51
|
Ruggieri L, Moretti A, Berardi R, Cona MS, Dalu D, Villa C, Chizzoniti D, Piva S, Gambaro A, La Verde N. Host-Related Factors in the Interplay among Inflammation, Immunity and Dormancy in Breast Cancer Recurrence and Prognosis: An Overview for Clinicians. Int J Mol Sci 2023; 24:ijms24054974. [PMID: 36902406 PMCID: PMC10002538 DOI: 10.3390/ijms24054974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of patients treated for early breast cancer develop medium-term and late distant recurrence. The delayed manifestation of metastatic disease is defined as "dormancy". This model describes the aspects of the clinical latency of isolated metastatic cancer cells. Dormancy is regulated by extremely complex interactions between disseminated cancer cells and the microenvironment where they reside, the latter in turn influenced directly by the host. Among these entangled mechanisms, inflammation and immunity may play leading roles. This review is divided into two parts: the first describes the biological underpinnings of cancer dormancy and the role of the immune response, in particular, for breast cancer; the second provides an overview of the host-related factors that may influence systemic inflammation and immune response, subsequently impacting the dynamics of breast cancer dormancy. The aim of this review is to provide physicians and medical oncologists a useful tool to understand the clinical implications of this relevant topic.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Anna Moretti
- Medical Oncology Unit, S. Carlo Hospital, ASST Santi Paolo e Carlo, 20153 Milan, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche—AOU delle Marche, 60121 Ancona, Italy
| | - Maria Silvia Cona
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Dalu
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Cecilia Villa
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Chizzoniti
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Sheila Piva
- Medical Oncology Unit, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Anna Gambaro
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Nicla La Verde
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
- Correspondence: ; Tel.: +39-02-3904-2492
| |
Collapse
|
52
|
Truskowski K, Amend SR, Pienta KJ. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev 2023; 42:37-47. [PMID: 36598661 PMCID: PMC10014758 DOI: 10.1007/s10555-022-10073-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Metastasis is the overwhelming driver of cancer mortality, accounting for the majority of cancer deaths. Many patients present with metastatic relapse years after eradication of the primary lesion. Disseminated cancer cells can undergo a durable proliferative arrest and lie dormant in secondary tissues before reentering the cell cycle to seed these lethal relapses. This process of cancer cell dormancy remains poorly understood, largely due to difficulties in studying these dormant cells. In the face of these challenges, the application of knowledge from the cellular senescence and quiescence fields may help to guide future thinking on the study of dormant cancer cells. Both senescence and quiescence are common programs of proliferative arrest that are integral to tissue development and homeostasis. Despite phenotypic differences, these two states also share common characteristics, and both likely play a role in cancer dormancy and delayed metastatic relapse. Understanding the cell biology behind these states, their overlaps and unique characteristics is critical to our future understanding of dormant cancer cells, as these cells likely employ some of the same molecular programs to promote survival and dissemination. In this review, we highlight the biology underlying these non-proliferative states, relate this knowledge to what we currently know about dormant cancer cells, and discuss implications for future work toward targeting these elusive metastatic seeds.
Collapse
Affiliation(s)
- Kevin Truskowski
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| |
Collapse
|
53
|
Therapeutic targeting of dormant cancer stem cells in solid tumors. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Abstract
The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.
Collapse
|
55
|
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev 2023; 42:197-215. [PMID: 36757577 PMCID: PMC10014678 DOI: 10.1007/s10555-023-10092-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
Collapse
|
56
|
Mierke CT. Physical and biological advances in endothelial cell-based engineered co-culture model systems. Semin Cell Dev Biol 2023; 147:58-69. [PMID: 36732105 DOI: 10.1016/j.semcdb.2023.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
57
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
58
|
Pontis F, Roz L, Fortunato O, Bertolini G. The metastatic niche formation: focus on extracellular vesicle-mediated dialogue between lung cancer cells and the microenvironment. Front Oncol 2023; 13:1116783. [PMID: 37207158 PMCID: PMC10189117 DOI: 10.3389/fonc.2023.1116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world, with the majority of patients presenting with advanced or metastatic disease at first diagnosis. The lungs are also one of the most common sites of metastasis from lung cancer and other tumors. Understanding the mechanisms that regulate metastasis formation from primary lung cancer and in the lungs is therefore fundamental unmet clinical need. One of the first steps during the establishment of lung cancer metastases includes the formation of the pre-metastatic niche (PMN) at distant organs, which may occur even during the early phases of cancer development. The PMN is established through intricate cross-talk between primary tumor-secreted factors and stromal components at distant sites. Mechanisms controlling primary tumor escape and seeding of distant organs rely on specific properties of tumor cells but are also tightly regulated by interactions with stromal cells at the metastatic niche that finally dictate the success of metastasis establishment. Here, we summarize the mechanisms underlying pre-metastatic niche formation starting from how lung primary tumor cells modulate distant sites through the release of several factors, focusing on Extracellular Vesicles (EVs). In this context, we highlight the role of lung cancer-derived EVs in the modulation of tumor immune escape. Then, we illustrate the complexity of Circulating Tumor Cells (CTCs) that represent the seeds of metastasis and how interactions with stromal and immune cells can help their metastatic dissemination. Finally, we evaluate the contribution of EVs in dictating metastasis development at the PMN through stimulation of proliferation and control of disseminated tumor cell dormancy. Overall, we present an overview of different steps in the lung cancer metastatic cascade, focusing on the EV-mediated interactions between tumor cells and stromal/immune cells.
Collapse
|
59
|
Elkholi IE, Lalonde A, Park M, Côté JF. Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s). Cancer Res 2022; 82:4497-4510. [PMID: 36214624 PMCID: PMC9755970 DOI: 10.1158/0008-5472.can-22-1902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Multiple factors act in concert to define the fate of disseminated tumor cells (DTC) to enter dormancy or develop overt metastases. Here, we review these factors in the context of three stages of the metastatic cascade that impact DTCs. First, cells can be programmed within the primary tumor microenvironment to promote or inhibit dissemination, and the primary tumor can condition a premetastatic niche. Then, cancer cells from the primary tumor spread through hematogenous and lymphatic routes, and the primary tumor sends cues systematically to regulate the fate of DTCs. Finally, DTCs home to their metastatic site, where they are influenced by various organ-specific aspects of the new microenvironment. We discuss these factors in the context of breast cancer, where about one-third of patients develop metastatic relapse. Finally, we discuss how the standard-of-care options for breast cancer might affect the fate of DTCs.
Collapse
Affiliation(s)
- Islam E. Elkholi
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada.,Corresponding Authors: Jean-François Côté, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal H2W 1R7, Québec, Canada. Phone: 514-987-5647; E-mail: ; and Islam E. Elkholi, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal (QC) Canada, H2W 1R7. Phone: 514-987-5656; E-mail:
| | - Andréane Lalonde
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.,Corresponding Authors: Jean-François Côté, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal H2W 1R7, Québec, Canada. Phone: 514-987-5647; E-mail: ; and Islam E. Elkholi, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal (QC) Canada, H2W 1R7. Phone: 514-987-5656; E-mail:
| |
Collapse
|
60
|
Tumor-promoting aftermath post-chemotherapy: A focus on breast cancer. Life Sci 2022; 310:121125. [DOI: 10.1016/j.lfs.2022.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
|
61
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
62
|
Najmina M, Ebara M, Ohmura T, Uto K. Viscoelastic Liquid Matrix with Faster Bulk Relaxation Time Reinforces the Cell Cycle Arrest Induction of the Breast Cancer Cells via Oxidative Stress. Int J Mol Sci 2022; 23:ijms232314637. [PMID: 36498966 PMCID: PMC9736955 DOI: 10.3390/ijms232314637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The reactivating of disseminated dormant breast cancer cells in a soft viscoelastic matrix is mostly correlated with metastasis. Metastasis occurs due to rapid stress relaxation owing to matrix remodeling. Here, we demonstrate the possibility of promoting the permanent cell cycle arrest of breast cancer cells on a viscoelastic liquid substrate. By controlling the molecular weight of the hydrophobic molten polymer, poly(ε-caprolactone-co-D,L-lactide) within 35-63 g/mol, this study highlights that MCF7 cells can sense a 1000 times narrower relaxation time range (80-290 ms) compared to other studies by using a crosslinked hydrogel system. We propose that the rapid bulk relaxation response of the substrate promotes more reactive oxygen species generation in the formed semi-3D multicellular aggregates of breast cancer cells. Our finding sheds light on the potential role of bulk stress relaxation in a viscous-dominant viscoelastic matrix in controlling the cell cycle arrest depth of breast cancer cells.
Collapse
Affiliation(s)
- Mazaya Najmina
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Science and Engineering, University of Tsukuba, 1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Science and Engineering, University of Tsukuba, 1-1 Tennodai, Tsukuba 305-8577, Japan
- Graduate School of Industrial Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Takahito Ohmura
- Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Correspondence:
| |
Collapse
|
63
|
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232213931. [PMID: 36430404 PMCID: PMC9698240 DOI: 10.3390/ijms232213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.
Collapse
|
64
|
Ngo MT, Sarkaria JN, Harley BA. Perivascular Stromal Cells Instruct Glioblastoma Invasion, Proliferation, and Therapeutic Response within an Engineered Brain Perivascular Niche Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201888. [PMID: 36109186 PMCID: PMC9631060 DOI: 10.1002/advs.202201888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) tumor cells are found in the perivascular niche microenvironment and are believed to associate closely with the brain microvasculature. However, it is largely unknown how the resident cells of the perivascular niche, such as endothelial cells, pericytes, and astrocytes, influence GBM tumor cell behavior and disease progression. A 3D in vitro model of the brain perivascular niche developed by encapsulating brain-derived endothelial cells, pericytes, and astrocytes in a gelatin hydrogel is described. It is shown that brain perivascular stromal cells, namely pericytes and astrocytes, contribute to vascular architecture and maturation. Cocultures of patient-derived GBM tumor cells with brain microvascular cells are used to identify a role for pericytes and astrocytes in establishing a perivascular niche environment that modulates GBM cell invasion, proliferation, and therapeutic response. Engineered models provide unique insight regarding the spatial patterning of GBM cell phenotypes in response to a multicellular model of the perivascular niche. Critically, it is shown that engineered perivascular models provide an important resource to evaluate mechanisms by which intercellular interactions modulate GBM tumor cell behavior, drug response, and provide a framework to consider patient-specific disease phenotypes.
Collapse
Affiliation(s)
- Mai T. Ngo
- Department Chemical and Biomolecular EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | | | - Brendan A.C. Harley
- Department Chemical and Biomolecular EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Cancer Center at IllinoisUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
65
|
Monteran L, Ershaid N, Doron H, Zait Y, Scharff Y, Ben-Yosef S, Avivi C, Barshack I, Sonnenblick A, Erez N. Chemotherapy-induced complement signaling modulates immunosuppression and metastatic relapse in breast cancer. Nat Commun 2022; 13:5797. [PMID: 36184683 PMCID: PMC9527249 DOI: 10.1038/s41467-022-33598-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Mortality from breast cancer is almost exclusively a result of tumor metastasis and resistance to therapy and therefore understanding the underlying mechanisms is an urgent challenge. Chemotherapy, routinely used to treat breast cancer, induces extensive tissue damage, eliciting an inflammatory response that may hinder efficacy and promote metastatic relapse. Here we show that systemic treatment with doxorubicin, but not cisplatin, following resection of a triple-negative breast tumor induces the expression of complement factors in lung fibroblasts and modulates an immunosuppressive metastatic niche that supports lung metastasis. Complement signaling derived from cancer-associated fibroblasts (CAFs) mediates the recruitment of myeloid-derived suppressor cells (MDSCs) to the metastatic niche, thus promoting T cell dysfunction. Pharmacological targeting of complement signaling in combination with chemotherapy alleviates immune dysregulation and attenuates lung metastasis. Our findings suggest that combining cytotoxic treatment with blockade of complement signaling in triple-negative breast cancer patients may attenuate the adverse effects of chemotherapy, thus offering a promising approach for clinical use. Accumulating evidence suggest that chemotherapy could paradoxically promote cancer metastasis. Here the authors report that, in preclinical breast cancer models, adjuvant treatment with doxorubicin induces the formation of an immunosuppressive metastatic niche that promotes relapse but that can be reverted with pharmacological blockade of complement signaling.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ye'ela Scharff
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Ben-Yosef
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Camila Avivi
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
66
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
67
|
Cuccu A, Francescangeli F, De Angelis ML, Bruselles A, Giuliani A, Zeuner A. Analysis of Dormancy-Associated Transcriptional Networks Reveals a Shared Quiescence Signature in Lung and Colorectal Cancer. Int J Mol Sci 2022; 23:9869. [PMID: 36077264 PMCID: PMC9456317 DOI: 10.3390/ijms23179869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Quiescent cancer cells (QCCs) are a common feature of solid tumors, representing a major obstacle to the long-term success of cancer therapies. We isolated QCCs ex vivo from non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenografts with a label-retaining strategy and compared QCCs gene expression profiles to identify a shared "quiescence signature". Principal Component Analysis (PCA) revealed a specific component neatly discriminating quiescent and replicative phenotypes in NSCLC and CRC. The discriminating component showed significant overlapping, with 688 genes in common including ZEB2, a master regulator of stem cell plasticity and epithelial-to-mesenchymal transition (EMT). Gene set enrichment analysis showed that QCCs of both NSCLC and CRC had an increased expression of factors related to stemness/self renewal, EMT, TGF-β, morphogenesis, cell adhesion and chemotaxis, whereas proliferating cells overexpressed Myc targets and factors involved in RNA metabolism. Eventually, we analyzed in depth by means of a complex network approach, both the 'morphogenesis module' and the subset of differentially expressed genes shared by NCSLC and CRC. This allowed us to recognize different gene regulation network wiring for quiescent and proliferating cells and to underpin few genes central for network integration that may represent new therapeutic vulnerabilities. Altogether, our results highlight common regulatory pathways in QCCs of lung and colorectal tumors that may be the target of future therapeutic interventions.
Collapse
Affiliation(s)
- Adriano Cuccu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
68
|
Tomasin R, Bruni-Cardoso A. The role of cellular quiescence in cancer - beyond a quiet passenger. J Cell Sci 2022; 135:276213. [PMID: 35929545 DOI: 10.1242/jcs.259676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quiescence, the ability to temporarily halt proliferation, is a conserved process that initially allowed survival of unicellular organisms during inhospitable times and later contributed to the rise of multicellular organisms, becoming key for cell differentiation, size control and tissue homeostasis. In this Review, we explore the concept of cancer as a disease that involves abnormal regulation of cellular quiescence at every step, from malignant transformation to metastatic outgrowth. Indeed, disrupted quiescence regulation can be linked to each of the so-called 'hallmarks of cancer'. As we argue here, quiescence induction contributes to immune evasion and resistance against cell death. In contrast, loss of quiescence underlies sustained proliferative signalling, evasion of growth suppressors, pro-tumorigenic inflammation, angiogenesis and genomic instability. Finally, both acquisition and loss of quiescence are involved in replicative immortality, metastasis and deregulated cellular energetics. We believe that a viewpoint that considers quiescence abnormalities that occur during oncogenesis might change the way we ask fundamental questions and the experimental approaches we take, potentially contributing to novel discoveries that might help to alter the course of cancer therapy.
Collapse
Affiliation(s)
- Rebeka Tomasin
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
69
|
Tumor cell dormancy: Molecular mechanisms, and pharmacological approaches to target dormant cells for countering tumor. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
70
|
Wei J, Yao J, Yan M, Xie Y, Liu P, Mao Y, Li X. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Acta Biomater 2022; 150:34-47. [DOI: 10.1016/j.actbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
|
71
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
72
|
Ring A, Spataro M, Wicki A, Aceto N. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front Cell Dev Biol 2022; 10:929893. [PMID: 35837334 PMCID: PMC9274007 DOI: 10.3389/fcell.2022.929893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Progress in detection and treatment have drastically improved survival for early breast cancer patients. However, distant recurrence causes high mortality and is typically considered incurable. Cancer dissemination occurs via circulating tumor cells (CTCs) and up to 75% of breast cancer patients could harbor micrometastatses at time of diagnosis, while metastatic recurrence often occurs years to decades after treatment. During clinical latency, disseminated tumor cells (DTCs) can enter a state of cell cycle arrest or dormancy at distant sites, and are likely shielded from immune detection and treatment. While this is a challenge, it can also be seen as an outstanding opportunity to target dormant DTCs on time, before their transformation into lethal macrometastatic lesions. Here, we review and discuss progress made in our understanding of DTC and dormancy biology in breast cancer. Strides in our mechanistic insights of these features has led to the identification of possible targeting strategies, yet, their integration into clinical trial design is still uncertain. Incorporating minimally invasive liquid biopsies and rationally designed adjuvant therapies, targeting both proliferating and dormant tumor cells, may help to address current challenges and improve precision cancer care.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Spataro
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- *Correspondence: Nicola Aceto,
| |
Collapse
|
73
|
Patel SB, Nemkov T, D'Alessandro A, Welner RS. Deciphering Metabolic Adaptability of Leukemic Stem Cells. Front Oncol 2022; 12:846149. [PMID: 35756656 PMCID: PMC9213881 DOI: 10.3389/fonc.2022.846149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic targeting of leukemic stem cells is widely studied to control leukemia. An emerging approach gaining popularity is altering metabolism as a potential therapeutic opportunity. Studies have been carried out on hematopoietic and leukemic stem cells to identify vulnerable pathways without impacting the non-transformed, healthy counterparts. While many metabolic studies have been conducted using stem cells, most have been carried out in vitro or on a larger population of progenitor cells due to challenges imposed by the low frequency of stem cells found in vivo. This creates artifacts in the studies carried out, making it difficult to interpret and correlate the findings to stem cells directly. This review discusses the metabolic difference seen between hematopoietic stem cells and leukemic stem cells across different leukemic models. Moreover, we also shed light on the advancements of metabolic techniques and current limitations and areas for additional research of the field to study stem cell metabolism.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States.,Divison of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States
| |
Collapse
|
74
|
Parker AL, Benguigui M, Fornetti J, Goddard E, Lucotti S, Insua-Rodríguez J, Wiegmans AP. Current challenges in metastasis research and future innovation for clinical translation. Clin Exp Metastasis 2022; 39:263-277. [PMID: 35072851 PMCID: PMC8971179 DOI: 10.1007/s10585-021-10144-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
While immense strides have been made in understanding tumor biology and in developing effective treatments that have substantially improved the prognosis of cancer patients, metastasis remains the major cause of cancer-related death. Improvements in the detection and treatment of primary tumors are contributing to a growing, detailed understanding of the dynamics of metastatic progression. Yet challenges remain in detecting metastatic dissemination prior to the establishment of overt metastases and in predicting which patients are at the highest risk of developing metastatic disease. Further improvements in understanding the mechanisms governing metastasis have great potential to inform the adaptation of existing therapies and the development of novel approaches to more effectively control metastatic disease. This article presents a forward-looking perspective on the challenges that remain in the treatment of metastasis, and the exciting emerging approaches that promise to transform the treatment of metastasis in cancer patients.
Collapse
Affiliation(s)
- Amelia L Parker
- Matrix and Metastasis Lab, Kinghorn Cancer Centre, Garvin Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, 2052, Australia.
| | - Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake, UT, USA
| | - Erica Goddard
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, NY, New York, USA
| | - Jacob Insua-Rodríguez
- Department of Physiology and Biophysics, Department of Biological Chemistry, Chao Family Comprehensive Cancer Centre, University of California, Irvine, CA, USA
| | - Adrian P Wiegmans
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, 4121, Australia
| |
Collapse
|
75
|
Hongu T, Pein M, Insua-Rodríguez J, Gutjahr E, Mattavelli G, Meier J, Decker K, Descot A, Bozza M, Harbottle R, Trumpp A, Sinn HP, Riedel A, Oskarsson T. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. NATURE CANCER 2022; 3:486-504. [PMID: 35469015 PMCID: PMC9046090 DOI: 10.1038/s43018-022-00353-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.
Collapse
Affiliation(s)
- Tsunaki Hongu
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Jasmin Meier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Kristin Decker
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Arnaud Descot
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Bozza
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Angela Riedel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium, Heidelberg, Germany.
- Department of Molecular Oncology and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
76
|
Pinho S, Wei Q, Maryanovich M, Zhang D, Balandrán JC, Pierce H, Nakahara F, Di Staulo A, Bartholdy BA, Xu J, Borger DK, Verma A, Frenette PS. VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nat Cell Biol 2022; 24:290-298. [PMID: 35210567 PMCID: PMC8930732 DOI: 10.1038/s41556-022-00849-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Haematopoietic stem cells (HSCs) home to the bone marrow via, in part, interactions with vascular cell adhesion molecule-1 (VCAM1)1-3. Once in the bone marrow, HSCs are vetted by perivascular phagocytes to ensure their self-integrity. Here we show that VCAM1 is also expressed on healthy HSCs and upregulated on leukaemic stem cells (LSCs), where it serves as a quality-control checkpoint for entry into bone marrow by providing 'don't-eat-me' stamping in the context of major histocompatibility complex class-I (MHC-I) presentation. Although haplotype-mismatched HSCs can engraft, Vcam1 deletion, in the setting of haplotype mismatch, leads to impaired haematopoietic recovery due to HSC clearance by mononuclear phagocytes. Mechanistically, VCAM1 'don't-eat-me' activity is regulated by β2-microglobulin MHC presentation on HSCs and paired Ig-like receptor-B (PIR-B) on phagocytes. VCAM1 is also used by cancer cells to escape immune detection as its expression is upregulated in multiple cancers, including acute myeloid leukaemia (AML), where high expression associates with poor prognosis. In AML, VCAM1 promotes disease progression, whereas VCAM1 inhibition or deletion reduces leukaemia burden and extends survival. These results suggest that VCAM1 engagement regulates a critical immune-checkpoint gate in the bone marrow, and offers an alternative strategy to eliminate cancer cells via modulation of the innate immune tolerance.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Juan Carlos Balandrán
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anna Di Staulo
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Boris A. Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel K. Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
77
|
Ferrer AI, Einstein E, Morelli SS. Bone Marrow-Derived Cells in Endometrial Cancer Pathogenesis: Insights from Breast Cancer. Cells 2022; 11:cells11040714. [PMID: 35203363 PMCID: PMC8869947 DOI: 10.3390/cells11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer, representing 3.5% of all new cancer cases in the United States. Abnormal stem cell-like cells, referred to as cancer stem cells (CSCs), reside in the endometrium and possess the capacity to self-renew and differentiate into cancer progenitors, leading to tumor progression. Herein we review the role of the endometrial microenvironment and sex hormone signaling in sustaining EC progenitors and potentially promoting dormancy, a cellular state characterized by cell cycle quiescence and resistance to conventional treatments. We offer perspective on mechanisms by which bone marrow-derived cells (BMDCs) within the endometrial microenvironment could promote endometrial CSC (eCSC) survival and/or dormancy. Our perspective relies on the well-established example of another sex hormone-driven cancer, breast cancer, in which the BM microenvironment plays a crucial role in acquisition of CSC phenotype and dormancy. Our previous studies demonstrate that BMDCs migrate to the endometrium and express sex hormone (estrogen and progesterone) receptors. Whether the BM is a source of eCSCs is unknown; alternatively, crosstalk between BMDCs and CSCs within the endometrial microenvironment could be an additional mechanism supporting eCSCs and tumorigenesis. Elucidating these mechanisms will provide avenues to develop novel therapeutic interventions for EC.
Collapse
Affiliation(s)
- Alejandra I. Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
- School of Graduate Studies Newark, Rutgers University, Newark, NJ 07103, USA
| | - Ella Einstein
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.I.F.); (E.E.)
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence:
| |
Collapse
|
78
|
Satcher RL, Zhang XHF. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 2022; 22:85-101. [PMID: 34611349 DOI: 10.1038/s41568-021-00406-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Many cancer types metastasize to bone. This propensity may be a product of genetic traits of the primary tumour in some cancers. Upon arrival, cancer cells establish interactions with various bone-resident cells during the process of colonization. These interactions, to a large degree, dictate cancer cell fates at multiple steps of the metastatic cascade, from single cells to overt metastases. The bone microenvironment may even influence cancer cells to subsequently spread to multiple other organs. Therefore, it is imperative to spatiotemporally delineate the evolving cancer-bone crosstalk during bone colonization. In this Review, we provide a summary of the bone microenvironment and its impact on bone metastasis. On the basis of the microscopic anatomy, we tentatively define a roadmap of the journey of cancer cells through bone relative to various microenvironment components, including the potential of bone to function as a launch pad for secondary metastasis. Finally, we examine common and distinct features of bone metastasis from various cancer types. Our goal is to stimulate future studies leading to the development of a broader scope of potent therapies.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
79
|
Newport E, Pedrosa AR, Lees D, Dukinfield M, Carter E, Gomez-Escudero J, Casado P, Rajeeve V, Reynolds LE, R Cutillas P, Duffy SW, De Luxán Delgado B, Hodivala-Dilke K. Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth. J Pathol 2022; 256:235-247. [PMID: 34743335 DOI: 10.1002/path.5833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022]
Abstract
A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Endothelial Cells/enzymology
- Female
- Focal Adhesion Kinase 1/antagonists & inhibitors
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Emma Newport
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Ana Rita Pedrosa
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Delphine Lees
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Matthew Dukinfield
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Edward Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro Casado
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Vinothini Rajeeve
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Louise E Reynolds
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | | | - Beatriz De Luxán Delgado
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| |
Collapse
|
80
|
Biswas AK, Han S, Tai Y, Ma W, Coker C, Quinn SA, Shakri AR, Zhong TJ, Scholze H, Lagos GG, Mela A, Manova-Todorova K, de Stanchina E, Ferrando AA, Mendelsohn C, Canoll P, Yu HA, Paik PK, Saqi A, Shu CA, Kris MG, Massague J, Acharyya S. Targeting S100A9-ALDH1A1-retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer. Cancer Discov 2022; 12:1002-1021. [PMID: 35078784 PMCID: PMC8983473 DOI: 10.1158/2159-8290.cd-21-0910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in EGFR-mutant lung cancer patients, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study therefore identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse.
Collapse
Affiliation(s)
| | | | | | - Wanchao Ma
- Pathology and Cell Biology, Columbia University
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University Medical Center
| | - S Aidan Quinn
- Pediatric Oncology, Dana-Farber/Harvard Cancer Center
| | | | | | | | | | - Angeliki Mela
- Pathology and Cell Biology, Columbia University Medical Center
| | | | | | | | | | | | - Helena A Yu
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Paul K Paik
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Anjali Saqi
- Pathology and Cell Biology, Columbia University
| | | | | | - Joan Massague
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
81
|
Bone marrow NG2 +/Nestin + mesenchymal stem cells drive DTC dormancy via TGFβ2. NATURE CANCER 2022; 2:327-339. [PMID: 34993493 DOI: 10.1038/s43018-021-00179-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the bone marrow (BM) microenvironment, where breast cancer (BC) disseminated tumour cells (DTCs) can remain dormant for decades, NG2+/Nestin+ mesenchymal stem cells (MSCs) promote hematopoietic stem cell quiescence. Here, we reveal that periarteriolar BM-resident NG2+/Nestin+ MSCs can also instruct BC DTCs to enter dormancy. NG2+/Nestin+ MSCs produce TGFβ2 and BMP7 and activate a quiescence pathway dependent on TGFBRIII and BMPRII, which via p38-kinase result in p27 induction. Genetic depletion of MSCs or conditional knock-out of TGFβ2 in MSCs using an NG2-CreER driver led to bone metastatic outgrowth of otherwise dormant p27+/Ki67- DTCs. Also ER+ BC patients without systemic recurrence displayed higher frequency of TGFβ2 and BMP7 detection in the BM. Our results provide a direct proof that HSC dormancy niches control BC DTC dormancy and suggest that aging or extrinsic factors that affect the NG2+/Nestin+ MSC niche homeostasis may result in a break from dormancy and BC bone relapse.
Collapse
|
82
|
Abstract
Dormancy is an evolutionarily conserved protective mechanism widely observed in nature. A pathological example is found during cancer metastasis, where cancer cells disseminate from the primary tumor, home to secondary organs, and enter a growth-arrested state, which could last for decades. Recent studies have pointed toward the microenvironment being heavily involved in inducing, preserving, or ceasing this dormant state, with a strong focus on identifying specific molecular mechanisms and signaling pathways. Increasing evidence now suggests the existence of an interplay between intracellular as well as extracellular biochemical and mechanical cues in guiding such processes. Despite the inherent complexities associated with dormancy, proliferation, and growth of cancer cells and tumor tissues, viewing these phenomena from a physical perspective allows for a more global description, independent from many details of the systems. Building on the analogies between tissues and fluids and thermodynamic phase separation concepts, we classify a number of proposed mechanisms in terms of a thermodynamic metastability of the tumor with respect to growth. This can be governed by interaction with the microenvironment in the form of adherence (wetting) to a substrate or by mechanical confinement of the surrounding extracellular matrix. By drawing parallels with clinical and experimental data, we advance the notion that the local energy minima, or metastable states, emerging in the tissue droplet growth kinetics can be associated with a dormant state. Despite its simplicity, the provided framework captures several aspects associated with cancer dormancy and tumor growth.
Collapse
|
83
|
Pshennikova ES, Voronina AS. Dormancy: There and Back Again. Mol Biol 2022; 56:735-755. [PMID: 36217335 PMCID: PMC9534470 DOI: 10.1134/s0026893322050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
Many cells are capable of maintaining viability in a non-dividing state with minimal metabolism under unfavorable conditions. These are germ cells, adult stem cells, and microorganisms. Unfortunately, a resting state, or dormancy, is possible for tuberculosis bacilli in a latent form of the disease and cancer cells, which may later form secondary tumors (metastases) in different parts of the body. These cells are resistant to therapy that can destroy intensely dividing cells and to the host immune system. A cascade of reactions that allows cells to enter and exit dormancy is triggered by regulatory factors from the microenvironment in niches that harbor the cells. A ratio of forbidding and permitting signals dictates whether the cells become dormant or start proliferation. The only difference between the cell dormancy regulation in normal and pathological conditions is that pathogens, mycobacteria, and cancer cells can influence their own fate by changing their microenvironment. Certain mechanisms of these processes are considered in the review.
Collapse
Affiliation(s)
- E. S. Pshennikova
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - A. S. Voronina
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
84
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
85
|
Dai J, Cimino PJ, Gouin KH, Grzelak CA, Barrett A, Lim AR, Long A, Weaver S, Saldin LT, Uzamere A, Schulte V, Clegg N, Pisarsky L, Lyden D, Bissell MJ, Knott S, Welm AL, Bielas JH, Hansen KC, Winkler F, Holland EC, Ghajar CM. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. NATURE CANCER 2022; 3:25-42. [PMID: 35121993 PMCID: PMC9469899 DOI: 10.1038/s43018-021-00297-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Although dormancy is thought to play a key role in the metastasis of breast tumor cells to the brain, our knowledge of the molecular mechanisms regulating disseminated tumor cell (DTC) dormancy in this organ is limited. Here using serial intravital imaging of dormant and metastatic triple-negative breast cancer lines, we identify escape from the single-cell or micrometastatic state as the rate-limiting step towards brain metastasis. We show that every DTC occupies a vascular niche, with quiescent DTCs residing on astrocyte endfeet. At these sites, astrocyte-deposited laminin-211 drives DTC quiescence by inducing the dystroglycan receptor to associate with yes-associated protein, thereby sequestering it from the nucleus and preventing its prometastatic functions. These findings identify a brain-specific mechanism of DTC dormancy and highlight the need for a more thorough understanding of tumor dormancy to develop therapeutic approaches that prevent brain metastasis.
Collapse
Affiliation(s)
- Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Patrick J. Cimino
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA (USA)
| | - Kenneth H. Gouin
- Department of Biomedical Sciences; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA (USA)
| | - Candice A. Grzelak
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO (USA)
| | - Andrea R. Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA (USA)
| | - Annalyssa Long
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Stephanie Weaver
- Experimental Histopathology Core, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Lindsey T. Saldin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA (USA)
| | - Aiyedun Uzamere
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Vera Schulte
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Nigel Clegg
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Laura Pisarsky
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, (USA)
| | - Mina J. Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA (USA)
| | - Simon Knott
- Department of Biomedical Sciences; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA (USA)
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (USA)
| | - Jason H. Bielas
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA (USA),Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO (USA)
| | - Frank Winkler
- Neurology Clinic and National Center for Tumour Diseases, University Hospital Heidelberg, DKTK & Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg (Germany)
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Cyrus M. Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),To whom correspondence should be addressed: Cyrus M. Ghajar, PhD, Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., M5-A864, Seattle, WA 98109 (USA), , P. 206.667.7080, F. 206.667.2537, Jinxiang Dai, PhD, Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., M5-A864, Seattle, WA 98109 (USA), , P. 206.667.7082, F. 206.667.2537
| |
Collapse
|
86
|
Glaser DE, Curtis MB, Sariano PA, Rollins ZA, Shergill BS, Anand A, Deely AM, Shirure VS, Anderson L, Lowen JM, Ng NR, Weilbaecher K, Link DC, George SC. Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials 2022; 280:121245. [PMID: 34810038 PMCID: PMC10658812 DOI: 10.1016/j.biomaterials.2021.121245] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Bone marrow niches (endosteal and perivascular) play important roles in both normal bone marrow function and pathological processes such as cancer cell dormancy. Unraveling the mechanisms underlying these events in humans has been severely limited by models that cannot dissect dynamic events at the niche level. Utilizing microfluidic and stem cell technologies, we present a 3D in vitro model of human bone marrow that contains both the perivascular and endosteal niches, complete with dynamic, perfusable vascular networks. We demonstrate that our model can replicate in vivo bone marrow function, including maintenance and differentiation of CD34+ hematopoietic stem/progenitor cells, egress of neutrophils (CD66b+), and niche-specific responses to doxorubicin and granulocyte-colony stimulating factor. Our platform provides opportunities to accelerate current understanding of human bone marrow function and drug response with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Drew E Glaser
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Matthew B Curtis
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Peter A Sariano
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Zachary A Rollins
- Department of Chemical Engineering, University of California, Davis, 1 Shields Ave, Bainer 3106, Davis, CA 95616, USA
| | - Bhupinder S Shergill
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Aravind Anand
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Alyssa M Deely
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Leif Anderson
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Jeremy M Lowen
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA
| | - Natalie R Ng
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr, Campus Box 1100, St Louis, MO 63130, USA
| | - Katherine Weilbaecher
- Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Campus Box 8066, St. Louis, MO 63110, USA
| | - Daniel C Link
- Department of Medicine, Washington University in St. Louis, 660 S Euclid Ave, Campus Box 8066, St. Louis, MO 63110, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, 451 E Health Sciences Dr, GBSF 2303, Davis, CA 95616, USA.
| |
Collapse
|
87
|
Ngo MT, Barnhouse VR, Gilchrist AE, Mahadik BP, Hunter CJ, Hensold JN, Petrikas N, Harley BAC. Hydrogels Containing Gradients in Vascular Density Reveal Dose-Dependent Role of Angiocrine Cues on Stem Cell Behavior. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101541. [PMID: 35558090 PMCID: PMC9090181 DOI: 10.1002/adfm.202101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan E Gilchrist
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine J Hunter
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joy N Hensold
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan Petrikas
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
88
|
Yip RKH, Rimes JS, Capaldo BD, Vaillant F, Mouchemore KA, Pal B, Chen Y, Surgenor E, Murphy AJ, Anderson RL, Smyth GK, Lindeman GJ, Hawkins ED, Visvader JE. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun 2021; 12:6920. [PMID: 34836954 PMCID: PMC8626461 DOI: 10.1038/s41467-021-26556-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bone marrow is a preferred metastatic site for multiple solid tumours and is associated with poor prognosis and significant morbidity. Accumulating evidence indicates that cancer cells colonise specialised niches within the bone marrow to support their long-term propagation, but the precise location and mechanisms that mediate niche interactions are unknown. Using breast cancer as a model of solid tumour metastasis to the bone marrow, we applied large-scale quantitative three-dimensional imaging to characterise temporal changes in the bone marrow microenvironment during disease progression. We show that mouse mammary tumour cells preferentially home to a pre-existing metaphyseal domain enriched for type H vessels. Metastatic lesion outgrowth rapidly remodelled the local vasculature through extensive sprouting to establish a tumour-supportive microenvironment. The evolution of this tumour microenvironment reflects direct remodelling of the vascular endothelium through tumour-derived granulocyte-colony stimulating factor (G-CSF) in a hematopoietic cell-independent manner. Therapeutic targeting of the metastatic niche by blocking G-CSF receptor inhibited pathological blood vessel remodelling and reduced bone metastasis burden. These findings elucidate a mechanism of 'host' microenvironment hijacking by mammary tumour cells to subvert the local microvasculature to form a specialised, pro-tumorigenic niche.
Collapse
Affiliation(s)
- Raymond K. H. Yip
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Joel S. Rimes
- grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1042.7Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia
| | - Bianca D. Capaldo
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - François Vaillant
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Kellie A. Mouchemore
- grid.1018.80000 0001 2342 0938School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086 Australia ,grid.482637.cOlivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084 Australia
| | - Bhupinder Pal
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1018.80000 0001 2342 0938School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086 Australia ,grid.482637.cOlivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084 Australia
| | - Yunshun Chen
- grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1042.7Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia
| | - Elliot Surgenor
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia
| | - Andrew J. Murphy
- grid.1002.30000 0004 1936 7857Department of Immunology, Monash University, Melbourne, VIC Australia ,grid.1051.50000 0000 9760 5620Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, VIC Australia
| | - Robin L. Anderson
- grid.1018.80000 0001 2342 0938School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086 Australia ,grid.482637.cOlivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084 Australia
| | - Gordon K. Smyth
- grid.1042.7Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XSchool of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Geoffrey J. Lindeman
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology and Parkville Familial Cancer Centre, The Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Edwin D. Hawkins
- grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1042.7Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia
| | - Jane E. Visvader
- grid.1042.7ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
89
|
Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021; 13:5621. [PMID: 34830776 PMCID: PMC8615859 DOI: 10.3390/cancers13225621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic spread and recurrence are intimately linked to therapy failure, which remains an overarching clinical challenge for patients with cancer. Cancer cells often disseminate early in the disease process and can remain dormant for years or decades before re-emerging as metastatic disease, often after successful treatment. The interactions of dormant cancer cells and their metastatic niche, comprised of various stromal and immune cells, can determine the length of time that cancer cells remain dormant, as well as when they reactivate. New studies are defining how innate immune cells in the primary tumor may be corrupted to help facilitate many aspects of dissemination and re-emergence from a dormant state. Although the scientific literature has partially shed light on the drivers of immune escape in cancer, the specific mechanisms regulating metastasis and dormancy in the context of anti-tumor immunity are still mostly unknown. This review follows the journey of metastatic cells from dissemination to dormancy and the onset of metastatic outgrowth and recurrent tumor development, with emphasis on the role of the innate immune system. To this end, further research identifying how immune cells interact with cancer cells at each step of cancer progression will pave the way for new therapies that target the reactivation of dormant cancer cells into recurrent, metastatic cancers.
Collapse
Affiliation(s)
- Noah M. Chernosky
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
90
|
Jiang X, Liang L, Chen G, Liu C. Modulation of Immune Components on Stem Cell and Dormancy in Cancer. Cells 2021; 10:2826. [PMID: 34831048 PMCID: PMC8616319 DOI: 10.3390/cells10112826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) refer to a certain subpopulation within the tumor entity that is characterized by restricted cellular proliferation and multipotent differentiation potency. The existence of CSCs has been proven to contribute to the heterogeneity of malignancies, accounting for intensified tumorigenesis, treatment resistance, and metastatic spread. Dormancy was proposed as a reversible state of cancer cells that are temporarily arrested in the cell cycle, possessing several hallmarks that facilitate their survival within a devastating niche. This transient period is evoked to enter an actively proliferating state by multiple regulatory alterations, and one of the most significant and complex factors comes from local and systemic inflammatory reactions and immune components. Although CSCs and dormant cancer cells share several similarities, the clear relationship between these two concepts remains unclear. Thus, the detailed mechanism of immune cells interacting with CSCs and dormant cancer cells also warrants elucidation for prevention of cancer relapse and metastasis. In this review, we summarize recent findings and prospective studies on CSCs and cancer dormancy to conclude the relationship between these two concepts. Furthermore, we aim to outline the mechanism of immune components in interfering with CSCs and dormant cancer cells to provide a theoretical basis for the prevention of relapse and metastasis.
Collapse
Affiliation(s)
| | | | | | - Caigang Liu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang 110004, China; (X.J.); (L.L.); (G.C.)
| |
Collapse
|
91
|
Di Martino JS, Akhter T, Bravo-Cordero JJ. Remodeling the ECM: Implications for Metastasis and Tumor Dormancy. Cancers (Basel) 2021; 13:4916. [PMID: 34638400 PMCID: PMC8507703 DOI: 10.3390/cancers13194916] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
While most primary tumors can be effectively treated, therapeutics fail to efficiently eliminate metastases. Metastases arise from cancer cells that leave the primary tumor and seed distant sites. Recent studies have shown that cancer cells disseminate early during tumor progression and can remain dormant for years before they resume growth. In these metastatic organs, cancer cells reside in microenvironments where they interact with other cells, but also with the extracellular matrix (ECM). The ECM was long considered to be an inert, non-cellular component of tissues, providing their architecture. However, in recent years, a growing body of evidence has shown that the ECM is a key driver of cancer progression, and it can exert effects on tumor cells, regulating their metastatic fate. ECM remodeling and degradation is required for the early steps of the metastatic cascade: invasion, tumor intravasation, and extravasation. Similarly, ECM molecules have been shown to be important for metastatic outgrowth. However, the role of ECM molecules on tumor dormancy and their contribution to the dormancy-supportive niches is not well understood. In this perspective article, we will summarize the current knowledge of ECM and its role in tumor metastasis and dormancy. We will discuss how a better understanding of the individual components of the ECM niche and their roles mediating the dormant state of disseminated tumor cells (DTCs) will advance the development of new therapies to target dormant cells and prevent metastasis outgrowth.
Collapse
Affiliation(s)
| | | | - Jose Javier Bravo-Cordero
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.S.D.M.); (T.A.)
| |
Collapse
|
92
|
Aguirre-Ghiso JA. Translating the Science of Cancer Dormancy to the Clinic. Cancer Res 2021; 81:4673-4675. [PMID: 34429327 PMCID: PMC8562555 DOI: 10.1158/0008-5472.can-21-1407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
The paradigm of metastasis has been significantly remodeled by the incorporation of cancer dormancy as a mechanism to explain long-term remission intervals followed by relapse. There is overall consensus on the potential impact of better understanding dormancy. Key cancer-cell autonomous and microenvironmental mechanisms might explain this biology and, in turn, the timing of metastasis. However, the approach and feasibility to apply this biology to clinical trials has been controversial. The discussion here provides insight into how these controversies are being resolved by the development of active clinical trials, thus bringing to reality opportunities to target cancer dormancy.
Collapse
Affiliation(s)
- Julio A Aguirre-Ghiso
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
93
|
Reed B, Crawford F, Hill RC, Jin N, White J, Krovi SH, Marrack P, Hansen K, Kappler JW. Lysosomal cathepsin creates chimeric epitopes for diabetogenic CD4 T cells via transpeptidation. J Exp Med 2021; 218:211485. [PMID: 33095259 PMCID: PMC7590512 DOI: 10.1084/jem.20192135] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of the peptide epitopes presented by major histocompatibility complex class II (MHCII) molecules that drive the CD4 T cell component of autoimmune diseases has presented a formidable challenge over several decades. In type 1 diabetes (T1D), recent insight into this problem has come from the realization that several of the important epitopes are not directly processed from a protein source, but rather pieced together by fusion of different peptide fragments of secretory granule proteins to create new chimeric epitopes. We have proposed that this fusion is performed by a reverse proteolysis reaction called transpeptidation, occurring during the catabolic turnover of pancreatic proteins when secretory granules fuse with lysosomes (crinophagy). Here, we demonstrate several highly antigenic chimeric epitopes for diabetogenic CD4 T cells that are produced by digestion of the appropriate inactive fragments of the granule proteins with the lysosomal protease cathepsin L (Cat-L). This pathway has implications for how self-tolerance can be broken peripherally in T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Brendan Reed
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Frances Crawford
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Ryan C Hill
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Niyun Jin
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - S Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kirk Hansen
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| |
Collapse
|
94
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
95
|
Olesen K, Rodin S, Mak WC, Felldin U, Österholm C, Tilevik A, Grinnemo KH. Spatiotemporal extracellular matrix modeling for in situ cell niche studies. Stem Cells 2021; 39:1751-1765. [PMID: 34418223 DOI: 10.1002/stem.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Extracellular matrix (ECM) components govern a range of cell functions, such as migration, proliferation, maintenance of stemness, and differentiation. Cell niches that harbor stem-/progenitor cells, with matching ECM, have been shown in a range of organs, although their presence in the heart is still under debate. Determining niches depends on a range of in vitro and in vivo models and techniques, where animal models are powerful tools for studying cell-ECM dynamics; however, they are costly and time-consuming to use. In vitro models based on recombinant ECM proteins lack the complexity of the in vivo ECM. To address these issues, we present the spatiotemporal extracellular matrix model for studies of cell-ECM dynamics, such as cell niches. This model combines gentle decellularization and sectioning of cardiac tissue, allowing retention of a complex ECM, with recellularization and subsequent image processing using image stitching, segmentation, automatic binning, and generation of cluster maps. We have thereby developed an in situ representation of the cardiac ECM that is useful for assessment of repopulation dynamics and to study the effect of local ECM composition on phenotype preservation of reseeded mesenchymal progenitor cells. This model provides a platform for studies of organ-specific cell-ECM dynamics and identification of potential cell niches.
Collapse
Affiliation(s)
- Kim Olesen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,School of Bioscience, University of Skövde, Skövde, Sweden.,Polymer Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey Rodin
- Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Ulrika Felldin
- Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| |
Collapse
|
96
|
Ngo MT, Karvelis E, Harley BAC. Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance. Integr Biol (Camb) 2021; 12:139-149. [PMID: 32507878 DOI: 10.1093/intbio/zyaa010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor. The tissue microenvironment adjacent to vasculature, termed the perivascular niche, has been implicated in promoting biological processes involved in glioblastoma progression such as invasion, proliferation, and therapeutic resistance. However, the exact nature of the cues that support tumor cell aggression in this niche is largely unknown. Soluble angiocrine factors secreted by tumor-associated vasculature have been shown to support such behaviors in other cancer types. Here, we exploit macroscopic and microfluidic gelatin hydrogel platforms to profile angiocrine factors secreted by self-assembled endothelial networks and evaluate their relevance to glioblastoma biology. Aggregate angiocrine factors support increases in U87-MG cell number, migration, and therapeutic resistance to temozolomide. We also identify a novel role for TIMP1 in facilitating glioblastoma tumor cell migration. Overall, this work highlights the use of multidimensional hydrogel models to evaluate the role of angiocrine signals in glioblastoma progression.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elijah Karvelis
- Dept. Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
97
|
Clements ME, Holtslander L, Edwards C, Todd V, Dooyema SDR, Bullock K, Bergdorf K, Zahnow CA, Connolly RM, Johnson RW. HDAC inhibitors induce LIFR expression and promote a dormancy phenotype in breast cancer. Oncogene 2021; 40:5314-5326. [PMID: 34247191 PMCID: PMC8403155 DOI: 10.1038/s41388-021-01931-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Despite advances in breast cancer treatment, residual disease driven by dormant tumor cells continues to be a significant clinical problem. Leukemia inhibitory factor receptor (LIFR) promotes a dormancy phenotype in breast cancer cells and LIFR loss is correlated with poor patient survival. Herein, we demonstrate that histone deacetylase inhibitors (HDACi), which are in phase III clinical trials for breast cancer, epigenetically induced LIFR and activated a pro-dormancy program in breast cancer cells. HDACi slowed breast cancer cell proliferation and reduced primary tumor growth. Primary breast tumors from HDACi-treated patients had increased LIFR levels and reduced proliferation rates compared to pre-treatment levels. Recent Phase II clinical trial data studying entinostat and azacitidine in metastatic breast cancer revealed that induction of several pro-dormancy genes post-treatment was associated with prolonged patient survival. Together, these findings suggest HDACi as a potential therapeutic avenue to promote dormancy, prevent recurrence, and improve patient outcomes in breast cancer.
Collapse
Affiliation(s)
- Miranda E Clements
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren Holtslander
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Courtney Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vera Todd
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel D R Dooyema
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kennady Bullock
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kensey Bergdorf
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Roisin M Connolly
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Rachelle W Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
98
|
Wrenn E, Huang Y, Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 2021; 38:373-399. [PMID: 34254215 PMCID: PMC8346286 DOI: 10.1007/s10585-021-10111-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.
Collapse
Affiliation(s)
- Emma Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
99
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 2021; 14:98. [PMID: 34172088 PMCID: PMC8234625 DOI: 10.1186/s13045-021-01103-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunological components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innovative high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in the study of the spatial architecture of the TIME and categorized the description methods used to characterize these structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem research, to the attention of more researchers and promote its application in tumor research and clinical practice.
Collapse
Affiliation(s)
- Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
100
|
Singh DK, Patel VG, Oh WK, Aguirre-Ghiso JA. Prostate Cancer Dormancy and Reactivation in Bone Marrow. J Clin Med 2021; 10:2648. [PMID: 34208521 PMCID: PMC8234151 DOI: 10.3390/jcm10122648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer has a variable clinical course, ranging from curable local disease to lethal metastatic spread. Eradicating metastatic cells is a unique challenge that is rarely met with the available therapies. Thus, targeting prostate cancer cells in earlier disease states is a crucial window of opportunity. Interestingly, cancer cells migrate from their primary site during pre-cancerous and malignant phases to seed secondary organs. These cells, known as disseminated cancer cells (DCCs), may remain dormant for months or decades before activating to form metastases. Bone marrow, a dormancy-permissive site, is the major organ for housed DCCs and eventual metastases in prostate cancer. The dynamic interplay between DCCs and the primary tumor microenvironment (TME), as well as that between DCCs and the secondary organ niche, controls the conversion between states of dormancy and activation. Here, we discuss recent discoveries that have improved our understanding of dormancy signaling and the role of the TME in modulating the epigenetic reprogramming of DCCs. We offer potential strategies to target DCCs in prostate cancer.
Collapse
Affiliation(s)
- Deepak K. Singh
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Vaibhav G. Patel
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - William K. Oh
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|