscle-invasive tumors and is a useful biological framework for translational studies.
Collapse
Affiliation(s)
- Nour-Al-Dain Marzouka
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| | - Gottfrid Sjödahl
- Urology-Urothelial Cancer, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Fredrik Liedberg
- Urology-Urothelial Cancer, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
72
|
Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 2: Subtypes and Divergent Differentiation. Int J Mol Sci 2022; 23:ijms23147844. [PMID: 35887192 PMCID: PMC9317362 DOI: 10.3390/ijms23147844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Following several attempts to achieve a molecular stratification of bladder cancer (BC) over the last decade, a "consensus" classification has been recently developed to provide a common base for the molecular classification of bladder cancer (BC), encompassing a six-cluster scheme with distinct prognostic and predictive characteristics. In order to implement molecular subtyping (MS) as a risk stratification tool in routine practice, immunohistochemistry (IHC) has been explored as a readily accessible, relatively inexpensive, standardized surrogate method, achieving promising results in different clinical settings. The second part of this review deals with the pathological and clinical features of the molecular clusters, both in conventional and divergent urothelial carcinoma, with a focus on the role of IHC-based subtyping.
Collapse
|
73
|
Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 1: General Issues and Marker Expression. Int J Mol Sci 2022; 23:ijms23147819. [PMID: 35887164 PMCID: PMC9319819 DOI: 10.3390/ijms23147819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease with highly variable clinical and pathological features, and resulting in different outcomes. Such heterogeneity ensues from distinct pathogenetic mechanisms and may consistently affect treatment responses in single patients. Thus, over the last few years, several groups have developed molecular classification schemes for BC, mainly based on their mRNA expression profiles. A “consensus” classification has recently been proposed to combine the published systems, agreeing on a six-cluster scheme with distinct prognostic and predictive features. In order to implement molecular subtyping as a risk-stratification tool in routine practice, immunohistochemistry (IHC) has been explored as a readily accessible, relatively inexpensive, standardized surrogate method, achieving promising results in different clinical settings. The first part of this review deals with the steps resulting in the development of a molecular subtyping of BC, its prognostic and predictive implications, and the main features of immunohistochemical markers used as surrogates to stratify BC into pre-defined molecular clusters.
Collapse
|
74
|
Sarafidis M, Lambrou GI, Zoumpourlis V, Koutsouris D. An Integrated Bioinformatics Analysis towards the Identification of Diagnostic, Prognostic, and Predictive Key Biomarkers for Urinary Bladder Cancer. Cancers (Basel) 2022; 14:cancers14143358. [PMID: 35884419 PMCID: PMC9319344 DOI: 10.3390/cancers14143358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Bladder cancer is evidently a challenge as far as its prognosis and treatment are concerned. The investigation of potential biomarkers and therapeutic targets is indispensable and still in progress. Most studies attempt to identify differential signatures between distinct molecular tumor subtypes. Therefore, keeping in mind the heterogeneity of urinary bladder tumors, we attempted to identify a consensus gene-related signature between the common expression profile of bladder cancer and control samples. In the quest for substantive features, we were able to identify key hub genes, whose signatures could hold diagnostic, prognostic, or therapeutic significance, but, primarily, could contribute to a better understanding of urinary bladder cancer biology. Abstract Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein–protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients’ response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.
Collapse
Affiliation(s)
- Michail Sarafidis
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-210-772-2430
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens, Greece;
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
| |
Collapse
|
75
|
Wang Q, Chen Y, Gao W, Feng H, Zhang B, Wang H, Lu H, Tan Y, Dong Y, Xu M. Identification and Validation of a Four-Gene Ferroptosis Signature for Predicting Overall Survival of Lung Squamous Cell Carcinoma. Front Oncol 2022; 12:933925. [PMID: 35912252 PMCID: PMC9330609 DOI: 10.3389/fonc.2022.933925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLung squamous cell carcinoma (LUSC) represents 30% of all non-small cell lung carcinoma. Targeted therapy is not sufficient for LUSC patients because of the low frequency of targeted-effective mutation in LUSC whereas immunotherapy offers more options for patients with LUSC. We explored a ferroptosis-related prognostic signature that can potentially assess the prognosis and immunotherapy efficacy of LUSC patients.MethodsA total of 502 LUSC patients were downloaded from The Cancer Genome Atlas (TCGA). The external validation data were obtained from the Gene Expression Omnibus (GEO): GSE73403. Then, we identified the candidate genes and constructed the prognostic signature through the Cox survival regression analyses and least absolute shrinkage and selection operator (LASSO). Risk score plot, Kaplan–Meier curve, and ROC curve were used to assess the prognostic power and performance of the model. The CIBERSORT algorithm estimated the fraction of immune cell types. TIDE was utilized to predict the response to immunotherapy. IMvigor210 was used to explore the association between the risk scores and immunotherapy outcomes. A nomogram combined selected clinical characteristics, and the risk scores were constructed.ResultsWe screened 132 differentially expressed ferroptosis-related genes. According to KEGG and GO pathway analyses, these genes were mainly engaged in the positive regulation of cytokine production, cytokine metabolic process, and oxidoreductase activity. We then constructed a prognostic model via LASSO regression. The proportions of CD8+ T cells, CD4+ activated T cells, and follicular helper T cells were significantly different between low-risk and high-risk groups. TIDE algorithm indicated that low-risk LUSC patients might profit more from immune checkpoint inhibitors. The predictive value of the ferroptosis gene model in immunotherapy response was further confirmed in IMvigor210. Finally, we combined the clinical characteristics with a LASSO regression model to construct a nomogram that could be easily applied in clinical practice.ConclusionWe identified a prognostic model that provides an accurate and objective basis for guiding individualized treatment decisions for LUSC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Qi Wang,
| | - Yaokun Chen
- Breast Disease Diagnosis and Treatment Center, Qingdao Center Medical Group, Qingdao, China
| | - Wen Gao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Feng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Biyuan Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiji Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tan
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
76
|
Hamamoto R, Takasawa K, Machino H, Kobayashi K, Takahashi S, Bolatkan A, Shinkai N, Sakai A, Aoyama R, Yamada M, Asada K, Komatsu M, Okamoto K, Kameoka H, Kaneko S. Application of non-negative matrix factorization in oncology: one approach for establishing precision medicine. Brief Bioinform 2022; 23:6628783. [PMID: 35788277 PMCID: PMC9294421 DOI: 10.1093/bib/bbac246] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF. Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rina Aoyama
- Showa University Graduate School of Medicine School of Medicine
| | | | - Ken Asada
- RIKEN Center for Advanced Intelligence Project
| | | | | | | | | |
Collapse
|
77
|
Kong J, Ha D, Lee J, Kim I, Park M, Im SH, Shin K, Kim S. Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat Commun 2022; 13:3703. [PMID: 35764641 PMCID: PMC9240063 DOI: 10.1038/s41467-022-31535-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have substantially improved the survival of cancer patients over the past several years. However, only a minority of patients respond to ICI treatment (~30% in solid tumors), and current ICI-response-associated biomarkers often fail to predict the ICI treatment response. Here, we present a machine learning (ML) framework that leverages network-based analyses to identify ICI treatment biomarkers (NetBio) that can make robust predictions. We curate more than 700 ICI-treated patient samples with clinical outcomes and transcriptomic data, and observe that NetBio-based predictions accurately predict ICI treatment responses in three different cancer types-melanoma, gastric cancer, and bladder cancer. Moreover, the NetBio-based prediction is superior to predictions based on other conventional ICI treatment biomarkers, such as ICI targets or tumor microenvironment-associated markers. This work presents a network-based method to effectively select immunotherapy-response-associated biomarkers that can make robust ML-based predictions for precision oncology.
Collapse
Affiliation(s)
- JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Doyeon Ha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Juhun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhae Kim
- ImmunoBiome Inc., Pohang, 37666, Korea
| | - Minhyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- ImmunoBiome Inc., Pohang, 37666, Korea
- Institute of Convergence Science, Yonsei University, Seoul, 03722, Korea
| | - Kunyoo Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul, 03722, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
- Institute of Convergence Science, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
78
|
Queipo FJ, Unamunzaga GM, Negro BF, Fuertes SG, Cortés MÁ, Tejedor EC, Mañas CMB, Ariño AB, Sjödahl G, Beorlegui C. Immunohistochemistry subtyping of urothelial carcinoma is feasible in the daily practice. Virchows Arch 2022; 481:191-200. [PMID: 35731280 DOI: 10.1007/s00428-022-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
The preferred treatment of choice in muscle-invasive bladder cancer (MIBC) is usually transurethral resection followed by cystectomy, with neoadjuvant chemotherapy being a second option. As the treatment is associated with relevant side effects, a great effort is being made to improve the selection of patients, with molecular subtyping being one of the main strategies. Our aim was to develop an immunohistochemical algorithm for subtyping MIBCs. After a literature review, we have developed a simple algorithm to subtype MIBCs based on their morphology and three common antibodies: GATA3, CK5/6, and p16. We applied it to 113 muscle-invasive carcinomas. The positivity threshold for GATA3 and CK5/6 was 20% with at least moderate intensity, while p16 was 70% with moderate to intense nuclear and cytoplasmic staining. Cases GATA3 + CK5/6 - were considered luminal, while cases GATA3 - CK5/6 + were classified as nonluminal/basal squamous. Luminal p16 + cases were labeled as genomically unstable and luminal p16 - as Uro-like. Cases GATA3 + CK5/6 + with a predominantly basal pattern were labeled luminal, while diffuse cases were labeled nonluminal/basal squamous. All GATA3-CK5/6 - cases were considered nonluminal and were divided into mesenchymal-like or neuroendocrine, depending on the morphology. We were able to classify the 113 cases as: 82 (72.57%) were luminal, being 47 Uro-like (41.59%) and 35 (30.97%) genomically unstable; 31 (27.43%) were nonluminal, being 24 basal/squamous (21.24%), two (1.76%) mesenchymal-like, and five (4.42%) neuroendocrine like. We have achieved a feasible and cost-effective algorithm to subtype MIBCs from morphological features and the use of three common antibodies. Further studies in external cohorts are necessary to validate these results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gottfrid Sjödahl
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
79
|
Koll FJ, Schwarz A, Köllermann J, Banek S, Kluth L, Wittler C, Bankov K, Döring C, Becker N, Chun FK, Wild PJ, Reis H. CK5/6 and GATA3 Defined Phenotypes of Muscle-Invasive Bladder Cancer: Impact in Adjuvant Chemotherapy and Molecular Subtyping of Negative Cases. Front Med (Lausanne) 2022; 9:875142. [PMID: 35783619 PMCID: PMC9243590 DOI: 10.3389/fmed.2022.875142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction and ObjectiveIdentifying patients that benefit from cisplatin-based adjuvant chemotherapy is a major issue in the management of muscle-invasive bladder cancer (MIBC). The purpose of this study is to correlate “luminal” and “basal” type protein expression with histological subtypes, to investigate the prognostic impact on survival after adjuvant chemotherapy and to define molecular consensus subtypes of “double negative” patients (i.e., without expression of CK5/6 or GATA3).Materials and MethodsWe performed immunohistochemical (IHC) analysis of CK5/6 and GATA3 for surrogate molecular subtyping in 181 MIBC samples. The mRNA expression profiles for molecular consensus classification were determined in CK5/6 and GATA3 (double) negative cases using a transcriptome panel with 19.398 mRNA targets (HTG Molecular Diagnostics). Data of 110 patients undergoing radical cystectomy were available for survival analysis.ResultsThe expression of CK5/6 correlated with squamous histological subtype (96%) and expression of GATA3 was associated with micropapillary histology (100%). In the multivariate Cox-regression model, patients receiving adjuvant chemotherapy had a significant survival benefit (hazard ratio [HR]: 0.19 95% confidence interval [CI]: 0.1–0.4, p < 0.001) and double-negative cases had decreased OS (HR: 4.07; 95% CI: 1.5–10.9, p = 0.005). Double negative cases were classified as NE-like (30%), stroma-rich (30%), and Ba/Sq (40%) consensus molecular subtypes and displaying different histological subtypes.ConclusionImmunohistochemical-based classification was associated with histological subtypes of urothelial MIBC. IHC markers like CK5/6 and GATA3 that are used in pathological routine could help to identify patients with basal and luminal tumor characteristics. However, a two-sided classification system might not sufficiently reflect the heterogeneity of bladder cancer to make treatment decisions. Especially the group of IHC-double negative cases, as further analyzed by mRNA expression profiling, are a heterogeneous group with different implications for therapy.
Collapse
Affiliation(s)
- Florestan J. Koll
- Department of Urology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Frankfurt, Germany
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Frankfurt, Germany
- *Correspondence: Florestan J. Koll,
| | - Alina Schwarz
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Severine Banek
- Department of Urology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Luis Kluth
- Department of Urology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Clarissa Wittler
- Department of Urology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Nina Becker
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Frankfurt, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Felix K.H. Chun
- Department of Urology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Peter J. Wild
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Frankfurt, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
- Henning Reis,
| |
Collapse
|
80
|
Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida LO. Epigenetic modifications control loss of adhesion and aggressiveness of cancer stem cells derived from head and neck squamous cell carcinoma with intrinsic resistance to cisplatin. Arch Oral Biol 2022; 141:105468. [DOI: 10.1016/j.archoralbio.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
|
81
|
Uroplakin II as a single marker for luminal versus basal molecular subtypes in muscle invasive urothelial carcinoma. Virchows Arch 2022; 481:397-403. [PMID: 35612672 DOI: 10.1007/s00428-022-03346-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Bladder cancer is a heterogeneous disease classified into two broad molecular subtype categories, basal and luminal, with critical treatment and prognostic implications. Recent studies have shown the utility of immunohistochemistry in predicting bladder cancer molecular subtypes, with a two-marker approach using GATA3 and CK5/6 showing over 80% reliability. In the current study, we calculated the accuracy of uroplakin II (UPII), a marker of urothelial differentiation, with different scores (0: <1%, 1+: 1-10%, 2+: 10-50%, 3+: >50%) to predict RNA-based luminal versus basal subtypes in a cohort of muscle-invasive bladder cancer-received neoadjuvant chemotherapy followed by radical cystectomy. The 1% cutoff of the UPII stain predicts the luminal subtype with the sensitivity and specificity of 95% and 56%, respectively. With a UPII cutoff of 10%, the sensitivity and specificity were 93% and 81%, respectively, and with a UPII cutoff of 50%, the sensitivity and specificity were 91% and 96%, respectively. The prediction performance of UPII was better than either GATA3 or CK5/6. There was no significant difference in prognoses between UPII 0-2+ and UPII 3+ patients in this cohort. The current study shows that evaluating the staining proportion score of UPII can accurately predict basal and luminal subtypes of muscle-invasive bladder cancer.
Collapse
|
82
|
Lokeshwar SD, Lopez M, Sarcan S, Aguilar K, Morera DS, Shaheen DM, Lokeshwar BL, Lokeshwar VB. Molecular Oncology of Bladder Cancer from Inception to Modern Perspective. Cancers (Basel) 2022; 14:cancers14112578. [PMID: 35681556 PMCID: PMC9179261 DOI: 10.3390/cancers14112578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Within the last forty years, seminal contributions have been made in the areas of bladder cancer (BC) biology, driver genes, molecular profiling, biomarkers, and therapeutic targets for improving personalized patient care. This overview includes seminal discoveries and advances in the molecular oncology of BC. Starting with the concept of divergent molecular pathways for the development of low- and high-grade bladder tumors, field cancerization versus clonality of bladder tumors, cancer driver genes/mutations, genetic polymorphisms, and bacillus Calmette-Guérin (BCG) as an early form of immunotherapy are some of the conceptual contributions towards improving patient care. Although beginning with a promise of predicting prognosis and individualizing treatments, "-omic" approaches and molecular subtypes have revealed the importance of BC stem cells, lineage plasticity, and intra-tumor heterogeneity as the next frontiers for realizing individualized patient care. Along with urine as the optimal non-invasive liquid biopsy, BC is at the forefront of the biomarker field. If the goal is to reduce the number of cystoscopies but not to replace them for monitoring recurrence and asymptomatic microscopic hematuria, a BC marker may reach clinical acceptance. As advances in the molecular oncology of BC continue, the next twenty-five years should significantly advance personalized care for BC patients.
Collapse
Affiliation(s)
- Soum D. Lokeshwar
- Department of Urology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Maite Lopez
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
| | - Semih Sarcan
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
| | - Karina Aguilar
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
| | - Daley S. Morera
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
| | - Devin M. Shaheen
- Yale School of Nursing, Yale University, New Haven, CT 06520, USA;
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (B.L.L.); (V.B.L.)
| | - Vinata B. Lokeshwar
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd., Augusta, GA 30912, USA; (M.L.); (S.S.); (K.A.); (D.S.M.)
- Correspondence: (B.L.L.); (V.B.L.)
| |
Collapse
|
83
|
Tsukahara S, Shiota M, Takamatsu D, Nagakawa S, Matsumoto T, Kiyokoba R, Yagi M, Setoyama D, Noda N, Matsumoto S, Hayashi T, Contreras-Sanz A, Black PC, Inokuchi J, Kohashi K, Oda Y, Uchiumi T, Eto M, Kang D. Cancer genomic profiling identified dihydropyrimidine dehydrogenase deficiency in bladder cancer promotes sensitivity to gemcitabine. Sci Rep 2022; 12:8535. [PMID: 35595780 PMCID: PMC9122908 DOI: 10.1038/s41598-022-12528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Chemotherapy is a standard therapy for muscle-invasive bladder cancer (MIBC). However, genomic alterations associated with chemotherapy sensitivity in MIBC have not been fully explored. This study aimed to investigate the genomic landscape of MIBC in association with the response to chemotherapy and to explore the biological role of genomic alterations. Genomic alterations in MIBC were sequenced by targeted exome sequencing of 409 genes. Gene expression in MIBC tissues was analyzed by western blotting, immunohistochemistry, and RNA microarray. Cellular sensitivity to gemcitabine and gemcitabine metabolite was examined in bladder cancer cells after modulation of candidate gene. Targeted exome sequencing in 20 cases with MIBC revealed various genomic alterations including pathogenic missense mutation of DPYD gene encoding dihydropyrimidine dehydrogenase (DPD). Conversely, high DPYD and DPD expression were associated with poor response to gemcitabine-containing chemotherapy among patients with MIBC, as well as gemcitabine resistance in bladder cancer cells. DPD suppression rendered cells sensitive to gemcitabine, while DPD overexpression made cells gemcitabine-resistant through reduced activity of the cytotoxic gemcitabine metabolite difluorodeoxycytidine diphosphate. This study revealed the novel role of DPD in gemcitabine metabolism. It has been suggested that DPYD genomic alterations and DPD expression are potential predictive biomarkers in gemcitabine treatment.
Collapse
Affiliation(s)
- Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Dai Takamatsu
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kiyokoba
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nozomi Noda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Health and Science, School of Medicine, Kyushu University, Fukuoka, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
84
|
Elbeltagy A, Mohamed G, Akeel M, Abdelaziz K, Elbakry K, Elsayed A. Modulatory role of garlic ( Allium sativum) extract against cisplatin- induced nephrotoxicity in female albino rats and their offspring. F1000Res 2022; 11:504. [PMID: 37547786 PMCID: PMC10403747 DOI: 10.12688/f1000research.111293.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 08/08/2023] Open
Abstract
Background: Cisplatin (CP) is one of the chemotherapeutic drugs widely utilized in the treatment of several malignancies. However, recently; its use has been limited because of its hazardous health drawbacks. Previous researches confirmed that CP has severe deleterious side effects on pregnant mothers and their fetuses. Garlic ( Allium sativum) extract has been claimed to exhibit potent antioxidative and free radical scavenging abilities. Aim: This work is mainly designed to evaluate the potential therapeutic role of garlic extract against CP-induced nephrotoxicity in pregnant rats and their offspring. Methods: 24 pregnant rats were used in the current study. They were randomly allocated into four groups (n=6): control, garlic, CP, and CP + garlic group. At the end of the weaning period, the mothers and the offsprings of all groups were sacrificed, the kidneys were immediately excised, and processed for histological and biochemical investigations. Also, blood samples were withdrawn and processed for estimation of the assigned biochemical parameters. Results: The renal histological sections from CP-treated mother rats displayed pronounced histopathological lesions however, their offspring showed mild renal histopathological lesions if compared with those of their mothers. The levels of renal tissue Superoxide dismutase, catalase, and glutathione peroxidase enzymes were significantly decreased. On the contrary, the levels of malondialdehyde, serum urea, and creatinine were significantly increased in CP-treated mother rats and their offspring as compared with control. The percentage value of caspase 3 activity was markedly elevated in the renal tissues of CP-treated mother rats and their offspring compared to the control group. Supplementation of garlic extract to the CP treated rats; the overall histological lesions, as well as biochemical parameters, were restored nearly to the control ones. It is concluded that garlic ( Allium sativum) extract has a powerful ameliorative role against CP-induced nephrotoxicity in pregnant rats and their offspring.
Collapse
Affiliation(s)
| | - Gamal Mohamed
- Department of Human Anatomy, , Faculty of Medicine, Jazan University, Jazan, KSA, Jazan, 45142, Saudi Arabia
| | - Mohammed Akeel
- Department of Human Anatomy, , Faculty of Medicine, Jazan University, Jazan, KSA, Jazan, 45142, Saudi Arabia
| | - Karoline Abdelaziz
- Zoology, Damanhour University Faculty of Science, Damanhour, 22511, Egypt
| | - Kadry Elbakry
- Zoology, Faculty of Science, Damietta, University, Damietta, Egypt, Damietta, 34611, Egypt
| | - Ahmed Elsayed
- Zoology, Damanhour University Faculty of Science, Damanhour, 22511, Egypt
| |
Collapse
|
85
|
Hardy CS, Ghaedi H, Slotman A, Sjödahl G, Gooding RJ, Berman DM, Jackson CL. Immunohistochemical Assays for Bladder Cancer Molecular Subtyping: Optimizing Parsimony and Performance of Lund Taxonomy Classifiers. J Histochem Cytochem 2022; 70:357-375. [PMID: 35437049 PMCID: PMC9058369 DOI: 10.1369/00221554221095530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Transcriptomic and proteomic profiling classify bladder cancers into luminal and basal molecular subtypes, with controversial prognostic and predictive associations. The complexity of published subtyping algorithms is a major impediment to understanding their biology and validating or refuting their clinical use. Here, we optimize and validate compact algorithms based on the Lund taxonomy, which separates luminal subtypes into urothelial-like (Uro) and genomically unstable (GU). We characterized immunohistochemical expression data from two muscle-invasive bladder cancer cohorts (n=193, n=76) and developed efficient decision tree subtyping models using 4-fold cross-validation. We demonstrated that a published algorithm using routine assays (GATA3, KRT5, p16) classified basal/luminal subtypes and basal/Uro/GU subtypes with 86%-95% and 67%-86% accuracies, respectively. KRT14 and RB1 are less frequently used in pathology practice but achieved the simplest, most accurate models for basal/luminal and basal/Uro/GU discrimination, with 93%-96% and 85%-86% accuracies, respectively. More complex models with up to eight antibodies performed no better than simpler two- or three-antibody models. We conclude that simple immunohistochemistry classifiers can accurately identify luminal (Uro, GU) and basal subtypes and are appealing options for clinical implementation.
Collapse
Affiliation(s)
- Céline S.C. Hardy
- Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute
- Department of Pathology and Molecular Medicine
| | - Hamid Ghaedi
- Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute
- Department of Pathology and Molecular Medicine
| | - Ava Slotman
- Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute
- Department of Pathology and Molecular Medicine
| | - Gottfrid Sjödahl
- Queen’s University, Kingston, Canada; and Division of Urologic Research, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Robert J. Gooding
- Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute
| | - David M. Berman
- Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute
- Department of Pathology and Molecular Medicine
| | - Chelsea L. Jackson
- Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute
- Department of Pathology and Molecular Medicine
| |
Collapse
|
86
|
Hensley PJ, Panebianco V, Pietzak E, Kutikov A, Vikram R, Galsky MD, Shariat S, Roupret M, Kamat AM. Contemporary Staging for Muscle-Invasive Bladder Cancer: Accuracy and Limitations. Eur Urol Oncol 2022; 5:403-411. [DOI: 10.1016/j.euo.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
|
87
|
Sjödahl G, Abrahamsson J, Bernardo C, Eriksson P, Höglund M, Liedberg F. Molecular Subtypes as a Basis for Stratified Use of Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer-A Narrative Review. Cancers (Basel) 2022; 14:1692. [PMID: 35406463 PMCID: PMC8996989 DOI: 10.3390/cancers14071692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
There are no established biomarkers to guide patient selection for neoadjuvant chemotherapy prior to radical cystectomy for muscle-invasive bladder cancer. Recent studies suggest that molecular subtype classification holds promise for predicting chemotherapy response and/or survival benefit in this setting. Here, we summarize and discuss the scientific literature examining transcriptomic or panel-based molecular subtyping applied to neoadjuvant chemotherapy-treated patient cohorts. We find that there is not sufficient evidence to conclude that the basal subtype of muscle-invasive bladder cancer responds well to chemotherapy, since only a minority of studies support this conclusion. More evidence indicates that luminal-like subtypes may have the most improved outcomes after neoadjuvant chemotherapy. There are also conflicting data concerning the association between biopsy stromal content and response. Subtypes indicative of high stromal infiltration responded well in some studies and poorly in others. Uncertainties when interpreting the current literature include a lack of reporting both response and survival outcomes and the inherent risk of bias in retrospective study designs. Taken together, available studies suggest a role for molecular subtyping in stratifying patients for receiving neoadjuvant chemotherapy. The precise classification system that best captures such a predictive effect, and the exact subtypes for which other treatment options are more beneficial remains to be established, preferably in prospective studies.
Collapse
Affiliation(s)
- Gottfrid Sjödahl
- Department of Translational Medicine, Lund University, Malmö and Department of Urology Skåne University Hospital, Jan Waldenströms gata 5, 21421 Malmö, Sweden
| | - Johan Abrahamsson
- Department of Translational Medicine, Lund University, Malmö and Department of Urology Skåne University Hospital, Jan Waldenströms gata 5, 21421 Malmö, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences, Lund University, Scheelevägen 2, 22381 Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Scheelevägen 2, 22381 Lund, Sweden
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Scheelevägen 2, 22381 Lund, Sweden
| | - Fredrik Liedberg
- Department of Translational Medicine, Lund University, Malmö and Department of Urology Skåne University Hospital, Jan Waldenströms gata 5, 21421 Malmö, Sweden
| |
Collapse
|
88
|
Establishing a Foundation for Studying the Immune Contexture Across the Spectrum of Bladder Cancer. Eur Urol Oncol 2022; 5:214-215. [PMID: 35337760 DOI: 10.1016/j.euo.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
89
|
Systematic Evaluation Meta-Analysis of the Efficacy of Recombinant Human Endostatin Combined with Gemcitabine and Cisplatin in Non-Small-Cell Lung Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3208780. [PMID: 35340250 PMCID: PMC8941552 DOI: 10.1155/2022/3208780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Objective. To evaluate the efficacy of recombinant human endostatin combined with gemcitabine and cisplatin in the treatment of non-small-cell lung cancer (NSCLC). Methods. The databases of Cochrane Library, Embase, ClinicalTrials, PubMed, HowNet, Wanfang, and VIP were searched to collect randomized controlled trials (RCTs) of recombinant human endostatin combined with gemcitabine and cisplatin (experimental group) and gemcitabine combined with cisplatin (control group) for comparative study. The quality of literature was evaluated by bias risk assessment tools and related scales, and then meta-analysis was performed. Results. A total of 27 RCTs (1646 patients) were included. The results of meta-analysis showed that the effective rate (
< 0.000 01) and benefit rate (
< 0.000 01) of the experimental group were significantly higher than those of the control group, the incidence of leucopenia (
= 0.79), thrombocytopenia (
= 0.39), and gastrointestinal reaction (
= 0.85) were not statistically significant. Conclusion. The combination of recombinant human endostatin, gemcitabine, and cisplatin can increase the efficacy and safety of NSCLC patients.
Collapse
|
90
|
Pre-clinical and clinical studies on the role of RBM3 in muscle-invasive bladder cancer: longitudinal expression, transcriptome-level effects and modulation of chemosensitivity. BMC Cancer 2022; 22:131. [PMID: 35109796 PMCID: PMC8811987 DOI: 10.1186/s12885-021-09168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background The response to neoadjuvant cisplatin-based chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is impaired in up to 50% of patients due to chemoresistance, with no predictive biomarkers in clinical use. The proto-oncogene RNA-binding motif protein 3 (RBM3) has emerged as a putative modulator of chemotherapy response in several solid tumours but has a hitherto unrecognized role in MIBC. Methods RBM3 protein expression level in tumour cells was assessed via immunohistochemistry in paired transurethral resection of the bladder (TURB) specimens, cystectomy specimens and lymph node metastases from a consecutive cohort of 145 patients, 65 of whom were treated with NAC. Kaplan-Meier and Cox regression analyses were applied to estimate the impact of RBM3 expression on time to recurrence (TTR), cancer-specific survival (CSS), and overall survival (OS) in strata according to NAC treatment. The effect of siRNA-mediated silencing of RBM3 on chemosensitivity was examined in RT4 and T24 human bladder carcinoma cells in vitro. Cellular functions of RBM3 were assessed using RNA-sequencing and gene ontology analysis, followed by investigation of cell cycle distribution using flow cytometry. Results RBM3 protein expression was significantly higher in TURB compared to cystectomy specimens but showed consistency between primary tumours and lymph node metastases. Patients with high-tumour specific RBM3 expression treated with NAC had a significantly reduced risk of recurrence and a prolonged CSS and OS compared to NAC-untreated patients. In high-grade T24 carcinoma cells, which expressed higher RBM3 mRNA levels compared to RT4 cells, RBM3 silencing conferred a decreased sensitivity to cisplatin and gemcitabine. Transcriptomic analysis revealed potential involvement of RBM3 in facilitating cell cycle progression, in particular G1/S-phase transition, and initiation of DNA replication. Furthermore, siRBM3-transfected T24 cells displayed an accumulation of cells residing in the G1-phase as well as altered levels of recognised regulators of G1-phase progression, including Cyclin D1/CDK4 and CDK2. Conclusions The presented data highlight the potential value of RBM3 as a predictive biomarker of chemotherapy response in MIBC, which could, if prospectively validated, improve treatment stratification of patients with this aggressive disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09168-7.
Collapse
|
91
|
|
92
|
Immune Contexture and Differentiation Features Predict Outcome in Bladder Cancer. Eur Urol Oncol 2022; 5:203-213. [DOI: 10.1016/j.euo.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 12/29/2022]
|
93
|
Komarnicka UK, Niorettini A, Kozieł S, Pucelik B, Barzowska A, Wojtala D, Ziółkowska A, Lesiów M, Kyzioł A, Caramori S, Porchia M, Bieńko A. Two out of Three Musketeers Fight against Cancer: Synthesis, Physicochemical, and Biological Properties of Phosphino Cu I, Ru II, Ir III Complexes. Pharmaceuticals (Basel) 2022; 15:169. [PMID: 35215281 PMCID: PMC8876511 DOI: 10.3390/ph15020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.
Collapse
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Monika Lesiów
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| |
Collapse
|
94
|
Wu G, Liang H, Nan H, Shao Z, Wang S, Zhou Y, Li J. One-Step In Situ Self-Assembly of Biodegradable Films for Long-Term Intravesical Bladder Cancer Therapy. ACS APPLIED BIO MATERIALS 2022; 5:825-832. [PMID: 35080837 DOI: 10.1021/acsabm.1c01186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intravesical instillation therapy is increasingly recognized as one of the most common clinical treatment strategies for bladder cancer. However, the antitumor efficacy of chemotherapy drugs is still limited due to their rapid clearance by periodic urination. To circumvent this issue, a drug-loaded thin film comprising the self-assembly of tannic acid (TA) and ferric ions (Fe3+) was in situ fabricated on the bladder wall in vivo. As expected, the TA@Fe film with adjustable thickness could effectively prolong the residence time of anticancer drugs in the bladder and realize sustained release of anticancer drugs. Together with the antibacterial properties, the TA@Fe film enabled improved chemotherapeutic efficacy. Moreover, the TA@Fe film caused no adverse effects on bladder function, demonstrating the in vivo biocompatibility. In addition, the T2 contrast effect of Fe3+ was employed to real-time monitor the disassembly of the TA@Fe film and the ensuing drug release process by magnetic resonance imaging. We believe that the TA@Fe-based drug delivery platform with enhanced retention in the bladder would be of great potential for treating various bladder diseases.
Collapse
Affiliation(s)
- Guangyu Wu
- Department of Radiology, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hanyu Liang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hexin Nan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhentao Shao
- Department of Radiology, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shi Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Zhou
- Department of Radiology, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
95
|
Nakauma-González JA, Rijnders M, van Riet J, van der Heijden MS, Voortman J, Cuppen E, Mehra N, van Wilpe S, Oosting SF, Rijstenberg LL, Westgeest HM, Zwarthoff EC, de Wit R, van der Veldt AAM, van de Werken HJG, Lolkema MPJ, Boormans JL. Comprehensive Molecular Characterization Reveals Genomic and Transcriptomic Subtypes of Metastatic Urothelial Carcinoma. Eur Urol 2022; 81:331-336. [PMID: 35086719 DOI: 10.1016/j.eururo.2022.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Recent molecular characterization of primary urothelial carcinoma (UC) may guide future clinical decision-making. For metastatic UC (mUC), a comprehensive molecular characterization is still lacking. We analyzed whole-genome DNA and RNA sequencing data for fresh-frozen metastatic tumor biopsies from 116 mUC patients who were scheduled for palliative systemic treatment within the context of a clinical trial (NCT01855477 and NCT02925234). Hierarchical clustering for mutational signatures revealed two major genomic subtypes: GenS1 (67%), which was APOBEC-driven; and GenS2 (24%), which had a high fraction of de novo mutational signatures related to reactive oxygen species and is putatively clock-like. Significantly mutated genes (SMGs) did not differ between the genomic subtypes. Transcriptomic analysis revealed five mUC subtypes: luminal-a and luminal-b (40%), stroma-rich (24%), basal/squamous (23%), and a nonspecified subtype (12%). These subtypes differed regarding expression of key genes, SMGs, oncogenic pathway activity, and immune cell infiltration. We integrated the genomic and transcriptomic data to propose potential therapeutic options by transcriptomic subtype and for individual patients. This in-depth analysis of a large cohort of patients with mUC may serve as a reference for subtype-oriented and patient-specific research on the etiology of mUC and for novel drug development. PATIENT SUMMARY: We carried out an in-depth analysis of the molecular and genetic features of metastatic cancer involving the cells that line the urinary tract. We showed that this is a heterogeneous disease with different molecular subtypes and we identified possible targets for therapy for each subtype.
Collapse
Affiliation(s)
- J Alberto Nakauma-González
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maud Rijnders
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Jens Voortman
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L Lucia Rijstenberg
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Martijn P J Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
96
|
Hensley PJ, Kamat AM. Re: Different Responses to Neoadjuvant Chemotherapy in Urothelial Carcinoma Molecular Subtypes. Eur Urol 2022; 81:316-317. [PMID: 35039182 DOI: 10.1016/j.eururo.2021.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022]
Affiliation(s)
| | - Ashish M Kamat
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
97
|
Wang H, Li J, Qin J, Li J, Chen Y, Song D, Zeng H, Wang S. Investigating the cellular responses of osteosarcoma to cisplatin by confocal Raman microspectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112366. [PMID: 34826719 DOI: 10.1016/j.jphotobiol.2021.112366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Confocal Raman Microspectroscopy (CRM) was employed to clarify the cellular response of cisplatin in osteosarcoma (OS) cells with different dosages and incubation times. The K7M2 mouse osteosarcoma cells were treated by cisplatin in 0 μM (UT group), 20 μM (20 T group), and 40 μM (40 T group) doses for 24-h (24H group) and 48-h (48H group), respectively. Raman spectroscopy was utilized to analyze the drug induced variations of intracellular biochemical components in osteosarcoma cells. The spectral results shows that the main changes in its biochemical composition come from nucleic acids. By adopting three different kernel functions (linear, polynomial, and Gaussian radial basis function (RBF)), principal component analysis combined with support vector machine models (PCA-SVM) was built to address the spectral variations among all investigated groups. Meanwhile, multivariate curve resolution alternating least squares (MCR-ALS) was further utilized to discuss on the chemical interpretation on the acquired spectral results. Moreover, Raman spectral images, which is reconstructed by K-means cluster analysis (KCA) with point-scanned hyperspectral dataset, was applied to illustrate the drug induced compositional and morphological variations in each subcellular region. The achieved results not only prove the application potential of Raman based analytical technique in non-labeled intracellular studies, but also illustrate the detailed compositional and structural information of cisplatin induced OS cell responses from the perspective of multivariate analysis and imaging of Raman spectroscopy.
Collapse
Affiliation(s)
- Haifeng Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jing Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Jie Li
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yishen Chen
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Dongliang Song
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Center, Vancouver, BC, V5Z1L3, Canada
| | - Shuang Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
98
|
Molecular pathology of the non-luminal Ba/Sq-like and Sc/NE-like classes of urothelial tumours: an integrated immunohistochemical analysis. Hum Pathol 2022; 122:11-24. [DOI: 10.1016/j.humpath.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
99
|
Hurst CD, Cheng G, Platt FM, Castro MAA, Marzouka NADS, Eriksson P, Black EVI, Alder O, Lawson ARJ, Lindskrog SV, Burns JE, Jain S, Roulson JA, Brown JC, Koster J, Robertson AG, Martincorena I, Dyrskjøt L, Höglund M, Knowles MA. Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Rep Med 2021; 2:100472. [PMID: 35028613 PMCID: PMC8714941 DOI: 10.1016/j.xcrm.2021.100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | | | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma V I Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Joanne C Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
100
|
Ban D, Lu W, Lu Z, Li B, Zhou N. Effects of radical cystectomy combined with GC chemotherapy in the treatment of invasive bladder cancer and its influence on the incidence of adverse reactions. Am J Transl Res 2021; 13:13845-13853. [PMID: 35035724 PMCID: PMC8748082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the efficiency of radical cystectomy combined with GC chemotherapy in the treatment of invasive bladder cancer and its influence on the incidence of adverse reactions. METHODS The clinical data of 120 patients with invasive bladder cancer admitted to our hospital from February 2015 to February 2016 were retrospectively analyzed. According to different treatment methods, they were equally divided into two groups. The experimental group (n=60) was treated with radical cystectomy combined with GC chemotherapy. The control group (n=60) was treated with bladder-preserving comprehensive treatment (transurethral bladder tumor resection + internal iliac artery infusion chemotherapy + intravesical infusion chemotherapy). The short-term efficiency, adverse reactions, long-term treatment indicators, survival, surgical indicators, and quality of life were compared between the two groups. RESULTS The two groups showed similar objective remission rate and disease control rate (P>0.05). Both groups of patients had different degrees of hematological toxicity and non-hematological toxicity, but no severe systemic organ toxicity. Fewer patients in the experimental group experienced anemia and fever compared with the control group (P<0.05). The incidence of recurrence, hydronephrosis, and metastasis in the experimental group was significantly lower than that in the control group (P<0.05). The experimental group showed a higher 3-year survival rate than the control group (86.7% vs 75.0%), with no statistical difference between the two groups (P>0.05). The experimental group obtained a significantly higher 5-year survival rate than that of the control group (70.0% vs 51.7%) (P<0.05). The experimental group outperformed the control group in terms of surgical indicators (P<0.001). The two groups had similar quality of life scores after the 5-year follow-up (P>0.05). CONCLUSION Radical cystectomy combined with GC for the treatment of invasive bladder cancer reduces the incidence of adverse reactions and enhances the 5-year survival of patients, with a promising long-term efficiency.
Collapse
|