51
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
52
|
Ouyang J, Sun L, Pan J, Zeng Z, Zeng C, Zeng F, Tian M, Wu S. A Targeted Nanosystem for Detection of Inflammatory Diseases via Fluorescent/Optoacoustic Imaging and Therapy via Modulating Nrf2/NF-κB Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102598. [PMID: 34523220 DOI: 10.1002/smll.202102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Indexed: 05/05/2023]
Abstract
Inflammatory diseases are sometimes devastating and notoriously difficult to treat. Precisely modulating inflammatory signaling pathways is a promising approach for treating inflammatory diseases. Herein, a multifunctional nanosystem is developed for active targeting, activatable imaging and on-demand therapy against inflammatory diseases through modulating inflammatory pathways. A chromophore-drug dyad (QBS-FIS) is synthesized by linking a chromophore and a Nrf2 (nuclear factor E2-related factor) activator fisetin through boronate bond which serves as fluorescence quencher and ROS (reactive oxygen species)-responsive linker. QBS-FIS molecules form nanoparticles in water and are coated with macrophage cell membrane to ensure active targeting toward inflammation site. To further improve therapeutic efficacy, a NF-kB (nuclear-factor kappa-light-chain-enhancer of activated B cells) inhibitor thalidomide is co-encapsulated to afford the nanosystem (QBS-FIS&Thd@MM). Upon administration into mice, the nanosystem migrates to inflammatory site and pathological ROS therein cleaves the boronate bonds, thereby activating the chromophore for imaging liver/kidney inflammatory diseases for disease diagnosis and recovery evaluation via fluorescence and optoacoustic imaging as well as releasing the active drugs for treating acute liver inflammation through activating Nrf2 pathway and inhibiting NF-kB pathway. The 3D multispectral optoacoustic tomography imaging is applied to precisely locate the inflammatory foci in a spatiotemporal manner.
Collapse
Affiliation(s)
- Juan Ouyang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Jiayue Pan
- Medical Center, Zhejiang University, Hangzhou, 310009, China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Mei Tian
- Medical Center, Zhejiang University, Hangzhou, 310009, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| |
Collapse
|
53
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
54
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
55
|
Lee JS, O’Connell EM, Pacher P, Lohoff FW. PCSK9 and the Gut-Liver-Brain Axis: A Novel Therapeutic Target for Immune Regulation in Alcohol Use Disorder. J Clin Med 2021; 10:1758. [PMID: 33919550 PMCID: PMC8074019 DOI: 10.3390/jcm10081758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to control or stop alcohol intake and is associated with organ damage including alcohol-associated liver disease (ALD) and progressive neurodegeneration. The etiology of AUD is complex, but organ injury due to chronic alcohol use can be partially attributed to systemic and local inflammation along the gut-liver-brain axis. Excessive alcohol use can result in translocation of bacterial products into circulation, increased expression of pro-inflammatory cytokines, and activation of immune cells, including macrophages and/or microglia in the liver and brain. One potential mediator of this alcohol-induced inflammation is proprotein convertase subtilisin/kexin type 9 (PCSK9). PCSK9 is primarily known for its regulation of plasma low-density lipoprotein cholesterol but has more recently been shown to influence inflammatory responses in the liver and brain. In rodent and post-mortem brain studies, chronic alcohol use altered methylation of the PCSK9 gene and increased expression of PCSK9 in the liver and cerebral spinal fluid. Additionally, PCSK9 inhibition in a rat model of ALD attenuated liver inflammation and steatosis. PCSK9 may play an important role in alcohol-induced pathologies along the gut-liver-brain axis and may be a novel therapeutic target for AUD-related liver and brain inflammation.
Collapse
Affiliation(s)
- Ji Soo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| | - Emma M. O’Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (J.S.L.)
| |
Collapse
|
56
|
Wang M, Zhang S, Zhong R, Wan F, Chen L, Liu L, Yi B, Zhang H. Olive Fruit Extracts Supplement Improve Antioxidant Capacity via Altering Colonic Microbiota Composition in Mice. Front Nutr 2021; 8:645099. [PMID: 33889594 PMCID: PMC8055859 DOI: 10.3389/fnut.2021.645099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, one of the most common biological dysfunctions, is usually associated with pathological conditions and multiple diseases in humans and animals. Chinese olive fruit (Canarium album L.) extracts (OE) are natural plant extracts rich in polyphenols (such as hydroxytyrosol, HT) and with antioxidant, anti-hyperlipidemia, and anti-inflammatory potentials. This study was conducted to investigate the antioxidant capacity of OE supplementation and its related molecular mechanism in mice. Mice (25.46 ± 1.65 g) were treated with 100 mg/kg body weight (BW) OE or saline solution for 4 weeks, and then the antioxidant and anti-inflammatory capacities of mice were examined. The results showed that OE supplement significantly increased the serum antioxidative enzyme activities of total antioxidant activity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and decreased the serum malondialdehyde (MDA) level, indicating that OE treatment enhanced the antioxidant capacity in mice. qPCR results showed that the transcriptional expression of antioxidant SOD1, CAT, Gpx1, and Gpx2 were significantly down-regulated in the small intestine (jejunum and ileum) after OE administration. Meanwhile, OE treatment significantly decreased the T-AOC and increased the MDA level in the small intestine. Furthermore, OE administration dramatically reduced the mRNA expression of pro-inflammatory cytokines (TNF-α and IL-1β), which confirmed its antioxidant and anti-inflammatory capacities with OE administration. Using amplicon sequencing technology, 16S rRNA sequencing results showed that OE supplement significantly increased the colonic Firmicutes/Bacteroidetes ratio, which also had a negative correlation with the serum MDA level and positively correlated with serum GSH-Px activity through Pearson correlation analysis. Besides that, Alloprevotella was negatively correlated with serum T-AOC. Colidextribacter was positively correlated with serum MDA and negatively correlated with serum T-AOC, SOD, and GSH-Px levels. In summary, this study showed that treatment with 100 mg/kg BW polyphenol-rich OE could alter colonic microbiota community, which was strongly associated with improved antioxidant capacity in mice.
Collapse
Affiliation(s)
- Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
57
|
Zhang C, Liu S, Yang M. Hepatocellular Carcinoma and Obesity, Type 2 Diabetes Mellitus, Cardiovascular Disease: Causing Factors, Molecular Links, and Treatment Options. Front Endocrinol (Lausanne) 2021; 12:808526. [PMID: 35002979 PMCID: PMC8733382 DOI: 10.3389/fendo.2021.808526] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which will affect more than a million people by the year 2025. However, current treatment options have limited benefits. Nonalcoholic fatty liver disease (NAFLD) is the fastest growing factor that causes HCC in western countries, including the United States. In addition, NAFLD co-morbidities including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) promote HCC development. Alteration of metabolites and inflammation in the tumor microenvironment plays a pivotal role in HCC progression. However, the underlying molecular mechanisms are still not totally clear. Herein, in this review, we explored the latest molecules that are involved in obesity, T2DM, and CVDs-mediated progression of HCC, as they share some common pathologic features. Meanwhile, several therapeutic options by targeting these key factors and molecules were discussed for HCC treatment. Overall, obesity, T2DM, and CVDs as chronic metabolic disease factors are tightly implicated in the development of HCC and its progression. Molecules and factors involved in these NAFLD comorbidities are potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Ming Yang,
| |
Collapse
|
58
|
Festa M, Sansone C, Brunet C, Crocetta F, Di Paola L, Lombardo M, Bruno A, Noonan DM, Albini A. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. Int J Mol Sci 2020; 21:E8364. [PMID: 33171852 PMCID: PMC7664667 DOI: 10.3390/ijms21218364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Growing interest in hypertension-one of the main factors characterizing the cardiometabolic syndrome (CMS)-and anti-hypertensive drugs raised from the emergence of a new coronavirus, SARS-CoV-2, responsible for the COVID19 pandemic. The virus SARS-CoV-2 employs the Angiotensin-converting enzyme 2 (ACE2), a component of the RAAS (Renin-Angiotensin-Aldosterone System) system, as a receptor for entry into the cells. Several classes of synthetic drugs are available for hypertension, rarely associated with severe or mild adverse effects. New natural compounds, such as peptides, might be useful to treat some hypertensive patients. The main feature of ACE inhibitory peptides is the location of the hydrophobic residue, usually Proline, at the C-terminus. Some already known bioactive peptides derived from marine resources have potential ACE inhibitory activity and can be considered therapeutic agents to treat hypertension. Peptides isolated from marine vertebrates, invertebrates, seaweeds, or sea microorganisms displayed important biological activities to treat hypertensive patients. Here, we reviewed the anti-hypertensive activities of bioactive molecules isolated/extracted from marine organisms and discussed the associated molecular mechanisms involved. We also examined ACE2 modulation in sight of SARS2-Cov infection prevention.
Collapse
Affiliation(s)
- Marco Festa
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (C.S.); (C.B.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (C.S.); (C.B.)
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Luisa Di Paola
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | | | - Antonino Bruno
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| | - Douglas M. Noonan
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| |
Collapse
|