51
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
52
|
Deng L, Liu S, Liu D, Chang YM, Li L, Li C, Sun Y, Hu F, Chen HY, Pan H, Peng S. Activity-Stability Balance: The Role of Electron Supply Effect of Support in Acidic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302238. [PMID: 37191328 DOI: 10.1002/smll.202302238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Developing efficient and durable electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzers represents a significant challenge. Herein, the cobalt-ruthenium oxide nano-heterostructures are successfully synthesized on carbon cloth (CoOx /RuOx -CC) for acidic OER through a simple and fast solution combustion strategy. The rapid oxidation process endows CoOx /RuOx -CC with abundant interfacial sites and defect structures, which enhances the number of active sites and the charge transfer at the electrolyte-catalyst interface, promoting the OER kinetics. Moreover, the electron supply effect of the CoOx support allows electrons to transfer from Co to Ru sites during the OER process, which is beneficial to alleviate the ion leaching and over-oxidation of Ru sites, improving the catalyst activity and stability. As a self-supported electrocatalyst, CoOx /RuOx -CC displays an ultralow overpotential of 180 mV at 10 mA cm-2 for OER. Notably, the PEM electrolyzer using CoOx /RuOx -CC as the anode can be operated at 100 mA cm-2 stably for 100 h. Mechanistic analysis shows that the strong catalyst-support interaction is beneficial to redistribute the electronic structure of RuO bond to weaken its covalency, thereby optimizing the binding energy of OER intermediates and lowering the reaction energy barrier.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyi Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Zhuhai, Macao SAR, 999078, China
| | - Yu-Ming Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Zhuhai, Macao SAR, 999078, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
53
|
Wang AB, Zhang X, Xu HJ, Gao LJ, Li L, Cao R, Hao QY. Engineering Cu/NiCu LDH Heterostructure Nanosheet Arrays for Highly-Efficient Water Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093372. [PMID: 37176251 PMCID: PMC10179677 DOI: 10.3390/ma16093372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
The development of stable and efficient electrocatalysts for oxygen evolution reaction is of great significance for electro-catalytic water splitting. Bimetallic layered double hydroxides (LDHs) are promising OER catalysts, in which NiCu LDH has excellent stability compared with the most robust NiFe LDH, but the OER activity is not satisfactory. Here, we designed a NiCu LDH heterostructure electrocatalyst (Cu/NiCu LDH) modified by Cu nanoparticles which has excellent activity and stability. The Cu/NiCu LDH electrocatalyst only needs a low over-potential of 206 mV and a low Tafel slope of 86.9 mV dec-1 at a current density of 10 mA cm-2 and maintains for 70 h at a high current density of 100 mA cm-2 in 1M KOH. X-ray photoelectron spectroscopy (XPS) showed that there was a strong electronic interaction between Cu nanoparticles and NiCu LDH. Density functional theory (DFT) calculations show that the electronic coupling between Cu nanoparticles and NiCu LDH can effectively improve the intrinsic OER activity by optimizing the conductivity and the adsorption energy of oxygen-containing intermediates.
Collapse
Affiliation(s)
- Ao-Bing Wang
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Xin Zhang
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Hui-Juan Xu
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Li-Jun Gao
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Li Li
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Rui Cao
- Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Qiu-Yan Hao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
54
|
Huang Y, Chen H, Zhang B. Constructing Molybdenum Phosphide@Cobalt Phosphide Heterostructure Nanoarrays on Nickel Foam as a Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Molecules 2023; 28:molecules28093647. [PMID: 37175057 PMCID: PMC10180104 DOI: 10.3390/molecules28093647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of multi-level heterostructure materials is an effective way to further the catalytic activity of catalysts. Here, we assembled self-supporting MoS2@Co precursor nanoarrays on the support of nickel foam by coupling the hydrothermal method and electrostatic adsorption method, followed by a low-temperature phosphating strategy to obtain Mo4P3@CoP/NF electrode materials. The construction of the Mo4P3@CoP heterojunction can lead to electron transfer from the Mo4P3 phase to the CoP phase at the phase interface region, thereby optimizing the charge structure of the active sites. Not only that, the introduction of Mo4P3 will make water molecules preferentially adsorb on its surface, which will help to reduce the water molecule decomposition energy barrier of the Mo4P3@CoP heterojunction. Subsequently, H* overflowed to the surface of CoP to generate H2 molecules, which finally showed a lower water molecule decomposition energy barrier and better intermediate adsorption energy. Based on this, the material shows excellent HER/OER dual-functional catalytic performance under alkaline conditions. It only needs 72 mV and 238 mV to reach 10 mA/cm2 for HER and OER, respectively. Meanwhile, in a two-electrode system, only 1.54 V is needed to reach 10 mA/cm2, which is even better than the commercial RuO2/NF||Pt/C/NF electrode pair. In addition, the unique self-supporting structure design ensures unimpeded electron transmission between the loaded nanoarray and the conductive substrate. The loose porous surface design is not only conducive to the full exposure of more catalytic sites on the surface but also facilitates the smooth escape of gas after production so as to improve the utilization rate of active sites. This work has important guiding significance for the design and development of high-performance bifunctional electrolytic water catalysts.
Collapse
Affiliation(s)
- Yingchun Huang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hongming Chen
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Busheng Zhang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|
55
|
Zhu B, Dong B, Wang F, Yang Q, He Y, Zhang C, Jin P, Feng L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat Commun 2023; 14:1686. [PMID: 36973279 PMCID: PMC10042884 DOI: 10.1038/s41467-023-37441-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
For nickel-based catalysts, in-situ formed nickel oxyhydroxide has been generally believed as the origin for anodic biomass electro-oxidations. However, rationally understanding the catalytic mechanism still remains challenging. In this work, we demonstrate that NiMn hydroxide as the anodic catalyst can enable methanol-to-formate electro-oxidation reaction (MOR) with a low cell-potential of 1.33/1.41 V at 10/100 mA cm-2, a Faradaic efficiency of nearly 100% and good durability in alkaline media, remarkably outperforming NiFe hydroxide. Based on a combined experimental and computational study, we propose a cyclic pathway that consists of reversible redox transitions of NiII-(OH)2/NiIII-OOH and a concomitant MOR. More importantly, it is proved that the NiIII-OOH provides combined active sites including NiIII and nearby electrophilic oxygen species, which work in a cooperative manner to promote either spontaneous or non-spontaneous MOR process. Such a bifunctional mechanism can well account for not only the highly selective formate formation but also the transient presence of NiIII-OOH. The different catalytic activities of NiMn and NiFe hydroxides can be attributed to their different oxidation behaviors. Thus, our work provides a clear and rational understanding of the overall MOR mechanism on nickel-based hydroxides, which is beneficial for advanced catalyst design.
Collapse
Affiliation(s)
- Botao Zhu
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Bo Dong
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Feng Wang
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Qifeng Yang
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Yunpeng He
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China
| | - Cunjin Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.
| | - Lai Feng
- Soochow Institute for Energy and Materials Innovation (SIEMIS), School of Energy, Soochow University, Suzhou, China.
| |
Collapse
|
56
|
Pan S, Li R, Wang J, Zhang Q, Wang M, Shi B, Wang P, Zhao Y, Zhang X. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells. ACS NANO 2023; 17:4539-4550. [PMID: 36808966 DOI: 10.1021/acsnano.2c10477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photovoltaic hydrogen production from seawater is of great significance. Challenges of solar-driven seawater electrolysis, for example, competing among chlorine evolution reactions, chloride corrosion, and catalyst poisoning, seriously restrict the development of this technology. In this paper, we report a two-dimensional nanosheet quaternary metal hydroxide catalyst composed of Ni, Fe, Cr, and Mo elements. By in situ electrochemical activation, a partial Mo element was leached and morphologically transformed in the catalyst. The higher metal valence states and many O vacancies were obtained, providing excellent catalytic activity and corrosion resistance in overall alkaline seawater electrolysis operating at an industrial-required current density of 500 mA cm-2 over 1000 h under 1.82 V low voltages at room temperature. The floating solar seawater splitting device shows a 20.61 ± 0.77% efficiency of solar energy to hydrogen (STH). This work demonstrates the development of efficient solar seawater electrolysis devices and potentially promotes research on clean energy conversion.
Collapse
Affiliation(s)
- Sanjiang Pan
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Renjie Li
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Jin Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Qixing Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Manjing Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Biao Shi
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Pengyang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin 300350, P.R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P.R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, P.R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| |
Collapse
|
57
|
Design of molecular MNC dual-atom catalysts for nitrogen reduction starting from surface state analysis. J Colloid Interface Sci 2023; 640:983-989. [PMID: 36913836 DOI: 10.1016/j.jcis.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Under electrocatalytic conditions, the state of a catalyst surface (e.g., adsorbate coverage) can be very different from a pristine form due to the existing conversion equilibrium between water and H- and O-containing adsorbates. Dismissing the analysis of the catalyst surface state under operating conditionsmay lead to misleading guidelines for experiments. Given that confirming the actual active site of the catalyst under operating conditions is indispensable to providing practical guidance for experiments, herein, we analyzed the relations between the Gibbs free energy and the potential of a new type of molecular metal-nitrogen-carbon (MNC) dual-atom catalysts (DACs) with a unique 5 N-coordination environment, by spin-polarized density functional theory (DFT) and surface Pourbaix diagram calculations. Analyzing the derived surface Pourbaix diagrams, we screened out three catalysts, N3-Ni-Ni-N2, N3-Co-Ni-N2, and N3-Ni-Co-N2, to further study the activity of nitrogen reduction reaction (NRR). The results display that N3-Co-Ni-N2 is a promising NRR catalyst with a relatively low ΔG of 0.49 eV and slow kinetics of the competing hydrogen evolution. This work proposes a new strategy to guide DAC experiments more precisely: the analysis of the surface occupancy state of the catalysts under electrochemical conditions should be performed before activity analysis.
Collapse
|
58
|
Wang Q, Cheng Y, Tao HB, Liu Y, Ma X, Li DS, Yang HB, Liu B. Long-Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202216645. [PMID: 36546885 DOI: 10.1002/anie.202216645] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) has been regarded as a promising technology for renewable hydrogen production. However, acidic oxygen evolution reaction (OER) catalysts with long-term stability impose a grand challenge in its large-scale industrialization. In this review, critical factors that may lead to catalyst's instability in couple with potential solutions are comprehensively discussed, including mechanical peeling, substrate corrosion, active-site over-oxidation/dissolution, reconstruction, oxide crystal structure collapse through the lattice oxygen-participated reaction pathway, etc. Last but not least, personal prospects are provided in terms of rigorous stability evaluation criteria, in situ/operando characterizations, economic feasibility and practical electrolyzer consideration, highlighting the ternary relationship of structure evolution, industrial-relevant activity and stability to serve as a roadmap towards the ultimate application of PEMWE.
Collapse
Affiliation(s)
- Qilun Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yaqi Cheng
- School of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hua Bing Tao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuehu Ma
- Liaoning Key Laboratory of Clean Utilisation of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
59
|
Guo B, Ding Y, Huo H, Wen X, Ren X, Xu P, Li S. Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis. NANO-MICRO LETTERS 2023; 15:57. [PMID: 36862225 PMCID: PMC9981861 DOI: 10.1007/s40820-023-01038-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER) has been recognized as the bottleneck of overall water splitting, which is a promising approach for sustainable production of H2. Transition metal (TM) hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER, while TM basic salts [M2+(OH)2-x(Am-)x/m, A = CO32-, NO3-, F-, Cl-] consisting of OH- and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade. In this review, we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting. We categorize TM basic salt-based OER pre-catalysts into four types (CO32-, NO3-, F-, Cl-) according to the anion, which is a key factor for their outstanding performance towards OER. We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance. To develop bifunctional TM basic salts as catalyst for the practical electrolysis application, we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance. Finally, we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yani Ding
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Institute of Carbon Neutral Energy Technology, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Haohao Huo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
60
|
Zhang X, Feng C, Dong B, Liu C, Chai Y. High-Voltage-Enabled Stable Cobalt Species Deposition on MnO 2 for Water Oxidation in Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207066. [PMID: 36645873 DOI: 10.1002/adma.202207066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The design and maintenance of highly active sites in an acidic environment is vital and challenging for the oxygen evolution reaction (OER). In this work, it is found that the obtained CoO2 under high applied potential can be stable on MnO2 host in acidic environment, which may act as an effective means to solve the instability of cobalt-based electrocatalyst. The significant improvement of acidic OER activity (6.9 times) and stability (46.4 times) of 90-Co-MnO2 (treated by molten salt with more Co deposition sites) demonstrates the advantages of this approach. In situ Raman and the Pourbaix diagram suggest that the enhanced performance derives from the stable presence of CoO2 at the voltage >1.8 V versus reversible hydrogen electrode (RHE). However, when the potential is <1.8 V, the corresponding other cobalt species is too unstable to facilitate the OER. Density functional theorycalculations reveal that the deposited cobalt oxides can act as active sites, thus effectively reducing the reaction energy barrier of the rate-determining step. This work provides a new perspective for enhancing the stability of cobalt-based electrocatalyst. In the future, the dual consideration of applied potential and stable species of active element in the Pourbaix diagram may be a new direction for developing acid-stable electrocatalysts.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Chenguang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yongming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
61
|
Edgington J, Seitz LC. Advancing the Rigor and Reproducibility of Electrocatalyst Stability Benchmarking and Intrinsic Material Degradation Analysis for Water Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jane Edgington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Linsey C. Seitz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
62
|
Zhu Y, Wang X, Zhu X, Wu Z, Zhao D, Wang F, Sun D, Tang Y, Li H, Fu G. Improving the Oxygen Evolution Activity of Layered Double-Hydroxide via Erbium-Induced Electronic Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206531. [PMID: 36445024 DOI: 10.1002/smll.202206531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Layered double-hydroxide (LDH) has been considered an important class of electrocatalysts for the oxygen evolution reaction (OER), but the adsorption-desorption behaviors of oxygen intermediates on its surface still remain unsatisfactory. Apart from transition-metal doping to solve this electrocatalytic problem of LDH, rare-earth (RE) species have sprung up as emerging dopants owing to their unique 4f valence-electronic configurations. Herein, the Er is chosen as a RE model to improve OER activity of LDH via constructing nickel foam supported Er-doped NiFe-LDH catalyst (Er-NiFe-LDH@NF). The optimal Er-NiFe-LDH@NF exhibits a low overpotential (191 mV at 10 mA cm-2 ), high turnover frequency (0.588 s-1 ), and low activation energy (36.03 kJ mol-1 ), which are superior to Er-free sample. Electrochemical in situ Raman spectra reveal the facilitated transition of Ni-OH into Ni-OOH for promoted OER kinetics through the Er doping effect. Theoretical calculations demonstrate that the introduction of Er facilitates the spin crossover of valence electrons by optimizing the d band center of NiFe-LDH, which leads to the GO -GHO closer to the optimal activity of the kinetic OER volcano by balancing the bonding strength of *O and *OH. Moreover, the Er-NiFe-LDH@NF presents high practicability in electrochemical water-splitting devices with a low driving potential of and a well-extended driving period.
Collapse
Affiliation(s)
- Yu Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoheng Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zixin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, 300130, P. R. China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
63
|
Xiong W, Yin H, Wu T, Li H. Challenges and Opportunities of Transition Metal Oxides as Electrocatalysts. Chemistry 2023; 29:e202202872. [PMID: 36372776 DOI: 10.1002/chem.202202872] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
As a sustainable energy technology, electrocatalytic energy conversion and storage has become increasingly prominent. The oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR) are the key steps in the industrial applications of energy conversion and storage. Compared to the widely used precious metal catalysts, less-noble transition metal oxides (TMOs) and TMO-like materials have attracted broad attention as electrocatalysts in the above reactions. In this concept, we summarize the challenges and opportunities of some typical TMOs in electrocatalysis, and modification strategies of TMOs as electrocatalysts are discussed.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Novel Biomass-Based Environmental and, Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor &Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Huhu Yin
- Key Laboratory of Novel Biomass-Based Environmental and, Energy Materials in Petroleum and Chemical Industry, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor &Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Tianxing Wu
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
64
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|