51
|
Wang WJ, Xin ZY, Liu D, Liu Q, Liu Y, Qiu Z, Zhang J, Alam P, Cai XM, Zhao Z, Tang BZ. Intracellularly manipulable aggregation of the aggregation-induced emission luminogens. Biosens Bioelectron 2025; 267:116800. [PMID: 39341072 DOI: 10.1016/j.bios.2024.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biophotonics has seen significant advancements with the development of optical imaging techniques facilitating the noninvasive detection of biologically relevant species. Aggregation-induced emission (AIE) materials have emerged as a novel class of luminogens exhibiting enhanced luminescence or photodynamic efficiency in the aggregated state, making them ideal for biomedical applications. The intracellularly controlled aggregation of aggregate-induced emission luminogens (AIEgens) enables high-resolution imaging of intracellular targets and diagnosis of related diseases, and enables disease therapy by exploiting the novel properties of aggregates. This review provides an in-depth analysis of the strategies employed to modulate the aggregation of AIEgens, focusing on the importance of molecular modifications to improve hydrophilicity and achieve precise control over the intercellular aggregation of AIEgens. Furthermore, the representative applications of AIEgens in bioimaging, such as enzyme activity monitoring, protein tracking, organelle function monitoring, and in vivo tumor-specific therapeutics, are reviewed. Additionally, we outline the challenges and future opportunities for AIE research, emphasizing the importance of the strategies for realizing the precisely controllable aggregation of AIEgens inside cells and the need for extending AIEgens' absorption and emission wavelengths. This review aims to elucidate the rational development of responsive AIEgens for advanced biomedical applications.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Dan Liu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Yong Liu
- AIE Institute, Guangzhou 510530, China.
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| |
Collapse
|
52
|
Wu X, Xiong S, Tao L, Huang J, Shen X. Hairpin aptamer and ROS-sensitive microcapsule-mediated glycoprotein determination for the prognosis of colorectal cancer. Mikrochim Acta 2024; 192:21. [PMID: 39708094 DOI: 10.1007/s00604-024-06885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
A novel glycoprotein assay was developed by integrating the hairpin aptamer (H-APT)-mediated glycoprotein recognition and the reactive oxygen species-sensitive microcapsule (ROS-MC)-induced signal amplification. The analyzing process begins with the transfer of the target glycoprotein to a chlorin e6 (Ce6)-labeled DNA sequence via H-APT-mediated DNA displacement. Subsequently, the Ce6-labeled DNA was used to induce the disassembly of fluorophore-loaded ROS-MC under 650-nm light irradiation. Leveraging the rapid release of the fluorophore and the high loading capacity of the MC, this glycoprotein assay is capable of quantifying glycoprotein content in native biofluids within 2.5 h, achieving a detection limit of 0.034 ng/mL. We applied this assay to determine the glycoprotein composition in plasma samples of colorectal cancer patients, revealing a significant increase in glycoprotein content for those with a poor prognosis. In summary, we have developed an innovative method for glycoprotein determination that shows potential for clinical translation.
Collapse
Affiliation(s)
- Xingjie Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
| | - Shasha Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
| | - Ling Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
| | - Jian Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Laboratory Science, Guian New District, Guizhou Medical University, University Town, Guizhou, 550025, China.
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
| |
Collapse
|
53
|
Bao S, Shen T, Shabahang M, Bai G, Li L. Enzymatic Synthesis of Disialyllacto-N-Tetraose (DSLNT) and Related Human Milk Oligosaccharides Reveals Broad Siglec Recognition of the Atypical Neu5Acα2-6GlcNAc Motif. Angew Chem Int Ed Engl 2024; 63:e202411863. [PMID: 39223086 PMCID: PMC11631665 DOI: 10.1002/anie.202411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, describe the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration of their structure-function relationships using glycan microarrays, revealing broad yet distinct recognition by Siglecs of the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insight for the functional study and potential applications of Siglecs and HMOs.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - MohammadHossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guitao Bai
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
54
|
Das K, Schulte M, Gerhart M, Bayoumi H, Paulson D, Fink DM, Parrish C, Willand-Charnley R. Early in vitro results indicate that de-O-acetylated sialic acids increase Selectin binding in cancers. Front Oncol 2024; 14:1443303. [PMID: 39717751 PMCID: PMC11663943 DOI: 10.3389/fonc.2024.1443303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Cancers utilize a simple glycan, Sialic Acid, to engage in metastatic processes via the Sialic acid (Sia) -Selectin pathway. Selectins recognize and bind to sialylated substrates, resulting in adhesion, migration, and extravasation, however, how deviations from the canonical form of Sia regulate binding to Selectin receptors (E, L, and P) on hemopoietic cells resulting in these metastatic processes, remained a gap in knowledge. De-O-acetylated Sias has been recently shown to be an integral substrate to the binding of sialic acid binding proteins. The two proteins responsible for regulating the acetyl functional group on Sia's C6 tail, are Sialic acid acetylesterase (SIAE) and Sialic acid O acetyltransferase (CASD1). To elucidate the contribution of functional group alterations on Sia, 9-O and 7,9-O-acetylation of Sia was modulated via the use of CRISRP-Cas9 gene editing and with Sialyl Glycan Recognition Probes, to produce either O-acetylated-Sia or de-O-acetylated- Sia, respectively. In vitro experiments revealed that increased cell surface expression of de-O-acetylated- Sia resulted in an increase in Selectin binding, enhanced cell proliferation, and increased migration capabilities both in lung and colon cancer. These results delineate for the first time the mechanistic contribution of de-O-acetylated-Sia to Selectin binding, reinforcing the importance of elucidating functional group alterations on Sia and their contribution. Without accurate identification of which functionalized form of Sia is being utilized to bind to sialic acid binding proteins, we cannot accurately produce glycan therapeutics with the correct specificity and reactivity, thus this work contributes an integral component in the development of promising therapeutic avenues, for example in the realm of enzyme antibody drug conjugates.
Collapse
Affiliation(s)
- Kakali Das
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| | - Megan Schulte
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| | - Megan Gerhart
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| | - Hala Bayoumi
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| | - Delayna Paulson
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| | - Darci M. Fink
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| | - Colin Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rachel Willand-Charnley
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
55
|
Fan Y, Sun L, He J, Chen Y, Ma H, Ding H. Siglec15 in blood system diseases: from bench to bedside. Front Immunol 2024; 15:1490505. [PMID: 39697338 PMCID: PMC11652361 DOI: 10.3389/fimmu.2024.1490505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Inhibiting the PD-1/PD-L1 pathway using immunomodulators has demonstrated promising outcomes in clinics. Immunomodulators can effectively target immune checkpoints with a strong preference for the tumor microenvironment (TME). Besides, immunomodulators specifically target the recently discovered inhibitory immune checkpoint, sialic acid-binding immunoglobulin-like lectin (Siglec-15). Distinctive in its molecular composition, Siglec-15 has a unique molecular composition and been shown to be highly prevalent in numerous solid tumor tissues and tumor-associated macrophages (TAMs) in human subjects. Notably, Siglec-15 is up-regulated across various cancer types. As a result, Siglec-15 has attracted significant attention due to its exclusive nature concerning PD-L1 expression, suggesting its role in immune evasion in patients lacking PD-L1. Siglec-15 predominantly appears in certain populations and can promote tumor development by repressing T lymphocyte activation and proliferation, thereby facilitating tumor cell immune escape. Furthermore, Siglec-15 is implicated in osteoclast differentiation and bone remodeling, indicating that it is a promising target for next-generation cancer immunotherapies. Additionally, Siglec-15 can modulate immune responses to microbial infections. The current treatment strategies for hematological conditions predominantly include conventional intensive chemotherapy and transplantation methods. However, emerging immunotherapeutic approaches are increasingly recognized for their overall effectiveness, indicating that specific molecular targets should be identified. The expression of Siglec-15 within tumor cells may indicate a novel pathway for treating hematological malignancies. In this study, the biological attributes, expression patterns, and pathogenic mechanisms of Siglec-15 across various diseases were reviewed. The role of Siglec-15 in the pathogenesis and laboratory diagnosis of hematological disorders was also evaluated.
Collapse
Affiliation(s)
- Yujia Fan
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Liangliang Sun
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Juan He
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Yuetong Chen
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| | - Hongli Ma
- Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Haitao Ding
- Clinical Laboratory Medicine Centre, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
56
|
Wang Q, Liu X, Li Y, Wang Z, Fang Z, Wang Y, Guo X, Dong M, Ye M, Jia L. Rational development of functional hydrophilic polymer to characterize site-specific glycan differences between bovine milk and colostrum. Food Chem 2024; 460:140669. [PMID: 39094346 DOI: 10.1016/j.foodchem.2024.140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As vastly modified on secreted proteins, N-glycosylation is found on milk proteins and undergo dynamic changes during lactation, characterizing milk protein glycosylation would benefit the elucidation of glycosylation pattern differences between samples. However, their low abundance required specific enrichment. Herein, through rational design and controllable synthesis, we developed a novel multi-functional polymer for the isolation of protein glycosylation. It efficiently separated glycopeptides from complex background inferences with mutual efforts of hydrophilic interaction chromatography (HILIC), metal ion affinity and ion exchange. By fine-tuning Ca2+ as regulators of aldehyde hyaluronic acid (HA) conformation, the grafting density of HA was remarkably improved. Moreover, grafting Ti4+ further enhanced the enrichment performance. Application of this material to characterize bovine milk and colostrum proteins yields 479 and 611 intact glycopeptides, respectively. Comparative analysis unraveled the distinct glycosylation pattern as well the different distribution of glycoprotein abundances between the two samples, offering insights for functional food development.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
57
|
Tu H, Yuan L, Ni B, Lin Y, Wang K. Siglecs-mediated immune regulation in neurological disorders. Pharmacol Res 2024; 210:107531. [PMID: 39615617 DOI: 10.1016/j.phrs.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
The surfaces of various immune cells are rich in glycan chains, including the sialic-acid-binding immunoglobulin-like lectins (Siglecs) family. As an emerging glyco-immune checkpoint, Siglecs have the ability to bind and interact with various glycoproteins, thereby eliciting a series of downstream reactions to modulate the immune response. The impact of Siglecs has been extensively studied in tumor immunotherapy. However, research in neurological disorders and neurological diseases is very limited, and therapeutic options involving Siglecs need further exploration. Siglecs play a crucial role in the development, homeostasis, and repair processes of the nervous system, especially in degenerative diseases. This review summarizes studies on the immunomodulatory role mediated by Siglecs expressed on different immune cells in various neurological disorders, elucidates how dysregulated sialic acid contributes to several psychiatric disorders, and discusses the progress and limitations of research on the treatment of neurological disorders.
Collapse
Affiliation(s)
- Huifang Tu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Limei Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Ni
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China.
| | - Kaiyuan Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
58
|
Nemati F, Ata Bahmani Asl A, Salehi P. Synthesis and modification of noscapine derivatives as promising future anticancer agents. Bioorg Chem 2024; 153:107831. [PMID: 39321713 DOI: 10.1016/j.bioorg.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Noscapine, a tetrahydroisoquinoline alkaloid, was first isolated from Papaver somniferum and identified by Rabiquet in 1817. It has been used as an anti-tussive agent since the mid-1950 s. After the discovery of its anti-mitotic potential, it was into the limelight once again. Due to its low toxicity, high bioactivity and oral administration, It was regarded as a formidable framework for subsequent modification and advancement in the pursuit of innovative chemotherapeutic agents. Up to now, the rational derivatives of the noscapine have been designed and the biological activities of these analogues have been extensively investigated. This review provides a comprehensive examination of the chemical characteristics of noscapine and its semi-synthetic derivatives up to the present, encompassing a concise investigation into the biological properties of these compounds and additionally a discussion about biosynthesis and total synthesis of noscapine is also provided. In summary, our aim is to contribute to a more thorough comprehension of this structure. It can be asserted that a promising future lies ahead for noscapine and its engineered derivatives as noteworthy candidates for pharmaceutical drugs.
Collapse
Affiliation(s)
- Faezeh Nemati
- Department of Synthesis of Medicinal Organic Compounds, Institute of Medicinal Chemistry, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
| | - Amir Ata Bahmani Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran.
| |
Collapse
|
59
|
Lustig M, Hahn C, Leangen Herigstad M, Andersen JT, Leusen JHW, Burger R, Valerius T. Sialylation inhibition improves macrophage mediated tumor cell phagocytosis of breast cancer cells triggered by therapeutic antibodies of different isotypes. Front Oncol 2024; 14:1488668. [PMID: 39659795 PMCID: PMC11628485 DOI: 10.3389/fonc.2024.1488668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Tumor cell phagocytosis by macrophages is considered a relevant mechanism of action for many therapeutic IgG antibodies. However, tumor cells employ several mechanisms to evade immune recognition, including hypersialylation. Here, we describe how reduction of sialic acid exposure on tumor cells promotes antibody-dependent tumor cell phagocytosis (ADCP) by macrophages. Incubation with the sialyltransferase inhibitor (STi) P-3Fax-Neu5Ac reduced sialylation on two breast cancer cell lines, rendering these cells more susceptible to macrophage mediated phagocytosis by EGFR or HER2 antibodies. This was observed with not only IgG1 and IgG2 antibodies but also IgA2 variants. These results show that inhibiting sialic acid exposure triggers enhanced tumor cell phagocytosis by macrophages irrespective of the antibody isotype and the tumor target antigen. Investigating the underlying mechanisms of enhanced ADCP, we observed reduced binding of soluble sialic acid-binding immunoglobulin-like lectins (Siglec)-7 and Siglec-9 to tumor cells after sialylation inhibition. However, Fc silent blocking antibodies against Siglec-7 or Siglec-9, or their combination, only marginally improved ADCP. Our results further promote the concept of cancer hypersialylation as immune escape mechanism, which could serve as target to improve tumor immunotherapy with monoclonal antibodies.
Collapse
Affiliation(s)
- Marta Lustig
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Hahn
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marie Leangen Herigstad
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Institute for Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate Burger
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Medicine II, University Medical Center Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
60
|
Zhang X, Hao P, Mo J, Wang PY, Wang G, Li L, Zheng XJ, Yuan X, Yao W, Jin N, Li C, Ye XS. Local and Noninvasive Glyco-Virus Checkpoint Nanoblockades Restrict Sialylation for Prolonged Broad-Spectrum Epidemic Virus Therapy. ACS NANO 2024; 18:32910-32923. [PMID: 39536146 DOI: 10.1021/acsnano.4c12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has driven major advances in virus research. The role of glycans in viral infection has been revealed, with research demonstrating that terminal sialic acids are key receptors during viral attachment and infection into host cells. However, there is an urgent demand for universal tools to study the mechanism of sialic acids in viral infections, as well as to develop therapeutic agents against epidemic viruses through the downregulation of terminal sialic acid residues on glycans acting as a glyco-virus checkpoint to accelerate virus clearance. In this study, we developed a robust sialic acids blockade tool termed local and noninvasive glyco-virus checkpoint nanoblockades (LONG NBs), which blocked cell surface sialic acids by endogenously and continuously inhibiting the de novo sialic acids biosynthesis pathway. Furthermore, LONG NBs could accurately characterize the sialic acid-dependent profiles of multiple virus variants and protected the host against partial SARS-CoV-2, rotavirus, and influenza A virus infections after local and noninvasive administration. Our results suggest that LONG NBs represent a promising tool to facilitate in-depth research on the mechanism of viral infection, and serve as a broad-spectrum protectant against existing and emerging viral variants via glyco-virus checkpoint blockade.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Pengfei Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130000, China
| | - Letian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun 130000, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China
| |
Collapse
|
61
|
Ghosh P. Deciphering the Cell Surface Sugar-Coating via Biochemical Pathways. Chemistry 2024; 30:e202401983. [PMID: 39215611 DOI: 10.1002/chem.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cell surface components, specifically glycans, play a significant role in several biological functions like cell structure, crosstalk between cells, and eventual target recognition of the cells for therapeutics. The dense layer of glycans, i. e., glycocalyx, could differ in taxon, species, and cell type. Glycans are coupled with lipids and proteins to form glycolipids, glycoproteins, proteoglycans, and glycosylphosphatidylinositol-anchored proteins, making their study challenging. However, understanding glycosylation at the cellular level is vital for fundamental research and advancing glycan-targeted therapy. Among different pathways, metabolic glycan labelling uses the natural metabolic processes of the cell to introduce abiotic functionality into glycan residues. The Bertozzi group pioneered metabolic oligosaccharide engineering using glycan salvage pathways to convert monosaccharides with unnatural modifications. This eventually results in the probe becoming part of the complex cellular glycan structures via click chemistry using copper. On the other hand, the boronic acid-based probe can recognise carbohydrates in a single step without any chemical modification of the surface. This review discusses the significance of glycans as biomarkers for different diseases and the necessity to evaluate them in situ within the physiological environment. The review also discusses the prospect of this field and its potential applications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
62
|
Hashimoto N, Ito S, Harazono A, Tsuchida A, Mouri Y, Yamamoto A, Okajima T, Ohmi Y, Furukawa K, Kudo Y, Kawasaki N, Furukawa K. Bidirectional signals generated by Siglec-7 and its crucial ligand tri-sialylated T to escape of cancer cells from immune surveillance. iScience 2024; 27:111139. [PMID: 39507251 PMCID: PMC11539641 DOI: 10.1016/j.isci.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Siglec-7, an inhibitory receptor expressed on natural killer (NK) cells, recognizes sialic acid-containing glycans. However, the ligand glycan structures of Siglec-7 and its carrier proteins have not been comprehensively investigated. Here, we identified four sialyltransferases that are used for the synthesis of ligand glycans of Siglec-7 and two ligand O-glycan-carrier proteins, PODXL and MUC13, using a colon cancer line. Upon binding of these ligand glycans, Siglec-7-expressing immune cells showed reduced cytotoxic activity, whereas cancer cells expressing ligand glycans underwent signal activation, leading to enhanced invasion activity. To clarify the structure of the ligand glycan, podoplanin (PDPN) identified as a Siglec-7 ligand-carrier protein, was transfected into HEK293T cells using sialyltransferase cDNAs. Mass spectrometry of the products revealed a ligand glycan, tri-sialylated T antigen. These results indicate that Siglec-7 interaction with its ligand generates bidirectional signals in NK and cancer cells, leading to the efficient escape of cancers from host immune surveillance.
Collapse
Affiliation(s)
- Noboru Hashimoto
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
- Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Shizuka Ito
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Akira Harazono
- Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi 173-0003, Japan
| | - Yasuhiro Mouri
- Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Akihito Yamamoto
- Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Tetsuya Okajima
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Yuhsuke Ohmi
- Clinical Engineering, Chubu University College of Life and Health Science, Aichi 487-8501, Japan
| | - Keiko Furukawa
- Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| | - Yasusei Kudo
- Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Nana Kawasaki
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Koichi Furukawa
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
- Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| |
Collapse
|
63
|
Santangelo M, Iacopini D, Favero L, Zecchi R, Pieraccini G, Di Pietro S, Di Bussolo V. One-Pot Stereospecific Synthesis of 1,4-Oligosaccharides by Glycal-Derived Vinyl Epoxides Assembly. ACS OMEGA 2024; 9:45047-45052. [PMID: 39554454 PMCID: PMC11561766 DOI: 10.1021/acsomega.4c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024]
Abstract
Recently, naturally occurring linear 1,4-glycans have attracted remarkable attention for their activity in cancer and neurodegenerative disease treatment. Classical chemical synthetic strategies for linear 1,4-oligosaccharides are considerably time-consuming due to orthogonal protection/deprotection, the introduction of leaving groups, and various forms of activation of the glycosylation reaction. Herein, we present a new one-pot microwave-activated reiterative assembly of glycal-derived vinyl epoxides in an uncatalyzed substrate-dependent stereospecific process for the preparation of both β-1,4-d-Gulo and α-1,4-d-Manno oligosaccharides.
Collapse
Affiliation(s)
| | - Dalila Iacopini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucilla Favero
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Riccardo Zecchi
- CISM
- Centro di servizi di Spettrometria di Massa, Piattaforma dei Centri
di servizio, Università degli Studi
di Firenze, Viale G.
Pieraccini 6, 50139 Firenze, Italy
| | - Giuseppe Pieraccini
- CISM
- Centro di servizi di Spettrometria di Massa, Piattaforma dei Centri
di servizio, Università degli Studi
di Firenze, Viale G.
Pieraccini 6, 50139 Firenze, Italy
| | | | - Valeria Di Bussolo
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
64
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
65
|
Grabarics M, Mallada B, Edalatmanesh S, Jiménez-Martín A, Pykal M, Ondráček M, Kührová P, Struwe WB, Banáš P, Rauschenbach S, Jelínek P, de la Torre B. Atomically resolved imaging of the conformations and adsorption geometries of individual β-cyclodextrins with non-contact AFM. Nat Commun 2024; 15:9482. [PMID: 39488518 PMCID: PMC11531514 DOI: 10.1038/s41467-024-53555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Glycans, consisting of covalently linked sugar units, are a major class of biopolymers essential to all known living organisms. To better understand their biological functions and further applications in fields from biomedicine to materials science, detailed knowledge of their structure is essential. However, due to the extraordinary complexity and conformational flexibility of glycans, state-of-the-art glycan analysis methods often fail to provide structural information with atomic precision. Here, we combine electrospray deposition in ultra-high vacuum with non-contact atomic force microscopy and theoretical calculations to unravel the structure of β-cyclodextrin, a cyclic glucose oligomer, with atomic-scale detail. Our results, established on the single-molecule level, reveal the different adsorption geometries and conformations of β-cyclodextrin. The position of individual hydroxy groups and the location of the stabilizing intramolecular H-bonds are deduced from atomically resolved images, enabling the unambiguous assignment of the molecular structure and demonstrating the potential of the method for glycan analysis.
Collapse
Affiliation(s)
- Márkó Grabarics
- Department of Chemistry, University of Oxford, OX1 3QU, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, Oxford, UK
| | - Benjamín Mallada
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Shayan Edalatmanesh
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Alejandro Jiménez-Martín
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19, Prague, Czech Republic
| | - Martin Pykal
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Martin Ondráček
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
| | - Petra Kührová
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, Oxford, UK
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Pavel Banáš
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, OX1 3QU, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, Oxford, UK.
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic.
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Bruno de la Torre
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
- Nanomaterials and Nanotechnology Research Center, CSIC-UNIOVI-PA, 33940, El Entrego, Spain.
| |
Collapse
|
66
|
Qiu WL, Chao CH, Lu MK. Anti-inflammatory and anti-lung cancer activities of low-molecular-weight and high-sulfate-content sulfated polysaccharides extracted from the edible fungus Poria cocos. Int J Biol Macromol 2024; 279:135483. [PMID: 39260636 DOI: 10.1016/j.ijbiomac.2024.135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Sulfated polysaccharides (SPSs) have excellent physicochemical properties, attracting research interest in the pharmaceutical industry. A previous study extracted SPS (named Suc40) from the edible fungus, Poria cocos and demonstrated that it exhibited anti-inflammatory and anticancer activities. In this study, three fractions of Suc40, Suc40 F1, Suc40 F2, and Suc40 F3, with different molecular weights and sulfate contents were prepared through gel-filtration column chromatography. The molecular weights of F1, F2, and F3 were approximately 616.23, 82.57, and 6.21 kDa, respectively, and their sulfate content were 0.23, 1.65, and 1.90 mmol/g, respectively. The fractions' anti-inflammatory activities were determined by assessing their ability to suppress inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Suc40 F2 and Suc40 F3 suppressed interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production by 60 % and 35 %, respectively. Suc40 F2 and Suc40 F3 suppressed protein kinase B (AKT)/p38 and p38 signaling, which resulted in anti-inflammatory effects. The fractions' anti-lung cancer activity was evaluated by assessing their H1975 cell proliferation inhibition. Suc40 F3 at a concentration of 800 μg/ml exhibited maximal cell proliferation inhibition. The low molecular weight and high sulfate content of Suc40 F3 were associated with its enhanced anti-inflammatory and anti-lung cancer activities.
Collapse
Affiliation(s)
- Wei-Lun Qiu
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hsein Chao
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
67
|
Nardini E, Rodriguez E, van Kooyk Y. The tissue glycome as regulator of immune activation and tolerance mediated by C-type lectins and Siglecs. Semin Immunol 2024; 76:101913. [PMID: 39602867 DOI: 10.1016/j.smim.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The immune system is a complex network of highly specialized microenvironments, denominated niches, which arise from dynamic interactions between immune and parenchymal cells as well as acellular components such as structural elements and local molecular signals. A critical, yet underexplored, layer shaping these niches is the glycome, the complete repertoire of glycans and glycoconjugates produced by cells. The glycome is prevalent in the outer membrane of cells and their secreted components, and can be sensed by glycan binding receptors on immune cells. These receptors detect changes in glycosylation and consequently modulate immune cell activity, trafficking, and signalling, altering homeostasis. Tissues like the brain and the placenta are prone to accommodate tolerance, while the gut and the thymus are sensitive to inflammation. We provide here an overview of current literature that shows the impact of altered glycosylation of tissues on host immune cells and how interference in this process may lead to new diagnostics and immune therapeutics, aiming to restore the immune balance in autoimmunity and cancer.
Collapse
Affiliation(s)
- Eleonora Nardini
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, Amsterdam 1117, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, Amsterdam 1117, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan, Amsterdam 1117, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
68
|
Xu H, Ma H, Li Y, Bi S, Cai K, Wu L, Zhang L, Guan H, Li C, Yang J, Qiu P. Propylene glycol alginate sodium sulfate suppressed lung metastasis by blocking P-selectin to recruit CD4 regulatory T cells. Int J Biol Macromol 2024; 279:134976. [PMID: 39179086 DOI: 10.1016/j.ijbiomac.2024.134976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
P-selectin has been shown to enhance growth and metastasis of mouse tumors by promoting regulatory T cell (Treg) infiltration into the tumors. Theoretically, a P-selectin antagonist could suppress the process. Popylene glycol alginate sodium sulfate (PSS) is a heparin-like marine drug, which was originally approved to treat cardiovascular disease in China. Previously, we reported that PSS was an effective P-selectin antagonist in vitro. However, it is unknown whether PSS can regulate Treg infiltration and its effect on lung metastasis in vivo. Our results showed that PSS at 30 mg/kg significantly suppressed lung metastasis and improved overall survival, with potency comparable to the positive control LMWH. Mechanistic study indicated that PSS blocked tumor cells adhesion and activated platelets by directly binding with activated platelet's P-selectin. Compared to the model group, PSS decreased the percent of Tregs by 63 % in lungs after treating for 21 days while increasing CD8+ T cells (1.59-fold) and Granzyme B+ CD8 T cells (2.08-fold)' percentage for generating an adaptive response for systemic tumor suppression. The study indicated that the P-selectin antagonist, PSS, suppressed lung metastasis by inhibiting the infiltration of regulatory T cells (Treg) into the tumors.
Collapse
Affiliation(s)
- Huixin Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, 700 Changcheng Rd, Qingdao, Shandong,266109, China
| | - Yannan Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Shijie Bi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Kaiyu Cai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Lijuan Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qiangdao, 23 Hongkong East Rd, Qingdao, Shandong 266003, China
| |
Collapse
|
69
|
Heimburg-Molinaro J, Mehta AY, Tilton CA, Cummings RD. Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies. Mol Cell Proteomics 2024; 23:100844. [PMID: 39307422 PMCID: PMC11585810 DOI: 10.1016/j.mcpro.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/11/2024] Open
Abstract
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
Collapse
Affiliation(s)
- Jamie Heimburg-Molinaro
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Tilton
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
70
|
Tian C, Li X, Zhang H, He J, Zhou Y, Song M, Yang P, Tan X. Differences in IgG afucosylation between groups with and without carotid atherosclerosis. BMC Cardiovasc Disord 2024; 24:612. [PMID: 39487405 PMCID: PMC11529013 DOI: 10.1186/s12872-024-04296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND A previous study demonstrated that N-glycosylation profiles of IgG are associated with subclinical atherosclerosis in a British population. However, the generalisability of this finding to other ethnic groups remains to be investigated, and it has yet to account for additional traditional atherosclerotic risk factors. The present study, thus, aims to explore IgG N-glycosylation profiles in Han Chinese with atherosclerosis, and their potential role in atherosclerosis, while controlling for traditional atherosclerotic risk factors. METHODS Data of this case-control study were obtained from an established umbrella Health Examination Cohort Study (registration number: ChiCTR2100048740). The investigation was conducted at the Health Care Centre of the First Affiliated Hospital of Shantou University Medical College in China, from August 1, 2021, to July 31, 2022. A sample of 69 carotid atherosclerosis (CAS) cases was recruited from the umbrella cohort, along with 69 controls without carotid atherosclerosis, matched by traditional atherosclerosis-related risk factors, including gender, age, smoking, alcohol consumption, hypertension, diabetes, dyslipidemia and obesity. Subsequently, serum IgG N-glycosylation was profiled using Ultra-Performance Liquid Chromatography. RESULTS After propensity score matching, the relative abundance of IgG fucosylation in CAS cases was significantly lower than that in controls [95.32 (92.96, 95.99) vs. 95.96 (94.70, 96.58), P = 0.022]. The traditional atherosclerosis-related risk factors showed no statistically significant difference between CAS cases and controls (P > 0.05). CONCLUSIONS The reduced fucosylation of IgG in CAS cases underscores the pivotal role of afucosylation in CAS. Enhancing the inflammatory capability of IgG via initiating antibody-dependent cell-mediated cytotoxicity could be the potential mechanism behind this, which should be further verified by functional studies.
Collapse
Affiliation(s)
- Cuihong Tian
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Clinical Research Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
- Human Phenome Institute of Shantou University Medical College, Guangdong Engineering Research Centre of Human Phenome, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, Guangdong , China
- Glycome Research Institute, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Molecular Cardiology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
| | - Hongxia Zhang
- Health Care Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jieyi He
- Health Care Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yan Zhou
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Manshu Song
- Centre for Precision Health, Edith Cowan University, Perth, WA, 6027, Australia
| | - Peixuan Yang
- Health Care Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Clinical Research Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Glycome Research Institute, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
71
|
Xu X, Peng Q, Jiang X, Tan S, Yang W, Han Y, Oyang L, Lin J, Shen M, Wang J, Li H, Xia L, Peng M, Wu N, Tang Y, Wang H, Liao Q, Zhou Y. Altered glycosylation in cancer: molecular functions and therapeutic potential. Cancer Commun (Lond) 2024; 44:1316-1336. [PMID: 39305520 PMCID: PMC11570773 DOI: 10.1002/cac2.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 11/19/2024] Open
Abstract
Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate-glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.
Collapse
Affiliation(s)
- Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mengzhou Shen
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jiewen Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Haofan Li
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| | - Qianjin Liao
- Department of OncologyHunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP. R. China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| |
Collapse
|
72
|
Jansen DTSL, Nikolic T, den Hollander NHM, Zwaginga JJ, Roep BO. Bridging the Gap Between Tolerogenic Dendritic Cells In Vitro and In Vivo: Analysis of Siglec Genes and Pathways Associated with Immune Modulation and Evasion. Genes (Basel) 2024; 15:1427. [PMID: 39596627 PMCID: PMC11593460 DOI: 10.3390/genes15111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity. We successfully generated tolDCs in vitro to durably restore immune tolerance to an islet autoantigen in type 1 diabetes patients in a clinical trial. However, cancers can induce inhibitory DCs in vivo that impair anti-tumor immunity through Siglec signaling. METHODS To connect in vivo and in vitro tolDC properties, we tested whether tolDCs generated in vitro may also employ the Siglec pathway to regulate autoimmunity by comparing the transcriptomes and protein expression of immature and mature inflamDCs and tolDCs, generated from monocytes. RESULTS Both immature DC types expressed most Siglec genes. The expression of these genes declined significantly in mature inflamDCs compared to mature tolDCs. Surface expression of Siglec proteins by DCs followed the same pattern. The majority of genes involved in the different Siglec pathways were differentially expressed by mature tolDCs, as opposed to inflamDCs, and in inhibitory pathways in particular. CONCLUSIONS Our results show that tolDCs generated in vitro mimic tumor-resident inhibitory DCs in vivo regarding Siglec expression.
Collapse
Affiliation(s)
| | | | | | | | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.T.S.L.J.); (T.N.); (J.J.Z.)
| |
Collapse
|
73
|
Li L, Tan Q, Wu X, Mou X, Lin Z, Liu T, Huang W, Deng L, Jin T, Xia Q. Coagulopathy and acute pancreatitis: pathophysiology and clinical treatment. Front Immunol 2024; 15:1477160. [PMID: 39544925 PMCID: PMC11560453 DOI: 10.3389/fimmu.2024.1477160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Coagulopathy is a critical pathophysiological mechanism of acute pancreatitis (AP), arising from the complex interplay between innate immune, endothelial cells and platelets. Although initially beneficial for the host, uncontrolled and systemic activation of coagulation cascade in AP can lead to thrombotic and hemorrhagic complications, ranging from subclinical abnormalities in coagulation tests to severe clinical manifestations, such as disseminated intravascular coagulation. Initiation of coagulation activation and consequent thrombin generation is caused by expression of tissue factor on activated monocytes and is ineffectually offset by tissue factor pathway inhibitor. At the same time, endothelial-associated anticoagulant pathways, in particular the protein C system, is impaired by pro-inflammatory cytokines. Also, fibrin removal is severely obstructed by inactivation of the endogenous fibrinolytic system, mainly as a result of upregulation of its principal inhibitor, plasminogen activator inhibitor type 1. Finally, increased fibrin generation and impaired break down lead to deposition of (micro) vascular clots, which may contribute to tissue ischemia and ensuing organ dysfunction. Despite the high burden of coagulopathy that have a negative impact on AP patients' prognosis, there is no effective treatment yet. Although a variety of anticoagulants drugs have been evaluated in clinical trials, their beneficial effects are inconsistent, and they are also characterized by hemorrhagic complications. Future studies are called to unravel the pathophysiologic mechanisms involved in coagulopathy in AP, and to test novel therapeutics block coagulopathy in AP.
Collapse
Affiliation(s)
- Lan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Qingyuan Tan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Xueying Wu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Mou
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Ziqi Lin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Deng
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
74
|
Ma S, Zhang P, Ye J, Tian Y, Tian X, Jung J, Macauley MS, Zhang J, Wu P, Wen L. Enzyme-Sialylation-Controlled Chemical Sulfation of Glycan Epitopes for Decoding the Binding of Siglec Ligands. J Am Chem Soc 2024; 146:29469-29480. [PMID: 39417319 DOI: 10.1021/jacs.4c08817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Widely distributed in nature, sulfated glycan epitopes play important roles in diverse pathophysiological processes. However, due to their structural complexity, the preparation of glycan epitopes with structurally defined sulfation patterns is challenging, which significantly hampers the detailed elucidation of their biological functions at the molecular level. Here, we introduce a strategy for site-specific chemical sulfation of glycan epitopes, leveraging enzymatic sialylation and desialylation processes to precisely control the regio-specificity of sulfation of disaccharide or trisaccharide glycan backbones. Using this method, a sulfated glycan library covering the most common sialylated glycan epitopes was prepared in high yield and efficiency. By screening a microarray prepared with this glycan library, we systematically probed their binding specificity with human Siglecs (sialic acid-binding immunoglobulin-type lectins), many of which function as glyco-immune checkpoints to suppress immune system activation. Our investigation revealed that sulfation and sialylation patterns serve as important determinants of Siglec binding affinity and specificity. Thus, these findings offer new insights for the development of research tools and potential therapeutic agents targeting glyco-immune checkpoints by modulating the Siglec signaling pathway.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengfei Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinfeng Ye
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
75
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
76
|
Lensch V, Gabba A, Hincapie R, Bhagchandani SH, Basak A, Alam MM, Noble J, Irvine DJ, Shalek AK, Johnson JA, Finn MG, Kiessling LL. Carbohydrate-Lectin Interactions Reprogram Dendritic Cells to Promote Type 1 Anti-Tumor Immunity. ACS NANO 2024; 18:26770-26783. [PMID: 39283240 PMCID: PMC11646345 DOI: 10.1021/acsnano.4c07360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Cancer vaccine development is inhibited by a lack of strategies for directing dendritic cell (DC) induction of effective tumor-specific cellular immunity. Pathogen engagement of DC lectins and toll-like receptors (TLRs) is thought to shape immunity by directing T cell function. Controlling downstream responses, however, remains a major challenge. A critical goal in advancing vaccine development involves the identification of receptors that drive type 1 cellular immunity. The immune system monitors cells for aberrant glycosylation (a sign of a foreign entity), but potent activation occurs when a second signal, such as single-stranded RNA or lipopolysaccharide, is present to activate TLR signaling. To exploit dual signaling, we engineered a glycan-costumed virus-like particle (VLP) vaccine that displays a DC-SIGN-selective aryl mannose ligand and encapsulates TLR7 agonists. These VLPs deliver programmable peptide antigens to induce robust DC activation and type 1 cellular immunity. In contrast, VLPs lacking this critical DC-SIGN ligand promoted DC-mediated humoral immunity, offering limited tumor control. Vaccination with glycan-costumed VLPs generated tumor antigen-specific Th1 CD4+ and CD8+ T cells that infiltrated solid tumors, significantly inhibiting tumor growth in a murine melanoma model. The tailored VLPs also afforded protection against the reintroduction of tumor cells. Thus, DC lectin-driven immune reprogramming, combined with the modular programmability of VLP platforms, provides a promising framework for directing cellular immunity to advance cancer immunotherapies and vaccines.
Collapse
Affiliation(s)
- Valerie Lensch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adele Gabba
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sachin H Bhagchandani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ankit Basak
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mohammad Murshid Alam
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffery Noble
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Alex K Shalek
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
77
|
Murphy PV, Dhara A, Fitzgerald LS, Hever E, Konda S, Mandal K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 2024; 53:9428-9445. [PMID: 39162695 DOI: 10.1039/d4cs00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Glycan recognition by lectins mediates important biological events. This Tutorial Review aims to introduce lectin-ligand interactions and show how these molecular recognition events inspire innovations such as: (i) glycomimetic ligands; (ii) multivalent ligand agonists/antagonists; (iii) ligands for precision delivery of therapies to cells, where therapies include vaccines, siRNA and LYTACs (iv) development of diagnostics. A small number of case studies are selected to demonstrate principles for development of new ligands for applications inspired by knowledge of natural glycan ligand structure and function.
Collapse
Affiliation(s)
- Paul V Murphy
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Ashis Dhara
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
| | - Liam S Fitzgerald
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eoin Hever
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Saidulu Konda
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Kishan Mandal
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| |
Collapse
|
78
|
Wang YE, Chen J, Yang H, He J, Varier KM, Chen Y, Wu X, Guo Q, Liang Y, Shen X, Wei M, Li W, Tao L. Polysialic acid driving cardiovascular targeting co-delivery 1,8-cineole and miR-126 to synergistically alleviate lipopolysaccharide-induced acute cardiovascular injury. Int J Biol Macromol 2024; 280:135970. [PMID: 39332566 DOI: 10.1016/j.ijbiomac.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Infection-induced cardiovascular damage is the primary pathological mechanism underlying septic cardiac dysfunction. This condition affects the majority of patients in intensive care unit and has an unfavorable prognosis due to the lack of effective therapies available. Vascular cell adhesion molecule-1 (VCAM-1) plays a vital role in coordinating the inflammatory response and recruitment of leukocytes in cardiac tissue, making it a potential target for developing novel therapies. MicroRNA-126 (miR-126) has been shown to downregulate VCAM-1 expression in endothelial cells, reducing leukocyte adhesion and exerting anti-inflammatory effects. Therefore, this work described a polysialic acid (PSA) modified ROS-responsive nanosystem to targeted co-delivery 1,8-Cineole and miR-126 for mitigating septic cardiac dysfunction. The nanosystem consists of 1,8-Cineole nanoemulsion (CNE) conjugated with PEI/miR126 complex by a ROS-sensitive linker, with PSA on its surface to facilitate targeted delivery via specific interactions with selectins on endothelial cells. CNE has demonstrated protective effects against inflammation in the cardiovascular system and synergistic anti-inflammatory effects when combined with miR-126. The targeted nanosystem successfully delivered miR-126 and 1,8-Cineole to the injured heart tissues and vessels, reducing inflammatory responses and improving cardiac function. In summary, this work provides a promising therapy for alleviating the inflammatory response in sepsis while boosting cardiovascular protection.
Collapse
Affiliation(s)
- Yu-E Wang
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China; The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jianbo Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Krishnapriya M Varier
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Yuanxian Liang
- School of Clinical Medicine, Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Maochen Wei
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
79
|
Zhu Q, Chaubard JL, Geng D, Shen J, Ban L, Cheung ST, Wei F, Liu Y, Sun H, Calderon A, Dong W, Qin W, Li T, Wen L, Wang PG, Sun S, Yi W, Hsieh-Wilson LC. Chemoenzymatic Labeling, Detection and Profiling of Core Fucosylation in Live Cells. J Am Chem Soc 2024; 146:26408-26415. [PMID: 39279393 DOI: 10.1021/jacs.4c09303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Core fucosylation, the attachment of an α-1,6-linked-fucose to the N-glycan core pentasaccharide, is an abundant protein modification that plays critical roles in various biological processes such as cell signaling, B cell development, antibody-dependent cellular cytotoxicity, and oncogenesis. However, the tools currently used to detect core fucosylation suffer from poor specificity, exhibiting cross-reactivity against all types of fucosylation. Herein we report the development of a new chemoenzymatic strategy for the rapid and selective detection of core fucosylated glycans. This approach employs a galactosyltransferase enzyme identified fromCaenorhabditis elegansthat specifically transfers an azido-appended galactose residue onto core fucose via a β-1,4 glycosidic linkage. We demonstrate that the approach exhibits superior specificity toward core fucose on a variety of complex N-glycans. The method enables detection of core fucosylated glycoproteins from complex cell lysates, as well as on live cell surfaces, and it can be integrated into a diagnostic platform to profile protein-specific core fucosylation levels. This chemoenzymatic labeling approach offers a new strategy for the identification of disease biomarkers and will allow researchers to further characterize the fundamental role of this important glycan in normal and disease physiology.
Collapse
Affiliation(s)
- Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jean-Luc Chaubard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Didi Geng
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lan Ban
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Sheldon T Cheung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Yating Liu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Haofan Sun
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Angie Calderon
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Wenbo Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, National Center for Protein Sciences Beijing, Beijing 102206, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, The Chinese Academy of Sciences, Shanghai 201203, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology Institution, Shenzhen, Guangdong 518055, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou 310012, China
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
80
|
Ideo H, Tsuchida A, Takada Y. Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease. Int J Mol Sci 2024; 25:10231. [PMID: 39337716 PMCID: PMC11432504 DOI: 10.3390/ijms251810231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results.
Collapse
Affiliation(s)
- Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan; (A.T.); (Y.T.)
| | | | | |
Collapse
|
81
|
Compañón I, Ballard CJ, Lira-Navarrete E, Santos T, Monaco S, Muñoz-García JC, Delso I, Angulo J, Gerken TA, Schjoldager KT, Clausen H, Tejero T, Merino P, Corzana F, Hurtado-Guerrero R, Ghirardello M. Rational Design of Dual-Domain Binding Inhibitors for N-Acetylgalactosamine Transferase 2 with Improved Selectivity over the T1 and T3 Isoforms. JACS AU 2024; 4:3649-3656. [PMID: 39328774 PMCID: PMC11423303 DOI: 10.1021/jacsau.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
The GalNAc-transferase (GalNAc-T) family, consisting of 20 isoenzymes, regulates the O-glycosylation process of mucin glycopeptides by transferring GalNAc units to serine/threonine residues. Dysregulation of specific GalNAc-Ts is associated with various diseases, making these enzymes attractive targets for drug development. The development of inhibitors is key to understanding the implications of GalNAc-Ts in human diseases. However, developing selective inhibitors for individual GalNAc-Ts represents a major challenge due to shared structural similarities among the isoenzymes and some degree of redundancy among the natural substrates. Herein, we report the development of a GalNAc-T2 inhibitor with higher potency compared to those of the T1 and T3 isoforms. The most promising candidate features bivalent GalNAc and thiophene moieties on a peptide chain, enabling binding to both the lectin and catalytic domains of the enzyme. The binding mode was confirmed by competitive saturation transfer difference NMR experiments and validated through molecular dynamics simulations. The inhibitor demonstrated an IC50 of 21.4 μM for GalNAc-T2, with 8- and 32-fold higher selectivity over the T3 and T1 isoforms, respectively, representing a significant step forward in the synthesis of specific GalNAc-T inhibitors tailored to the unique structural features of the targeted isoform.
Collapse
Affiliation(s)
- Ismael Compañón
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| | - Collin J. Ballard
- Department
of Biochemistry, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, Ohio 44106, United States
| | - Erandi Lira-Navarrete
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tanausú Santos
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| | - Serena Monaco
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
| | - Juan C. Muñoz-García
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
- Instituto
de Investigaciones Químicas, Consejo
Superior de Investigaciones Científicas and Universidad de
Sevilla, Avenida Américo
Vespucio, 49, Sevilla 41092, Spain
| | - Ignacio Delso
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
| | - Jesus Angulo
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
- Instituto
de Investigaciones Químicas, Consejo
Superior de Investigaciones Científicas and Universidad de
Sevilla, Avenida Américo
Vespucio, 49, Sevilla 41092, Spain
| | - Thomas A. Gerken
- Department
of Biochemistry, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, Ohio 44106, United States
- Departments
of Biochemistry and Chemistry, Case Western
Reserve University, 2109
Adelbert Rd, Cleveland, Ohio 44106, United States
| | - Katrine T. Schjoldager
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik Clausen
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tomás Tejero
- Department
of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Institute
of Chemical Synthesis and Homogeneous Catalysis, University of Zaragoza-CSIC, Zaragoza 50009, Spain
| | - Pedro Merino
- Department
of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
- Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza 50018, Spain
| | - Francisco Corzana
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| | - Ramon Hurtado-Guerrero
- Department
of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen
Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
- Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza 50018, Spain
- Fundación ARAID, Zaragoza 50018, Spain
| | - Mattia Ghirardello
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja, Universidad
de La Rioja, Logroño 26006, Spain
| |
Collapse
|
82
|
Hu ZX, Li SR, Xia QJ, Wang T, Voglmeir J, Widmalm G, Liu L. Enzymatic synthesis of N-formylated sialosides via a five-enzyme cascade. Org Biomol Chem 2024; 22:7485-7491. [PMID: 39189395 DOI: 10.1039/d4ob00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Here we report an enzymatic approach to synthesize N-formylneuraminic acid (Neu5Fo) containing sialosides, through a five-enzyme cascade. This method stands as an alternative to traditional chemical syntheses, aiming for precision and efficiency in generating sialosides with a tailored N-formyl group generated directly from formic acid. The newly synthesized Neu5Fo was characterized using various NMR techniques revealing a conformational equilibrium at the amide bond of the formyl group in slow exchange on the NMR time scale with a trans : cis ratio of ∼2 : 1. This work not only suggests potential for exploring the biological roles of sialosides but also points to the possibility of developing novel therapeutic agents.
Collapse
Affiliation(s)
- Zi-Xuan Hu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Shu-Rui Li
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Qing-Jun Xia
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| |
Collapse
|
83
|
Smidt JM, Märcher A, Skaanning MK, El-Chami K, Teodori L, Omer M, Kjems J, Gothelf KV. Dual-Targeting of the HER2 Cancer Receptor with an Antibody-Directed Enzyme and a Nanobody-Guided MMAE Prodrug Scaffold. Chembiochem 2024; 25:e202400437. [PMID: 38945824 DOI: 10.1002/cbic.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug. Dual-targeting of the constructs to two proximal epitopes of HER2 was shown by flow cytometry, and a dual-targeted enzymatic drug release assay revealed cytotoxicity upon prodrug activation specifically for HER2-positive cancer cells. The specific delivery and activation of prodrugs in this way could potentially be used to decrease systemic side effects and increase drug efficacy, and utilization of Tz-Sia provides an opportunity to combine the local chemotherapeutic effect of the DuADEPT with an anticancer immune response.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Mads Koch Skaanning
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kassem El-Chami
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
84
|
Blawitzki LC, Bartels N, Bonda L, Schmidt S, Monzel C, Hartmann L. Glycomacromolecules to Tailor Crowded and Heteromultivalent Glycocalyx Mimetics. Biomacromolecules 2024; 25:5979-5994. [PMID: 39122664 DOI: 10.1021/acs.biomac.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The glycocalyx, a complex carbohydrate layer on cell surfaces, plays a crucial role in various biological processes. Understanding native glycocalyces' complexity is challenging due to their intricate and dynamic nature. Simplified mimics of native glycocalyces offer insights into glycocalyx functions but often lack molecular precision and fail to replicate key features of the natural analogues like molecular crowding and heteromultivalency. We introduce membrane-anchoring precision glycomacromolecules synthesized via solid-phase polymer synthesis (SPPoS) and thiol-induced, light-activated controlled radical polymerization (TIRP), enabling the construction of crowded and heteromultivalent glycocalyx mimetics with varying molecular weights and densities in giant unilamellar vesicles (GUVs). The incorporation and dynamics of glycomacromolecules in the GUVs are examined via microscopy and fluorescence correlation spectroscopy (FCS) and studies on lectin-carbohydrate-mediated adhesion of GUVs reveal inhibitory and promotional adhesion effects corresponding to different glycocalyx mimetic compositions, bridging the gap between synthetic models and native analogues.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Nina Bartels
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lorand Bonda
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| |
Collapse
|
85
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
86
|
Chen X, Guo Y, Wang R. Detecting 2'-5'-adenosine linked nucleic acids via acylation of secondary hydroxy functionality. Bioorg Med Chem Lett 2024; 109:129847. [PMID: 38857849 DOI: 10.1016/j.bmcl.2024.129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
2'-5'-Adenosine linked nucleic acids are crucial components in living cells that play significant roles, including participating in antiviral defense mechanisms by facilitating the breakdown of viral genetic material. In this report, we present a chemical derivatization method employing 5-fluoro-2-pyridinoyl-imidazole as the acylation agent, a strategy that can be effectively combined with advanced analytical tools, including Nuclear Magnetic Resonance spectroscopy and Liquid Chromatography-Mass Spectrometry, to enhance the characterization and detection capabilities. This marks the first instance of a simple method designed to detect 2'-5'-adenosine linked nucleic acids. The new method is characterized by its time-saving nature, simplicity, and relative accuracy compared to previous methods.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
87
|
Lei JX, Wang R, Hu C, Lou X, Lv MY, Li C, Gai B, Wu XJ, Dou R, Cai D, Gao F. Deciphering tertiary lymphoid structure heterogeneity reveals prognostic signature and therapeutic potentials for colorectal cancer: a multicenter retrospective cohort study. Int J Surg 2024; 110:5627-5640. [PMID: 38833363 PMCID: PMC11392219 DOI: 10.1097/js9.0000000000001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) exert a crucial role in the tumor microenvironment (TME), impacting tumor development, immune escape, and drug resistance. Nonetheless, the heterogeneity of TLSs in colorectal cancer (CRC) and their impact on prognosis and treatment response remain unclear. METHODS The authors collected genome, transcriptome, clinicopathological information, and digital pathology images from multiple sources. An unsupervised clustering algorithm was implemented to determine diverse TLS patterns in CRC based on the expression levels of 39 TLS signature genes (TSGs). Comprehensive explorations of heterogeneity encompassing mutation landscape, TME, biological characteristics, response to immunotherapy, and drug resistance were conducted using multiomics data. TLSscore was then developed to quantitatively assess TLS patterns of individuals for further clinical applicability. RESULTS Three distinct TLS patterns were identified in CRC. Cluster 1 exhibited upregulation of proliferation-related pathways, high metabolic activity, and intermediate prognosis, while Cluster 2 displayed activation of stromal and carcinogenic pathways and a worse prognosis. Both Cluster 1 and Cluster 2 may potentially benefit from adjuvant chemotherapy. Cluster 3, characterized by the activation of immune regulation and activation pathways, demonstrated a favorable prognosis and enhanced responsiveness to immunotherapy. The authors subsequently employed a regularization algorithm to construct the TLSscore based on nine core genes. Patients with lower TLSscore trended to prolonged prognosis and a more prominent presence of TLSs, which may benefit from immunotherapy. Conversely, those with higher TLSscore exhibited increased benefits from adjuvant chemotherapy. CONCLUSIONS The authors identified distinct TLS patterns in CRC and characterized their heterogeneity through multiomics analyses. The TLSscore held promise for guiding clinical decision-making and further advancing the field of personalized medicine in CRC.
Collapse
Affiliation(s)
- Jia-Xin Lei
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, ShenzhenGuangdong Province
| | - Runxian Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, ZhuhaiGuangdong Province
| | - Chuling Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Xiaoying Lou
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Min-Yi Lv
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Chenghang Li
- Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou, People's Republic of China
| | - Baowen Gai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Xiao-Jian Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Ruoxu Dou
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, ZhuhaiGuangdong Province
| | - Du Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Feng Gao
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| |
Collapse
|
88
|
Barboza BR, Macedo-da-Silva J, Silva LAMT, Gomes VDM, Santos DM, Marques-Neto AM, Mule SN, Angeli CB, Borsoi J, Moraes CB, Moutinho-Melo C, Mühlenhoff M, Colli W, Marie SKN, Pereira LDV, Alves MJM, Palmisano G. ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0012454. [PMID: 39321148 PMCID: PMC11466412 DOI: 10.1371/journal.pntd.0012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/10/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which has important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. We found that modulating host polysialylation may induce oxidative stress, creating a microenvironment that favors T. cruzi survival and infection. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Vinícius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio Moreira Marques-Neto
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Borsoi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Borsoi Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Moutinho-Melo
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, and Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Julia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
89
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
90
|
Ning X, Budhadev D, Pollastri S, Nehlmeier I, Kempf A, Manfield I, Turnbull WB, Pöhlmann S, Bernardi A, Li X, Guo Y, Zhou D. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. JACS AU 2024; 4:3295-3309. [PMID: 39211605 PMCID: PMC11350578 DOI: 10.1021/jacsau.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.
Collapse
Affiliation(s)
- Xinyu Ning
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pollastri
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Iain Manfield
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, University of
Göttingen, 37073 Göttingen, Germany
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Xin Li
- Building
One, Granta Centre, G ranta Park, Sphere
Fluidics Ltd, Great Abington, Cambridge CB21 6AL, United Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
91
|
Goode EA, Orozco-Moreno M, Hodgson K, Nabilah A, Murali M, Peng Z, Merx J, Rossing E, Pijnenborg JFA, Boltje TJ, Wang N, Elliott DJ, Munkley J. Sialylation Inhibition Can Partially Revert Acquired Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2953. [PMID: 39272811 PMCID: PMC11393965 DOI: 10.3390/cancers16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy, are available and have improved patient survival; however, recurrence remains a huge clinical challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually all acquire secondary resistance, and an improved understanding of the mechanisms involved is urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have been reported as mediators of therapy resistance in cancer, but a link between tumour-associated glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel therapeutic approach in patients with advanced disease. Our study also highlights the potential to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for prostate cancer.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Amirah Nabilah
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Meera Murali
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jona Merx
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Emiel Rossing
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, 6525 XZ Nijmegen, The Netherlands
- GlycoTherapeutics B.V., 6511 AJ Nijmegen, The Netherlands
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield S10 2TN, UK
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester LE2 7LX, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| |
Collapse
|
92
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
93
|
Xia X, Yang X, Gao W, Huang W, Xia X, Yan D. A novel HER2 targeting nanoagent self-assembled from affibody-epothilone B conjugate for cancer therapy. J Nanobiotechnology 2024; 22:502. [PMID: 39169343 PMCID: PMC11337599 DOI: 10.1186/s12951-024-02754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Epothilone B (Epo B), a promising antitumor compound effective against various types of cancer cells in vitro. However, its poor selectivity for tumor cells and inadequate therapeutic windows significantly limit its potential clinical application. Affibody is a class of non-immunoglobulin affinity proteins with precise targeting capability to overexpressed molecular receptors on cancer cells, has been intensively investigated due to its exceptional affinity properties. In this study, we present a targeted nanoagent self-assembled from the precursor of an affibody conjugated with Epo B via a linker containing the thioketal (tk) group that is sensitive to reactive oxygen species (ROS). The core-shell structure of the ZHER2:342-Epo B Affibody-Drug Conjugate Nanoagent (Z-E ADCN), with the cytotoxin Epo B encapsulated within the ZHER2:342 affibody corona, leads to significantly reduced side effects on normal organs. Moreover, the abundant presence of ZHER2:342 on the surface effectively enhances the targeting capacity and tumor accumulation of the drug. Z-E ADCN can be internalized by cancer cells via HER2 receptor-mediated endocytosis followed by Epo B release in response to high levels of ROS, resulting in excellent anticancer efficacy in HER2-positive tumor models.
Collapse
Affiliation(s)
- Xuelin Xia
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wenhui Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
94
|
Szabo R, Dobie C, Montgomery AP, Steele H, Yu H, Skropeta D. Synthesis of α-Hydroxy-1,2,3-Triazole-linked Sialyltransferase Inhibitors and Evaluation of Selectivity Towards ST3GAL1, ST6GAL1 and ST8SIA2. ChemMedChem 2024; 19:e202400088. [PMID: 38758134 DOI: 10.1002/cmdc.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Tumour-derived sialoglycans, bearing the charged nonulosonic sugar sialic acid at their termini, play a critical role in tumour cell adhesion and invasion, as well as evading cell death and immune surveillance. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans, are highly upregulated in cancer, with tumour hypersialylation strongly correlated with tumour growth, metastasis and drug resistance. As a result, desialylation of the tumour cell surface using either targeted delivery of a pan-ST inhibitor (or sialidase) or systemic delivery of a non-toxic selective ST inhibitors are being pursued as potential new anti-metastatic strategies against multiple cancers including pancreatic, ovarian, breast, melanoma and lung cancer. Herein, we have employed molecular modelling to give insights into the selectivity observed in a series of selective ST inhibitors that incorporate a uridyl ring in place of the cytidine of the natural donor (CMP-Neu5Ac) and replace the charged phosphodiester linker of classical ST inhibitors with a neutral α-hydroxy-1,2,3-triazole linker. The inhibitory activities of the nascent compounds were determined against recombinant human ST enzymes (ST3GAL1, ST6GAL1, ST8SIA2) showing promising activity and selectivity towards specific ST sub-types. Our ST inhibitors are non-toxic and show improved synthetic accessibility and drug-likeness compared to earlier nucleoside-based ST inhibitors.
Collapse
Affiliation(s)
- Rémi Szabo
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chris Dobie
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew P Montgomery
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Harrison Steele
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Haibo Yu
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW, Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
95
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
96
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
97
|
Cagnoni AJ, Massaro M, Cutine AM, Gimeno A, Pérez-Sáez JM, Manselle Cocco MN, Maller SM, Di Lella S, Jiménez-Barbero J, Ardá A, Rabinovich GA, Mariño KV. Exploring galectin interactions with human milk oligosaccharides and blood group antigens identifies BGA6 as a functional galectin-4 ligand. J Biol Chem 2024; 300:107573. [PMID: 39009340 PMCID: PMC11367503 DOI: 10.1016/j.jbc.2024.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as β-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mora Massaro
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Juan M Pérez-Sáez
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián M Maller
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Di Lella
- Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology University of the Basque Country, EHU-UPV, Leioa, Spain; Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
98
|
Li Z, Du Q, Feng X, Song X, Ren Z, Lu H. A Versatile One-Step Enzymatic Strategy for Efficient Imaging and Mapping of Tumor-Associated Tn Antigen. J Am Chem Soc 2024; 146:20539-20543. [PMID: 39041660 DOI: 10.1021/jacs.4c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Tn antigen (CD175), recognized as the precursor monosaccharide (α-GalNAc) of mucin O-glycan, is a well-known tumor-associated carbohydrate antigen (TACA). It has emerged as a potential biomarker for cancer diagnosis and prognosis. However, the role it plays in cancer biology remains elusive due to the absence of a sensitive and selective detection method. In this study, we synthesized two new probes based on a unique uridine-5'-diphospho-α-d-galactose (UDP-Gal) derivative, each functionalized with either a fluorescence or a cleavable biotin tag, to develop an innovative one-step enzymatic labeling strategy, enabling the visualization, enrichment, and site-specific mapping of the Tn antigen with unparalleled sensitivity and specificity. Our versatile strategy has been successfully applied to detect and image Tn antigen across various samples, including the complex cell lysates, live cells, serum, and tissue samples. Compared to the traditional lectin method, this one-step enzymatic method is simpler and more efficient (>10/100-fold in sensitivity). Furthermore, it allowed us to map 454 Tn-glycoproteins and 624 Tn-glycosylation sites from HEK293FTn+ and Jurkat cells. Therefore, our strategy provides an exceptionally promising tool for revealing the biological functions of the Tn antigen and advancing cancer diagnostics.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Qi Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaoxiao Feng
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xuezheng Song
- Department of Biochemistry, Emory Glycomics and Molecular Interactions Core, Emory University, Atlanta, Georgia 30322, United States
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haojie Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
99
|
Hosokawa Y, Matsuoka M, Sakai Y, Fukuda R, Matsugasaki K, Homan K, Furukawa JI, Onodera T, Iwasaki N. Depletion of b-series ganglioside prevents limb length discrepancy after growth plate injury. BMC Musculoskelet Disord 2024; 25:565. [PMID: 39033138 PMCID: PMC11264953 DOI: 10.1186/s12891-024-07704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Growth plate damage in long bones often results in progressive skeletal growth imbalance and deformity, leading to significant physical problems. Gangliosides, key glycosphingolipids in cartilage, are notably abundant in articular cartilage and regulate chondrocyte homeostasis. This suggests their significant roles in regulating growth plate cartilage repair. METHODS Chondrocytes from 3 to 5 day-old C57BL/6 mice underwent glycoblotting and mass spectrometry. Based on the results of the glycoblotting analysis, we employed GD3 synthase knockout mice (GD3-/-), which lack b-series gangliosides. In 3-week-old mice, physeal injuries were induced in the left tibiae, with right tibiae sham operated. Tibiae were analyzed at 5 weeks postoperatively for length and micro-CT for growth plate height and bone volume at injury sites. Tibial shortening ratio and bone mineral density were measured by micro-CT. RESULTS Glycoblotting analysis indicated that b-series gangliosides were the most prevalent in physeal chondrocytes among ganglioside series. At 3 weeks, GD3-/- exhibited reduced tibial shortening (14.7 ± 0.2 mm) compared to WT (15.0 ± 0.1 mm, P = 0.03). By 5 weeks, the tibial lengths in GD3-/- (16.0 ± 0.4 mm) closely aligned with sham-operated lengths (P = 0.70). Micro-CT showed delayed physeal bridge formation in GD3-/-, with bone volume measuring 168.9 ± 5.8 HU at 3 weeks (WT: 180.2 ± 3.2 HU, P = 0.09), but normalizing by 5 weeks. CONCLUSION This study highlights that GD3 synthase knockout mice inhibit physeal bridge formation after growth plate injury, proposing a new non-invasive approach for treating skeletal growth disorders.
Collapse
Affiliation(s)
- Yoshiaki Hosokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yuko Sakai
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ryuichi Fukuda
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Keizumi Matsugasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
100
|
Zhang J, Huang S, Zhu Z, Gatt A, Liu J. E-selectin in vascular pathophysiology. Front Immunol 2024; 15:1401399. [PMID: 39100681 PMCID: PMC11294169 DOI: 10.3389/fimmu.2024.1401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Selectins are a group of Ca2+-dependent, transmembrane type I glycoproteins which attract cell adhesion and migration. E-selectin is exclusively expressed in endothelial cells, and its expression is strongly enhanced upon activation by pro-inflammatory cytokines. The interaction of E-selectin with its ligands on circulating leukocytes captures and slows them down, further facilitating integrin activation, firm adhesion to endothelial cells and transmigration to tissues. Oxidative stress induces endothelial cell injury, leading to aberrant expression of E-selectin. In addition, the elevated level of E-selectin is positively related to high risk of inflammation. Dysregulation of E-selectin has been found in several pathological conditions including acute kidney injury (AKI), pulmonary diseases, hepatic pathology, Venous thromboembolism (VTE). Deletion of the E-selectin gene in mice somewhat ameliorates these complications. In this review, we describe the mechanisms regulating E-selectin expression, the interaction of E-selectin with its ligands, the E-selectin physiological and pathophysiological roles, and the therapeutical potential of targeting E-selectin.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shengshi Huang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, China
| | - Zhiying Zhu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Alex Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Haematology Laboratory, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Ju Liu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, China
| |
Collapse
|