51
|
Huang Q, Liu Y, Ranjan Dhar B. Boosting resilience of microbial electrolysis cell-assisted anaerobic digestion of blackwater with granular activated carbon amendment. BIORESOURCE TECHNOLOGY 2023; 381:129136. [PMID: 37169203 DOI: 10.1016/j.biortech.2023.129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Poor hydrolysis and methanogenesis efficiencies remain the main challenges for blackwater anaerobic digestion. This study investigated the performance of a granular activated carbon (GAC) amended microbial electrolysis cell-assisted anaerobic digester (MEC-AD) treating blackwater. Due to hydrolysis limitation, both MEC-AD and control reactors experienced performance declines as the organic loading rate increased from 3.0 to 4.5 g COD/L-d. Then, adding GAC without mixing formed GAC-sludge aggregates that improved methane yield to 38.3% and 32.3% in the MEC-AD and control reactor, respectively, and enhanced hydrolysis efficiency. The amended MEC-AD also successfully overcame the performance deterioration due to a temperature drop. Biomarker identification revealed the crucial roles of GAC biofilms and settled sludge in promoting methanogenesis and hydrolysis, respectively. This study demonstrated the GAC addition and the electrochemical environment could have a reciprocal influence, leading to more robust syntrophic microbial interactions, which could guide the future application of conductive materials in MEC-AD systems.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
52
|
Ding W, Li J, Hu B, Chu G, Tao R. Response of abundance, diversity, and network of rhizosphere fungal community to monoculture of cut chrysanthemum. Appl Microbiol Biotechnol 2023; 107:3673-3685. [PMID: 37115253 DOI: 10.1007/s00253-023-12542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The effects of different monoculture years on rhizosphere fungal communities (abundance, diversity, structure, and cooccurrence network) of cut chrysanthemum were determined. Three different monoculture years were (i) planting for only 1 year (Y1), (ii) continuous monoculture for 6 years (Y6), and (iii) continuous monoculture for 12 years (Y12). Compared to the Y1 treatment, the Y12 treatment significantly decreased the rhizosphere fungal gene copy numbers but increased the potential pathogen Fusarium oxysporum (P < 0.05). Both the Y6 and Y12 treatments significantly increased fungal diversity (Shannon and Simpson indices), but Y6 had great potential to enhance fungal richness (Chao1 index) relative to the Y12 treatment. Monoculture treatments decreased the relative abundance of Ascomycota but increased that of Mortierellomycota. Four ecological clusters (Modules 0, 3, 4, and 9) were observed in the fungal cooccurrence network across the Y1, Y6, and Y12 treatments, and only Module 0 was significantly enriched in the Y12 treatment and associated with soil properties (P < 0.05). RDA (redundancy analysis) and Mantel analysis showed that soil pH and soil nutrients (organic carbon, total nitrogen, and available phosphorus) were the key factors affecting fungal communities during monoculture of cut chrysanthemum. Overall, the changes in soil properties were responsible for shaping rhizospheric soil fungal communities in long-term rather than short-term monoculture systems. KEY POINTS: • Both short- and long-term monocultures reshaped the soil fungal community structure. • Long-term monoculture enhanced the network complexity of the fungal community. • Soil pH, C and N levels mainly drove modularization in the fungal community network.
Collapse
Affiliation(s)
- Wangying Ding
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Jun Li
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Baowei Hu
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Guixin Chu
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Rui Tao
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
53
|
Xing W, Gai X, Ju F, Chen G. Microbial communities in tree root-compartment niches under Cd and Zn pollution: Structure, assembly process and co-occurrence relationship. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160273. [PMID: 36460109 DOI: 10.1016/j.scitotenv.2022.160273] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Woody plants have showed great potential in remediating severely contaminated soils by heavy metals (HMs) due to their cost-efficient and ecologically friendly trait. It is believed the root-associated microbiota plays a vital role in phytoremediation for HMs. However, the ecological process controlling the assembly and composition of tree root-associated microbial communities under HMs stress remains poorly understood. Herein, we profiled the bulk soil, rhizosphere and endosphere microbial communities of trees growing in heavily Cd and Zn polluted soil. The microbiota was gradually filtered from bulk soil to the tree roots and was selectively enriched in roots with specific taxa, such as Proteobacteria and Ascomycota. The microbial community assembly along the soil-root continuum was mainly controlled by deterministic processes from bulk soil to the endosphere, with the normalized stochasticity ratio (NST) indices of 67.16-31.05 % and 30.37-15.02 % for bacteria and fungi, respectively. Plant selection pressure sequentially increased from bulk soil to rhizosphere to endosphere, with the reduced bacterial alpha diversity accompanying the consequently reduced complexity of the co-occurrence network. Together, the findings provide new evidence for horizontal transmission of endophytic microbiome from soil to the host, which can shed light on the future screening and application of microbial-assisted phytoremediation.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, PR China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China.
| |
Collapse
|
54
|
Yu X, Gao X, Shang L, Wang X, Jiao Y, Zhang XH, Shi X. Spatial and temporal change determined co-occurrence networks stability and community assembly processes of epipelagic seawater microbial community in the Nordic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160321. [PMID: 36414066 DOI: 10.1016/j.scitotenv.2022.160321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The Nordic Sea has a vital impact on the global climate change, occupies a significant status in the physical oceanography research, on account of its intersection of complex ocean currents. To explore the influence of seasonal and spatial heterogeneity in its epipelagic seawater on the microbial community structure, a total of 54 seawater samples from 18 stations and 3 water layers (0 m, 50 m, 100 m) were collected in the summer of 2017 and the autumn of 2018 from the Norwegian Sea, the Greenland Sea and the vicinity of Jan Mayen Island in the Nordic Sea. Alpha- and Beta- diversity analysis showed that significant differences were found between characteristic bacterial groups in detached or mixed currents of corresponding seasons, as endemic OTUs with seasonal and ocean current characteristics which revealed the existence of spatiotemporal patterns of microbial communities in the Nordic Sea. Moreover, co-occurrence networks were conducted to show different degree of complexity and stability of microbial community response to spatiotemporal dynamic changes. Furthermore, the flow and collision between ocean currents do have an impact on the community assembly processes by affecting the migration and dispersal of microbial communities. This study reflects the response of microbial communities to the spatiotemporal dynamics and reveals the microbial community assembly mechanisms under complex hydrological condition represented in the Nordic Sea.
Collapse
Affiliation(s)
- Xiaowen Yu
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xueyu Gao
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Li Shang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoyu Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Physical Oceanography Laboratory, Ocean University of China, Qingdao 266071, PR China
| | - Yutian Jiao
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Physical Oceanography Laboratory, Ocean University of China, Qingdao 266071, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiaochong Shi
- College of Marine Life Science, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, PR China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
55
|
Thapa A, Park JH, Shin SG, Jo HM, Kim MS, Park Y, Han U, Cho SK. Elucidation of microbial interactions, dynamics, and keystone microbes in high pressure anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159718. [PMID: 36302429 DOI: 10.1016/j.scitotenv.2022.159718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
High-pressure anaerobic digestion (HPAD) is a promising technology for producing biogas enriched with high methane content in a single-step process. To enhance HPAD performance, a comprehensive understanding of microbial community dynamics and their interactions is essential. For this, mesophilic batch high-pressurized anaerobic reactors were operated under 3 bars (H3) and 6 bars (H6). The experimental results showed that the effect of high-pressure (up to 6 bar) on acidification was negligible while methanogenesis was significantly delayed. Microbial analysis showed the predominance of Defluviitoga affiliated with the phylum Thermotogae and the reduction of Thiopseudomonas under high-pressure conditions. In addition, the microbial cluster pattern in H3 and H6 was significantly different compared to the CR, indicating a clear shift in microbial community structure. Moreover, Methanobacterium, Methanomicrobiaceae, Alkaliphilus, and Petrimonas were strongly correlated in network analysis, and they could be identified as keystone microbes in the HPAD reactor.
Collapse
Affiliation(s)
- Ajay Thapa
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, Republic of Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, Gyeongang National University, Gyeongnam 52725, Republic of Korea
| | - Hong-Mok Jo
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Min-Sang Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Yeongmi Park
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
56
|
Abiriga D, Jenkins A, Klempe H. Microbial assembly and co-occurrence network in an aquifer under press perturbation. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Thousands of aquifers worldwide have been polluted by leachate from landfills and many more remained threatened. Microbial communities from these environments play a crucial role in mediating biodegradation and maintaining the biogeochemical cycles, but their co-occurrence and assembly mechanism have not been investigated.
Method
Here, we coupled network analysis with multivariate statistics to assess the relative importance of deterministic versus stochastic microbial assembly in an aquifer undergoing intrinsic remediation, using 16S metabarcoding data generated through Illumina MiSeq sequencing of the archaeal/bacterial V3–V4 hypervariable region.
Results
Results show that both the aquifer-wide and localised community co-occurrences deviate from expectations under null models, indicating the predominance of deterministic processes in shaping the microbial communities. Further, the amount of variation in the microbial community explained by the measured environmental variables was 55.3%, which illustrates the importance of causal factors in forming the structure of microbial communities in the aquifer. Based on the network topology, several putative keystone taxa were identified which varied remarkably among the wells in terms of their number and composition. They included Nitrospira, Nitrosomonadaceae, Patulibacter, Legionella, uncharacterised Chloroflexi, Vicinamibacteriales, Neisseriaceae, Gemmatimonadaceae, and Steroidobacteraceae. The putative keystone taxa may be providing crucial functions in the aquifer ranging from nitrogen cycling by Nitrospira, Nitrosomonadaceae, and Steroidobacteraceae, to phosphorous bioaccumulation by Gemmatimonadaceae.
Conclusion
Collectively, the findings provide answers to fundamental ecological questions which improve our understanding of the microbial ecology of landfill leachate plumes, an ecosystem that remains understudied.
Collapse
|
57
|
Miao X, Han X, Liu C, Bai X. Intrinsic chlorine resistance of bacteria modulated by glutaminyl-tRNA biosynthesis in drinking water supply systems. CHEMOSPHERE 2022; 308:136322. [PMID: 36084827 DOI: 10.1016/j.chemosphere.2022.136322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The existence of chlorine-resistant bacteria (CRB) in drinking water supply systems (DWSSs) results in significant challenges to the biological security of drinking water. However, little is known about the intrinsic chlorine-resistant molecular metabolic mechanism of bacteria in DWSSs. This research explored the microbial interactions and the key metabolic pathways that modulate the chlorine resistance of bacteria in full-scale chloraminated DWSSs. The dominant CRB, including Bdellovibrio, Bradyrhizobium, Peredibacter, Sphingomonas, and Hydrogenophaga, strongly interacted with each other to maintain basic metabolism. A total of 4.21% of the bacterial metabolic pathways were key and specific to chlorine-resistant bacteria. Glutaminyl-tRNA biosynthesis was the dominant metabolic pathway of CRB in the target DWSSs. After chloramine disinfection, the relative abundance of glutamate-tRNA ligase (GlnRS) and the related orthologous genes increased by 10.11% and 14.58%, respectively. The inactivation rate of the GlnRS overexpression strain (81.40%) was lower than that of the wild-type strain (90.11%) after exposure to chloramine. Meanwhile, the growth rate of the GlnRS overexpression strain was higher than that of the wild-type strain. Glutaminyl-tRNA biosynthesis can enhance chlorine resistance in DWSSs.
Collapse
Affiliation(s)
- Xiaocao Miao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xue Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
58
|
Camara M, Filloux A. Supporting the strategic pillars of translational research in biofilms. NPJ Biofilms Microbiomes 2022; 8:90. [PMID: 36372799 PMCID: PMC9659558 DOI: 10.1038/s41522-022-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/14/2022] Open
|
59
|
Zhang L, Yuan Y, Zhang Y, Liu Y. Exploring key factors in anaerobic syntrophic interactions: Biomass activity, microbial community, and morphology. BIORESOURCE TECHNOLOGY 2022; 363:127852. [PMID: 36067891 DOI: 10.1016/j.biortech.2022.127852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The present work evaluated the impacts of microbial communities, biomass activity and sludge morphology on anaerobic syntrophic reactions. Experiments were conducted using mature floc sludge and granular sludge under different food/microbes ratios, and with different sludge types (floc sludge, concentrated floc sludge and granular sludge) and sludge morphology (granules, vortexed granules, and granules with different particle sizes). The results show that the intact granules achieved the most effective syntrophic reaction among all sludge types. The granule structure facilitated the enrichment of syntrophic acetate oxidation bacteria (g_Syner-01 and g_Mesotoga) and methanogens, which corresponds to their superior specific methanogenic activity and high production of communication compounds. Despite the high diffusion and substrate uptake capacities, the disintegrated granules had low H2 consumption rates, which led to poor syntrophic activities. The results underline the importance of sludge spatial structures in promoting excellent syntrophic activities and the development of diverse microbial communities.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yiyang Yuan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
60
|
Wang M, Tu Q. Effective data filtering is prerequisite for robust microbial association network construction. Front Microbiol 2022; 13:1016947. [PMID: 36267180 PMCID: PMC9577025 DOI: 10.3389/fmicb.2022.1016947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Microorganisms do not exist as individual population in the environment. Rather, they form complex assemblages that perform essential ecosystem functions and maintain ecosystem stability. Besides the diversity and composition of microbial communities, deciphering their potential interactions in the form of association networks has attracted many microbiologists and ecologists. Much effort has been made toward the methodological development for constructing microbial association networks. However, microbial profiles suffer dramatically from zero values, which hamper accurate association network construction. In this study, we investigated the effects of zero-value issues associated with microbial association network construction. Using the TARA Oceans microbial profile as an example, different zero-value-treatment approaches were comparatively investigated using different correlation methods. The results suggested dramatic variations of correlation coefficient values for differently treated microbial profiles. Most specifically, correlation coefficients among less frequent microbial taxa were more affected, whichever method was used. Negative correlation coefficients were more problematic and sensitive to network construction, as many of them were inferred from low-overlapped microbial taxa. Consequently, microbial association networks were greatly differed. Among various approaches, we recommend sequential calculation of correlation coefficients for microbial taxa pairs by excluding paired zero values. Filling missing values with pseudo-values is not recommended. As microbial association network analyses have become a widely used technique in the field of microbial ecology and environmental science, we urge cautions be made to critically consider the zero-value issues in microbial data.
Collapse
Affiliation(s)
- Mengqi Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Xiamen University, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| |
Collapse
|
61
|
Liao Y, Jiang Z, Li S, Dang Z, Zhu X, Ji G. Archaeal and bacterial ecological strategies in sediment denitrification under the influence of graphene oxide and different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156549. [PMID: 35688242 DOI: 10.1016/j.scitotenv.2022.156549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
As an emerging material, graphene oxide (GO) has been widely used in recent years and will inevitably enter into natural water bodies, and it may have an impact on lake microbial communities owing to its potential toxicity and denitrification-enhancing ability. This study simulated the effect of 0.1 g/L GO on denitrification in lake sediments under summer (28 °C) and winter temperatures (8 °C). GO promoted carbon source metabolism and denitrification. Phylogenetic bin-based null model analysis suggested that GO significantly altered the contribution of heterogeneous selection in bacterial and archaeal community assembly. The co-occurrence network indicated that bacterial communities responded to the enhancement of heterogeneous selection by strategies of enhancing positive correlation and shared niche, whereas archaeal communities adopted strategies of enhancing negative correlation and competition. Bacterial networks also emerged with more non-hub connector species that could drive changes in community structure. Our study contributed to the understanding of different ecological strategies adopted by bacterial and archaeal communities in response to changes in ecological selection driven by GO.
Collapse
Affiliation(s)
- Yinhao Liao
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhuo Jiang
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Shengjie Li
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhengzhu Dang
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xianfang Zhu
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
62
|
Liu Y, Ding C, Su D, Wang T, Wang T. Solar park promoted microbial nitrogen and phosphorus cycle potentials but reduced soil prokaryotic diversity and network stability in alpine desert ecosystem. Front Microbiol 2022; 13:976335. [PMID: 36160250 PMCID: PMC9493309 DOI: 10.3389/fmicb.2022.976335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Solar park (SP) is rapidly growing throughout the planet due to the increasing demand for low-carbon energy, which represents a remarkable global land-use change with implications for the hosting ecosystems. Despite dozens of studies estimating the environmental impacts of SP based on local microclimate and vegetation, responses of soil microbial interactions and nutrient cycle potentials remain poorly understood. To bridge this gap, we investigated the diversity, community structure, complexity, and stability of co-occurrence network and soil enzyme activities of soil prokaryotes and fungi in habitats of ambient, the first, and sixth year since solar park establishment. Results revealed different response patterns of prokaryotes and fungi. SP led to significant differences in both prokaryotic and fungal community structures but only reduced prokaryotic alpha diversity significantly. Co-occurrence network analysis revealed a unimodal pattern of prokaryotic network features and more resistance of fungal networks to environmental variations. Microbial nitrogen and phosphorus cycle potentials were higher in SP and their variances were more explained by network features than by diversity and environmental characteristics. Our findings revealed for the first time the significant impacts of SP on soil prokaryotic and fungal stability and functional potentials, which provides a microbial insight for impact evaluation and evidence for the optimization of solar park management to maximize the delivery of ecosystem services from this growing land use.
Collapse
Affiliation(s)
- Yu Liu
- College of Grassland, Beijing Forestry University, Beijing, China
| | - Chengxiang Ding
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
- Chengxiang Ding,
| | - Derong Su
- College of Grassland, Beijing Forestry University, Beijing, China
- *Correspondence: Derong Su,
| | - Tiemei Wang
- College of Grassland, Beijing Forestry University, Beijing, China
| | - Tao Wang
- College of Grassland, Beijing Forestry University, Beijing, China
| |
Collapse
|
63
|
Yu N, Mou A, Sun H, Liu Y. Anaerobic digestion of thickened waste activated sludge under calcium hypochlorite stress: Performance stability and microbial communities. ENVIRONMENTAL RESEARCH 2022; 212:113441. [PMID: 35561820 DOI: 10.1016/j.envres.2022.113441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorite pretreatment has been proven effective in enhancing waste activated sludge (WAS) anaerobic digestion performances recently. In this study, two semi-continuous anaerobic sequencing batch reactors (ASBRs), one fed with Ca(ClO)2 pretreated thickened WAS (TWAS) and one with raw TWAS, were operated at mesophilic conditions (35 °C) for 145 days. Three loading shocks were introduced to each reactor to compare the performance stability and resilience between the digestion of Ca(ClO)2 pretreated TWAS and untreated TWAS. Microbial community shifts were quantified to reveal the microbiome responses to disturbances. The results suggested that 1% Ca(ClO)2 enhanced the digestion of TWAS by inactivating and transforming the biomass to more easily digested substrates. Co-occurrence network analysis revealed that the strongest interactions in the microbial community occurred in the steady state of TWAS anaerobic digestion.
Collapse
Affiliation(s)
- Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Anqi Mou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
64
|
Berninghaus AE, Radniecki TS. Anaerobic digester microbiome dynamics in response to moderate and failure-inducing shock loads of fats, oils and greases. BIORESOURCE TECHNOLOGY 2022; 359:127400. [PMID: 35654324 DOI: 10.1016/j.biortech.2022.127400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Accidental organic overloading (shock loading) is common during the anaerobic co-digestion of fats, oils and greases (FOG) and may lead to decreased performance or reactor failure due to the effects on the microbiome. Here, adapted and non-adapted lab-scale anaerobic digesters were exposed to FOG shocks of varying organic strengths. The microbiome was sequenced during the recovery periods employed between each shock event. Non-failure-inducing shocks resulted in enrichment of fermentative bacteria, and acetoclastic and methylotrophic methanogens. However, sub-dominant bacterial populations were largely responsible for increased biogas production observed after adaptation. Following failure events, early recovery communities were dominated by Pseudomonas and Methanosaeta while late recovery communities shifted toward sub-dominant bacterial taxa and Methanosarcina. Generally, the recovered microbiome structure diverged from that of both the initial and optimized microbiomes. Thus, while non-failure-inducing FOG shocks can be beneficial, the adaptations gained are lost after a failure event and adaptation must begin again.
Collapse
Affiliation(s)
- Ashley E Berninghaus
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA
| | - Tyler S Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA.
| |
Collapse
|