51
|
Synergistic control of mechanics and microarchitecture of 3D bioactive hydrogel platform to promote the regenerative potential of engineered hepatic tissue. Biomaterials 2021; 270:120688. [PMID: 33549994 DOI: 10.1016/j.biomaterials.2021.120688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 12/22/2022]
Abstract
Culturing autologous cells with therapeutic potential derived from a patient within a bioactive scaffold to induce functioning tissue formation is considered the ideal methodology towards realizing patient-specific regenerative medicine. Hydrogels are often employed as the scaffold material for this purpose mainly for their tunable mechanical and diffusional properties as well as presenting cell-responsive moieties. Herein, a two-fold strategy was employed to control the physicomechanical properties and microarchitecture of hydrogels to maximize the efficacy of engineered hepatic tissues. First, a hydrophilic polymeric crosslinker with a tunable degree of reactive functional groups was employed to control the mechanical properties in a wide range while minimizing the change in diffusional properties. Second, photolithography technique was utilized to introduce microchannels into hydrogels to overcome the critical diffusional limit of bulk hydrogels. Encapsulating hepatic progenitor cells derived via direct reprogramming of tissue-harvested fibroblasts, the application of this strategy to control the mechanics, diffusion, and architecture of hydrogels in a combinatorial manner could allow the optimization of their hepatic functions. The regenerative capacity of this engineered hepatic tissue was further demonstrated using an in vivo acute liver injury model.
Collapse
|
52
|
Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun 2021; 12:492. [PMID: 33479237 PMCID: PMC7820464 DOI: 10.1038/s41467-020-20763-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Investigation of neural circuit dynamics is crucial for deciphering the functional connections among regions of the brain and understanding the mechanism of brain dysfunction. Despite the advancements of neural circuit models in vitro, technologies for both precisely monitoring and modulating neural activities within three-dimensional (3D) neural circuit models have yet to be developed. Specifically, no existing 3D microelectrode arrays (MEAs) have integrated capabilities to stimulate surrounding neurons and to monitor the temporal evolution of the formation of a neural network in real time. Herein, we present a 3D high-density multifunctional MEA with optical stimulation and drug delivery for investigating neural circuit dynamics within engineered 3D neural tissues. We demonstrate precise measurements of synaptic latencies in 3D neural networks. We expect our 3D multifunctional MEA to open up opportunities for studies of neural circuits through precise, in vitro investigations of neural circuit dynamics with 3D brain models.
Collapse
Affiliation(s)
- Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Sohyeon Jeong
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
- School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea.
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
53
|
Upgrading the Physiological Relevance of Human Brain Organoids. Neuron 2020; 107:1014-1028. [PMID: 32970996 PMCID: PMC10042151 DOI: 10.1016/j.neuron.2020.08.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
The recent advent of human pluripotent stem cell (PSC)-derived 3D brain organoids has opened a window into aspects of human brain development that were not accessible before, allowing tractable monitoring and assessment of early developmental processes. However, their broad and effective use for modeling later stages of human brain development and disease is hampered by the lack of a stereotypic anatomical organization, which limits maturation processes dependent upon formation of unique cellular interactions and short- and long-range network connectivity. Emerging methods and technologies aimed at tighter regulatory control through bioengineering approaches, along with newer unbiased organoid analysis readouts, should resolve several of the current limitations. Here, we review recent advances in brain organoid generation and characterization with a focus on highlighting future directions utilizing interdisciplinary strategies that will be important for improving the physiological relevance of this model system.
Collapse
|
54
|
Predeina AL, Dukhinova MS, Vinogradov VV. Bioreactivity of decellularized animal, plant, and fungal scaffolds: perspectives for medical applications. J Mater Chem B 2020; 8:10010-10022. [PMID: 33063072 DOI: 10.1039/d0tb01751e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous biomedical applications imply supportive materials to improve protective, antibacterial, and regenerative abilities upon surgical interventions, oncotherapy, regenerative medicine, and others. With the increasing variability of the possible sources, the materials of natural origin are among the safest and most accessible biomedical tools. Animal, plant, and fungal tissues can further undergo decellularization to improve their biocompatibility. Decellularized scaffolds lack the most reactive cellular material, nuclear and cytoplasmic components, that predominantly trigger immune responses. At the same time, the outstanding initial three-dimensional microarchitecture, biomechanical properties, and general composition of the scaffolds are preserved. These unique features make the scaffolds perfect ready-to-use platforms for various biomedical applications, implying cell growth and functionalization. Decellularized materials can be repopulated with various cells upon request, including epithelial, endothelial, muscle and neuronal cells, and applied for structural and functional biorepair within diverse biological sites, including the skin and musculoskeletal, cardiovascular, and central nervous systems. However, the molecular and cellular mechanisms behind scaffold and host tissue interactions remain not fully understood, which significantly restricts their integration into clinical practice. In this review, we address the essential aspects of decellularization, scaffold preparation techniques, and its biochemical composition and properties, which determine the biocompatibility and immunogenicity of the materials. With the integrated evaluation of the scaffold profile in living systems, decellularized animal, plant, and fungal scaffolds have the potential to become essential instruments for safe and controllable biomedical applications.
Collapse
|
55
|
Min S, Lee HJ, Jin Y, Kim YH, Sung J, Choi HJ, Cho SW. Biphasic Electrical Pulse by a Micropillar Electrode Array Enhances Maturation and Drug Response of Reprogrammed Cardiac Spheroids. NANO LETTERS 2020; 20:6947-6956. [PMID: 32877191 DOI: 10.1021/acs.nanolett.0c01141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Direct reprogramming is an efficient strategy to produce cardiac lineage cells necessary for cardiac tissue engineering and drug testing for cardiac toxicity. However, functional maturation of reprogrammed cardiomyocytes, which is of great importance for their regenerative potential and drug response, still remains challenging. In this study, we propose a novel electrode platform to promote direct cardiac reprogramming and improve the functionality of reprogrammed cardiac cells. Nonviral cardiac reprogramming was improved via a three-dimensional spheroid culture of chemically induced cardiomyocytes exposed to a small-molecule cocktail. A micropillar electrode array providing biphasic electrical pulses mimicking the heartbeat further enhanced maturation and electrophysiological properties of reprogrammed cardiac spheroids, leading to proper responses and increased sensitivity to drugs. On the basis of our results, we conclude that our device may have a wider application in the generation of functional cardiac cells for regenerative medicine and screening of novel drugs.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yu Heun Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaesuk Sung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
56
|
Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y. How to reprogram human fibroblasts to neurons. Cell Biosci 2020; 10:116. [PMID: 33062254 PMCID: PMC7549215 DOI: 10.1186/s13578-020-00476-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Destruction and death of neurons can lead to neurodegenerative diseases. One possible way to treat neurodegenerative diseases and damage of the nervous system is replacing damaged and dead neurons by cell transplantation. If new neurons can replace the lost neurons, patients may be able to regain the lost functions of memory, motor, and so on. Therefore, acquiring neurons conveniently and efficiently is vital to treat neurological diseases. In recent years, studies on reprogramming human fibroblasts into neurons have emerged one after another, and this paper summarizes all these studies. Scientists find small molecules and transcription factors playing a crucial role in reprogramming and inducing neuron production. At the same time, both the physiological microenvironment in vivo and the physical and chemical factors in vitro play an essential role in the induction of neurons. Therefore, this paper summarized and analyzed these relevant factors. In addition, due to the unique advantages of physical factors in the process of reprogramming human fibroblasts into neurons, such as safe and minimally invasive, it has a more promising application prospect. Therefore, this paper also summarizes some successful physical mechanisms of utilizing fibroblasts to acquire neurons, which will provide new ideas for somatic cell reprogramming.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Shengnan Su
- The Second Hospital of Jilin University, Jilin, Changchun, 130041 China
| | - Siyan Zhou
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Wentao Yang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Xin Deng
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China.,Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| |
Collapse
|
57
|
Bae M, Yi HG, Jang J, Cho DW. Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. MICROMACHINES 2020; 11:E855. [PMID: 32947879 PMCID: PMC7570039 DOI: 10.3390/mi11090855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agricultural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
58
|
Jia J, Jeon EJ, Li M, Richards DJ, Lee S, Jung Y, Barrs RW, Coyle R, Li X, Chou JC, Yost MJ, Gerecht S, Cho SW, Mei Y. Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. SCIENCE ADVANCES 2020; 6:eaaz5894. [PMID: 32923589 PMCID: PMC7455498 DOI: 10.1126/sciadv.aaz5894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Biologically active ligands (e.g., RGDS from fibronectin) play critical roles in the development of chemically defined biomaterials. However, recent decades have shown only limited progress in discovering novel extracellular matrix-protein-derived ligands for translational applications. Through motif analysis of evolutionarily conserved RGD-containing regions in laminin (LM) and peptide-functionalized hydrogel microarray screening, we identified a peptide (a1) that showed superior supports for endothelial cell (EC) functions. Mechanistic studies attributed the results to the capacity of a1 engaging both LM- and Fn-binding integrins. RNA sequencing of ECs in a1-functionalized hydrogels showed ~60% similarities with Matrigel in "vasculature development" gene ontology terms. Vasculogenesis assays revealed the capacity of a1-formulated hydrogels to improve EC network formation. Injectable alginates functionalized with a1 and MMPQK (a vascular endothelial growth factor-mimetic peptide with a matrix metalloproteinase-degradable linker) increased blood perfusion and functional recovery over decellularized extracellular matrix and (RGDS + MMPQK)-functionalized hydrogels in an ischemic hindlimb model, illustrating the power of this approach.
Collapse
Affiliation(s)
- Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Mei Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan J. Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Soojin Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
- Ocean University of China, School of Medicine and Pharmacy, Qingdao, Shandong, China
| | - James C. Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Michael J. Yost
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, and Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
59
|
Khatua C, Min S, Jung HJ, Shin JE, Li N, Jun I, Liu HW, Bae G, Choi H, Ko MJ, Jeon YS, Kim YJ, Lee J, Ko M, Shim G, Shin H, Lee S, Chung S, Kim YK, Song JJ, Dravid VP, Kang H. In Situ Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. NANO LETTERS 2020; 20:4188-4196. [PMID: 32406688 DOI: 10.1021/acs.nanolett.0c00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing materials with remote controllability of macroscale ligand presentation can mimic extracellular matrix (ECM) remodeling to regulate cellular adhesion in vivo. Herein, we designed charged mobile nanoligands with superparamagnetic nanomaterials amine-functionalized and conjugated with polyethylene glycol linker and negatively charged RGD ligand. We coupled negatively a charged nanoligand to a positively charged substrate by optimizing electrostatic interactions to allow reversible planar movement. We demonstrate the imaging of both macroscale and in situ nanoscale nanoligand movement by magnetically attracting charged nanoligand to manipulate macroscale ligand density. We show that in situ magnetic control of attracting charged nanoligand facilitates stem cell adhesion, both in vitro and in vivo, with reversible control. Furthermore, we unravel that in situ magnetic attraction of charged nanoligand stimulates mechanosensing-mediated differentiation of stem cells. This remote controllability of ECM-mimicking reversible ligand variations is promising for regulating diverse reparative cellular processes in vivo.
Collapse
Affiliation(s)
- Chandra Khatua
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeong Eun Shin
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Indong Jun
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hui-Wen Liu
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoo Sang Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Joonbum Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minji Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyubo Shim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hongchul Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sangbum Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seok Chung
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
60
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
61
|
Song Y, Su X, Firouzian KF, Fang Y, Zhang T, Sun W. Engineering of brain-like tissue constructs via 3D Cell-printing technology. Biofabrication 2020; 12:035016. [DOI: 10.1088/1758-5090/ab7d76] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
62
|
Min S, Kim S, Cho SW. Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp Mol Med 2020; 52:227-237. [PMID: 32103122 PMCID: PMC7062772 DOI: 10.1038/s12276-020-0386-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
The recent emergence of organoid technology has attracted great attention in gastroenterology because the gastrointestinal (GI) tract can be recapitulated in vitro using organoids, enabling disease modeling and mechanistic studies. However, to more precisely emulate the GI microenvironment in vivo, several neighboring cell types and types of microbiota need to be integrated into GI organoids. This article reviews the recent progress made in elucidating the crosstalk between GI organoids and components of their microenvironment. We outline the effects of stromal cells (such as fibroblasts, neural cells, immune cells, and vascular cells) on the gastric and intestinal epithelia of organoids. Because of the important roles that microbiota play in the physiology and function of the GI tract, we also highlight interactions between organoids and commensal, symbiotic, and pathogenic microorganisms and viruses. GI organoid models that contain niche components will provide new insight into gastroenterological pathophysiology and disease mechanisms.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
63
|
Wang Z, Zheng Y, Zheng M, Zhong J, Ma F, Zhou B, Zhu J. Neurogenic Niche Conversion Strategy Induces Migration and Functional Neuronal Differentiation of Neural Precursor Cells Following Brain Injury. Stem Cells Dev 2020; 29:235-248. [PMID: 31797735 DOI: 10.1089/scd.2019.0147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glial scars formed after brain injuries provide permissive cues for endogenous neural precursor/stem cells (eNP/SCs) to undergo astrogenesis rather than neurogenesis. Following brain injury, eNP/SCs from the subventricular zone leave their niche, migrate to the injured cortex, and differentiate into reactive astrocytes that contribute to glial scar formation. In vivo neuronal reprogramming, directly converting non-neuronal cells such as reactive astrocytes or NG2 glia into neurons, has greatly improved brain injury repair strategies. However, reprogramming carries a high risk of future clinical applications such as tumorigenicity, involving virus. In this study, we constructed a neural matrix to alter the adverse niche at the injured cortex, enabling eNP/SCs to differentiate into functional neurons. We found that the neural matrix functioned as a "glial trap" that largely concentrated and limited reactive astrocytes to the core of the lesion area, thus altering the adverse niche. The eNP/SCs migrated toward the injured cortex and differentiated into functional neurons. In addition, regenerated neurites extended across the boundary of the injured cortex. Mice treated with the neural matrix demonstrated significant behavioral recovery. For the first time, we induced eNP/SC-derived functional neurons in the cortex after brain injury without the use of viruses, microRNAs, or small molecules. Our novel strategy of applying this "glial trap" to obtain functional neurons in the injured cortex may provide a safer and more natural therapeutic alternative to reprogramming in future clinical applications.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingzhe Zheng
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgery Department, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital and National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
64
|
Schulte C. Cluster-assembled nanostructured materials for cell biology. CLUSTER BEAM DEPOSITION OF FUNCTIONAL NANOMATERIALS AND DEVICES 2020. [DOI: 10.1016/b978-0-08-102515-4.00010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
65
|
Henry JJD, Delrosario L, Fang J, Wong SY, Fang Q, Sievers R, Kotha S, Wang A, Farmer D, Janaswamy P, Lee RJ, Li S. Development of Injectable Amniotic Membrane Matrix for Postmyocardial Infarction Tissue Repair. Adv Healthc Mater 2020; 9:e1900544. [PMID: 31778043 PMCID: PMC6986802 DOI: 10.1002/adhm.201900544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Ischemic heart disease represents the leading cause of death worldwide. Heart failure following myocardial infarction (MI) is associated with severe fibrosis formation and cardiac remodeling. Recently, injectable hydrogels have emerged as a promising approach to repair the infarcted heart and improve heart function through minimally invasive administration. Here, a novel injectable human amniotic membrane (hAM) matrix is developed to enhance cardiac regeneration following MI. Human amniotic membrane is isolated from human placenta and engineered to be a thermoresponsive, injectable gel around body temperature. Ultrasound-guided injection of hAM matrix into rat MI hearts significantly improves cardiac contractility, as measured by ejection fraction (EF), and decrease fibrosis. The results of this study demonstrate the feasibility of engineering as an injectable hAM matrix and its efficacy in attenuating degenerative changes in cardiac function following MI, which may have broad applications in tissue regeneration.
Collapse
Affiliation(s)
- Jeffrey J D Henry
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Lawrence Delrosario
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA, 94143, USA
| | - Jun Fang
- Department of Bioengineering and Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sze Yue Wong
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Qizhi Fang
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA, 94143, USA
| | - Richard Sievers
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA, 94143, USA
| | - Surya Kotha
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Aijun Wang
- Department of Surgery, University of California, Davis, CA, 95817, USA
| | - Diana Farmer
- Department of Surgery, University of California, Davis, CA, 95817, USA
| | - Praneeth Janaswamy
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA, 94143, USA
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA, 94143, USA
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
66
|
Seo Y, Jeong S, Chung JJ, Kim SH, Choi N, Jung Y. Development of an Anisotropically Organized Brain dECM Hydrogel-Based 3D Neuronal Culture Platform for Recapitulating the Brain Microenvironment in Vivo. ACS Biomater Sci Eng 2019; 6:610-620. [PMID: 33463191 DOI: 10.1021/acsbiomaterials.9b01512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To mimic the brain tissue microenvironment in vitro, the biological and structural properties of the utilized system must be similar to those of the native brain in the microenvironment in vivo. To promote the bioactive (biological) properties of matrix hydrogels, we used the decellularized extracellular matrix (dECM) of porcine brain, which was found to enhance neuronal differentiation/outgrowth and neuron-to-brain dECM interactions. To implement the desired structural properties, we aligned microfibrils within a composite hydrogel mixed with the brain dECM and collagen I, with or without encapsulated neurons, by the stretching and releasing of a hydrogel-based chip. We then tested the ability of the aligned brain dECM hydrogel-based three-dimensional (3D) culture platform to mimic the in vivo brain microenvironment. We found that dECM-containing gels harbored brain-derived ECM proteins, including collagen I, collagen IV, laminin, and various cytokines, and that neurons incubated in these gels exhibited enhanced neurite outgrowth and development compared to those incubated in collagen gel (dECM 0 mg/mL). We evaluated the surface morphology and mechanical properties of the hydrogel with and without the brain dECM and found that their encapsulated neurons showed similar levels of cell viability. We then used a mechanical process to align the composite dECM hydrogel, conferring the desired structural properties to our system. Together, our results suggest that our newly developed brain dECM-based 3D culture platform could potentially be further developed for use in drug screening.
Collapse
Affiliation(s)
- Yoojin Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sohyeon Jeong
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | | | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Nakwon Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Youngmee Jung
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.,Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
| |
Collapse
|
67
|
An S, Han SY, Cho SW. Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
68
|
Martin AD, Wojciechowski JP, Du EY, Rawal A, Stefen H, Au CG, Hou L, Cranfield CG, Fath T, Ittner LM, Thordarson P. Decoupling the effects of hydrophilic and hydrophobic moieties at the neuron-nanofibre interface. Chem Sci 2019; 11:1375-1382. [PMID: 34123262 PMCID: PMC8148083 DOI: 10.1039/c9sc05686f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine–diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level. The mobility of hydrophobic moieties at a peptide nanofibre surface determines its suitability as a scaffold for sensitive primary cells.![]()
Collapse
Affiliation(s)
- Adam D Martin
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University Sydney NSW 2109 Australia
| | | | - Eric Y Du
- School of Chemistry, The Australian Centre for Nanomedicine, The ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of New South Wales Sydney NSW 2052 Australia
| | - Aditya Rawal
- NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney 2052 New South Wales Australia
| | - Holly Stefen
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Carol G Au
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Liming Hou
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney Ultimo NSW 2007 Australia
| | - Thomas Fath
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Lars M Ittner
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine, The ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
69
|
Qian Y, Yuan WE, Cheng Y, Yang Y, Qu X, Fan C. Concentrically Integrative Bioassembly of a Three-Dimensional Black Phosphorus Nanoscaffold for Restoring Neurogenesis, Angiogenesis, and Immune Homeostasis. NANO LETTERS 2019; 19:8990-9001. [PMID: 31790262 DOI: 10.1021/acs.nanolett.9b03980] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Black phosphorus is well known for its excellent electromechanical properties. Although it has previously been used for therapeutic drug delivery in cancer, it has never been applied as an electroactive polymer for post-trauma tissue regeneration (e.g., in cardiac muscles and neurons). The major concern currently preventing such applications is its controversial biosafety profile in vivo. Here, we demonstrate the production of a concentrically integrative layer-by-layer bioassembled black phosphorus nanoscaffold. This scaffold has remarkable electrical conductivity, permitting smooth release into the surrounding microenvironment. We confirmed that, under mild oxidative stress, our black phosphorus nanoscaffold induced angiogenesis and neurogenesis and stimulated calcium-dependent axon regrowth and remyelination. Long-term in vivo implantation of this nanoscaffold during severe neurological defect regeneration induced negligible toxicity levels. These results provide new insight into the regenerative capability of manufactured 3D scaffolds using neuroengineered 2D black phosphorus nanomaterials.
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yuan Cheng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yunqi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy , Shanghai Jiao Tong University , Shanghai 200240 , China
- Department of Mechanical Engineering and Materials Science , Duke University , 144 Hudson Hall, Box 90300, Durham , North Carolina 27708 , United States
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Cunyi Fan
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233 , China
| |
Collapse
|
70
|
Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 2019; 593:3316-3337. [PMID: 31715002 PMCID: PMC6907729 DOI: 10.1002/1873-3468.13678] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Within just over a decade, human reprogramming-based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age-associated diseases. Direct cell-type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age-related and epigenetic contributions and can complement iPSC-based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro-born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming-based neuronal cell models and how iNs are relevant to disease modeling.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Frank Edenhofer
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
71
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
72
|
Jin Y, Lee JU, Chung E, Yang K, Kim J, Kim JW, Lee JS, Cho AN, Oh T, Lee JH, Cho SW, Cheon J. Magnetic Control of Axon Navigation in Reprogrammed Neurons. NANO LETTERS 2019; 19:6517-6523. [PMID: 31461289 DOI: 10.1021/acs.nanolett.9b02756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While neural cell transplantation represents a promising therapy for neurodegenerative diseases, the formation of functional networks of transplanted cells with host neurons constitutes one of the challenging steps. Here, we introduce a magnetic guidance methodology that controls neurite growth signaling via magnetic nanoparticles (MNPs) conjugated with antibodies targeting the deleted in colorectal cancer (DCC) receptor (DCC-MNPs). Activation of the DCC receptors by clusterization and subsequent axonal growth of the induced neuronal (iN) cells was performed in a spatially controlled manner. In addition to the directionality of the magnetically controlled axon projection, axonal growth of the iN cells assisted the formation of functional connections with pre-existing primary neurons. Our results suggest magnetic guidance as a strategy for improving neuronal connectivity by spatially guiding the axonal projections of transplanted neural cells for synaptic interactions with the host tissue.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jung-Uk Lee
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Eunna Chung
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jin Kim
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Ji-Wook Kim
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Taekyu Oh
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
| | - Seung-Woo Cho
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
- Department of Biotechnology , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute , Yonsei University , Seoul 03722 , Republic of Korea
- Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea
| |
Collapse
|
73
|
Bang S, Jeong S, Choi N, Kim HN. Brain-on-a-chip: A history of development and future perspective. BIOMICROFLUIDICS 2019; 13:051301. [PMID: 31616534 PMCID: PMC6783295 DOI: 10.1063/1.5120555] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Since the advent of organ-on-a-chip, many researchers have tried to mimic the physiology of human tissue on an engineered platform. In the case of brain tissue, structural connections and cell-cell interactions are important factors for brain function. The recent development of brain-on-a-chip is an effort to mimic those structural and functional aspects of brain tissue within a miniaturized engineered platform. From this perspective, we provide an overview of trace of brain-on-a-chip development, especially in terms of complexity and high-content/high-throughput screening capabilities, and future perspectives on more in vivo-like brain-on-a-chip development.
Collapse
Affiliation(s)
- Seokyoung Bang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | | | - Nakwon Choi
- Authors to whom correspondence should be addressed:, Telephone: +82-2-958-5617 and , Telephone: +82-2-958-6742
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:, Telephone: +82-2-958-5617 and , Telephone: +82-2-958-6742
| |
Collapse
|
74
|
Cho AN, Jin Y, Kim S, Kumar S, Shin H, Kang HC, Cho SW. Aligned Brain Extracellular Matrix Promotes Differentiation and Myelination of Human-Induced Pluripotent Stem Cell-Derived Oligodendrocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15344-15353. [PMID: 30974942 DOI: 10.1021/acsami.9b03242] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Myelination by oligodendrocytes (OLs) is a key developmental milestone in terms of the functions of the central nervous system (CNS). Demyelination caused by defects in OLs is a hallmark of several CNS disorders. Although a potential therapeutic strategy involves treatment with the myelin-forming cells, there is no readily available source of these cells. OLs can be differentiated from pluripotent stem cells; however, there is a lack of efficient culture systems that generate functional OLs. Here, we demonstrate biomimetic approaches to promote OL differentiation from human-induced pluripotent stem cells (iPSCs) and to enhance the maturation and myelination capabilities of iPSC-derived OL (iPSC-OL). Functionalization of culture substrates using the brain extracellular matrix (BEM) derived from decellularized human brain tissue enhanced the differentiation of iPSCs into myelin-expressing OLs. Co-culture of iPSC-OL with induced neuronal (iN) cells on BEM substrates, which closely mimics the in vivo brain microenvironment for myelinated neurons, not only enhanced myelination of iPSC-OL but also improved electrophysiological function of iN cells. BEM-functionalized aligned electrospun nanofibrous scaffolds further promoted the maturation of iPSC-OLs, enhanced the production of myelin sheath-like structures by the iPSC-OL, and enhanced the neurogenesis of iN cells. Thus, the biomimetic strategy presented here can generate functional OLs from stem cells and facilitate myelination by providing brain-specific biochemical, biophysical, and structural signals. Our system comprising stem cells and brain tissue from human sources could help in the establishment of human demyelination disease models and the development of regenerative cell therapy for myelin disorders.
Collapse
Affiliation(s)
| | | | | | - Sajeesh Kumar
- Department of Bioengineering , Hanyang University , Seoul 04763 , Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering , Hanyang University , Seoul 04763 , Republic of Korea
| | | | - Seung-Woo Cho
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| |
Collapse
|
75
|
Bao W, Xie L, Zeng X, Kang H, Wen S, Cui B, Li W, Qian Y, Wu J, Li T, Deng K, Xin HB, Wang X. A Cocktail-Inspired Male Birth Control Strategy with Physical/Chemical Dual Contraceptive Effects and Remote Self-Cleared Properties. ACS NANO 2019; 13:1003-1011. [PMID: 30698012 DOI: 10.1021/acsnano.8b06683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inspired by cocktails, we designed a medium term (2-20 weeks) male contraceptive strategy. Through a sequential injection process of four reagents (calcium alginate hydrogel, PEG-Au nanoparticles (PEG-AuNps), EDTA, and PEG-AuNps), physical clogging of the vas deferens and chemical inhibition of the sperm motility were realized simultaneously. The contraceptive period could be directly preset by adjusting the injection ratio of each reagent. More interesting, the embolism area could be readily dredged through a short-time noninvasive near-infrared irradiation. The present study offered an effective and reversible manner to fill the gap of current medium-term contraceptive strategy. In addition, the proposed in vivo pipeline plugging technology, with a flexible noninvasive self-cleared characteristic, might also provide a convenient and reliable strategy for some other biomedical engineering researches.
Collapse
Affiliation(s)
- Weiwei Bao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
- College of Basic Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Lin Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
- College of Life Science , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Xuhui Zeng
- Institute of Life Science , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Hang Kang
- Institute of Life Science , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Shiqi Wen
- Institute of Life Science , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Ben Cui
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Wenting Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Ting Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institition of Translational Medicine , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
- College of Chemistry , Nanchang University , Nanchang , Jiangxi 330088 , P.R. China
| |
Collapse
|
76
|
Lee JW, Chae S, Oh S, Kim SH, Choi KH, Meeseepong M, Chang J, Kim N, Lee NE, Lee JH, Choi JY. Single-Chain Atomic Crystals as Extracellular Matrix-Mimicking Material with Exceptional Biocompatibility and Bioactivity. NANO LETTERS 2018; 18:7619-7627. [PMID: 30474985 DOI: 10.1021/acs.nanolett.8b03201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, Mo3Se3- single-chain atomic crystals (SCACs) with atomically small chain diameters of ∼0.6 nm, large surface areas, and mechanical flexibility were synthesized and investigated as an extracellular matrix (ECM)-mimicking scaffold material for tissue engineering applications. The proliferation of L-929 and MC3T3-E1 cell lines increased up to 268.4 ± 24.4% and 396.2 ± 8.1%, respectively, after 48 h of culturing with Mo3Se3- SCACs. More importantly, this extremely high proliferation was observed when the cells were treated with 200 μg mL-1 of Mo3Se3- SCACs, which is above the cytotoxic concentration of most nanomaterials reported earlier. An ECM-mimicking scaffold film prepared by coating Mo3Se3- SCACs on a glass substrate enabled the cells to adhere to the surface in a highly stretched manner at the initial stage of cell adhesion. Most cells cultured on the ECM-mimicking scaffold film remained alive; in contrast, a substantial number of cells cultured on glass substrates without the Mo3Se3- SCAC coating did not survive. This work not only proves the exceptional biocompatible and bioactive characteristics of the Mo3Se3- SCACs but also suggests that, as an ECM-mimicking scaffold material, Mo3Se3- SCACs can overcome several critical limitations of most other nanomaterials.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Seoungbae Oh
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jongwha Chang
- School of Pharmacy , University of Texas , El Paso , Texas 79968 , United States
| | - Namsoo Kim
- Department of Metallurgical & Materials Engineering , The University of Texas , El Paso , Texas 79968 , United States
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) , Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
77
|
Maclean FL, Ims GM, Horne MK, Williams RJ, Nisbet DR. A Programmed Anti-Inflammatory Nanoscaffold (PAIN) as a 3D Tool to Understand the Brain Injury Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805209. [PMID: 30285286 DOI: 10.1002/adma.201805209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Immunology is the next frontier of nano/biomaterial science research, with the immune system determining the degree of tissue repair. However, the complexity of the inflammatory response represents a significant challenge that is essential to understand for the development of future therapies. Cell-instructive 3D culture environments are critical to improve our understanding of the link between the behavior and morphology of inflammatory cells and to remodel their response to injury. This study has taken two recent high-profile innovations-functional peptide-based hydrogels, and the inclusion of anti-inflammatory agents via coassembly-to make a programmed anti-inflammatory nanoscaffold (PAIN) with unusual and valuable properties that allows tissue-independent switching of the inflammatory cascade. Here, extraordinary durability of the anti-inflammatory agent allows, for the first time, the development of a 3D culture system that maintains the growth and cytoskeletal reorganization of brain tissue, while also facilitating the trophic behavior of brain cells for 22 d in vitro. Notably, this behavior was confirmed within an active scar site due to the unprecedented resilience to the presence of inflammatory cells and enzymes in the brain. Efficacy of the culture system is demonstrated via novel insights about inflammatory cell behavior, which would be impossible to obtain via in vivo experimentation.
Collapse
Affiliation(s)
- Francesca L Maclean
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Georgina M Ims
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Malcolm K Horne
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - Richard J Williams
- School of Engineering, RMIT University, Melbourne, 3000, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| |
Collapse
|