51
|
Austin GI, Park H, Meydan Y, Seeram D, Sezin T, Lou YC, Firek BA, Morowitz MJ, Banfield JF, Christiano AM, Pe'er I, Uhlemann AC, Shenhav L, Korem T. Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data. Nat Biotechnol 2023; 41:1820-1828. [PMID: 36928429 PMCID: PMC10504420 DOI: 10.1038/s41587-023-01696-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15-20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.
Collapse
Affiliation(s)
- George I Austin
- Department of Computer Science, Columbia University, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoli Meydan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Tanya Sezin
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Liat Shenhav
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY, USA.
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada.
| |
Collapse
|
52
|
Azevedo MJ, Garcia A, Costa CF, Ferreira AF, Falcão-Pires I, Brandt BW, Ramalho C, Zaura E, Sampaio-Maia B. The contribution of maternal factors to the oral microbiota of the child: Influence from early life and clinical relevance. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:191-202. [PMID: 37415593 PMCID: PMC10320028 DOI: 10.1016/j.jdsr.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The mother represents one of the earliest sources of microorganisms to the child, influencing the acquisition and establishment of its microbiota in early life. However, the impact of the mother on the oral microbiota of the child from early life until adulthood remains to unveil. This narrative review aims to: i) explore the maternal influence on the oral microbiota of the child, ii) summarize the similarity between the oral microbiota of mother and child over time, iii) understand possible routes for vertical transmission, and iv) comprehend the clinical significance of this process for the child. We first describe the acquisition of the oral microbiota of the child and maternal factors related to this process. We compare the similarity between the oral microbiota of mother and child throughout time, while presenting possible routes for vertical transmission. Finally, we discuss the clinical relevance of the mother in the pathophysiological outcome of the child. Overall, maternal and non-maternal factors impact the oral microbiota of the child through several mechanisms, although the consequences in the long term are still unclear. More longitudinal research is needed to unveil the importance of early-life microbiota on the future health of the infant.
Collapse
Affiliation(s)
- Maria João Azevedo
- INEB - Instituto Nacional de Engenharia Biomédica, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Andreia Garcia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Farmácia, Universidade do Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
- Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Carolina F.F.A. Costa
- INEB - Instituto Nacional de Engenharia Biomédica, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Ana Filipa Ferreira
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre – UnIC@RISE, Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Bernd W. Brandt
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Carla Ramalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Department of Obstetrics-Gynecology and Pediatrics, Faculdade de Medicina, Universidade do Porto, Portugal
- Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Egija Zaura
- Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, the Netherlands
| | - Benedita Sampaio-Maia
- INEB - Instituto Nacional de Engenharia Biomédica, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Medicina Dentária, Universidade do Porto, Portugal
| |
Collapse
|
53
|
Chowdhary A, Van Gelder RN, Sundararajan M. Methodologic Considerations for Studying the Ocular Surface Microbiome. OPHTHALMOLOGY SCIENCE 2023; 3:100408. [PMID: 38025161 PMCID: PMC10654231 DOI: 10.1016/j.xops.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
The ocular surface microbiome, unlike that of the skin or gut, has not been well characterized. Culture experiments historically suggested a nearly sterile ocular surface, but initial application of molecular methods such as 16S ribosomal RNA and high-throughput sequencing demonstrated a surprisingly rich ocular surface microbiome. However, a major limitation in studying such a low-biomass niche is the potential for artifactual results when amplification-based techniques such as ribosomal polymerase chain reaction and shotgun sequencing are used. It will be essential to establish standards across the field for sample collection, positive and negative controls, and limitation of contamination in both the laboratory setting and computational analysis. New developments in ocular microbiome research, including the generation of reference reagents and fluoroscopic imaging techniques, provide improved means to validate sequencing results and to visualize complex interactions between host cells and bacteria. Through more thorough characterization of the ocular surface microbiome, the connections between a dysregulated surface and ophthalmic disease may be better understood. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Apoorva Chowdhary
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, Seattle, Washington
- Department of Biological Structure, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Miel Sundararajan
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
54
|
Gaccioli F, Stephens K, Sovio U, Jessop F, Wong HS, Lager S, Cook E, de Goffau MC, Le Doare K, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS. Placental Streptococcus agalactiae DNA is associated with neonatal unit admission and foetal pro-inflammatory cytokines in term infants. Nat Microbiol 2023; 8:2338-2348. [PMID: 38030897 PMCID: PMC10686823 DOI: 10.1038/s41564-023-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus; GBS) is a common cause of sepsis in neonates. Previous work detected GBS DNA in the placenta in ~5% of women before the onset of labour, but the clinical significance of this finding is unknown. Here we re-analysed this dataset as a case control study of neonatal unit (NNU) admission. Of 436 infants born at term (≥37 weeks of gestation), 7/30 with placental GBS and 34/406 without placental GBS were admitted to the NNU (odds ratio (OR) 3.3, 95% confidence interval (CI) 1.3-7.8). We then performed a validation study using non-overlapping subjects from the same cohort. This included a further 239 cases of term NNU admission and 686 term controls: 16/36 with placental GBS and 223/889 without GBS were admitted to the NNU (OR 2.4, 95% CI 1.2-4.6). Of the 36 infants with placental GBS, 10 were admitted to the NNU with evidence of probable but culture-negative sepsis (OR 4.8, 95% CI 2.2-10.3), 2 were admitted with proven GBS sepsis (OR 66.6, 95% CI 7.3-963.7), 6 were admitted and had chorioamnionitis (inflammation of the foetal membranes) (OR 5.3, 95% CI 2.0-13.4), and 5 were admitted and had funisitis (inflammation of the umbilical cord) (OR 6.7, 95% CI 12.5-17.7). Foetal cytokine storm (two or more pro-inflammatory cytokines >10 times median control levels in umbilical cord blood) was present in 36% of infants with placental GBS DNA and 4% of cases where the placenta was negative (OR 14.2, 95% CI 3.6-60.8). Overall, ~1 in 200 term births had GBS detected in the placenta, which was associated with infant NNU admission and morbidity.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Katie Stephens
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Flora Jessop
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hilary S Wong
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Emma Cook
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Marcus C de Goffau
- Wellcome Trust Sanger Institute, Hinxton, UK
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's University of London, London, UK
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
55
|
van Beveren GJ, Said H, van Houten MA, Bogaert D. The respiratory microbiome in childhood asthma. J Allergy Clin Immunol 2023; 152:1352-1367. [PMID: 37838221 DOI: 10.1016/j.jaci.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Asthma is the most prevalent noncommunicable disease in childhood, characterized by reversible airway constriction and inflammation of the lower airways. The respiratory tract consists of the upper and lower airways, which are lined with a diverse community of microbes. The composition and density of the respiratory microbiome differs across the respiratory tract, with microbes adapting to the gradually changing physiology of the environment. Over the past decade, both the upper and lower respiratory microbiomes have been implicated in the etiology and disease course of asthma, as well as in its severity and phenotype. We have reviewed the literature on the role of the respiratory microbiome in asthma, making a careful distinction between the relationship of the microbiome with development of childhood asthma and its relationship with the disease course, while accounting for age and the microbial niches studied. Furthermore, we have assessed the literature regarding the underlying asthma endotypes and the impact of the microbiome on the host immune response. We have identified distinct microbial signatures across the respiratory tract associated with asthma development, stability, and severity. These data suggest that the respiratory microbiome may be important for asthma development and severity and may therefore be a potential target for future microbiome-based preventive and treatment strategies.
Collapse
Affiliation(s)
- Gina J van Beveren
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, The Netherlands; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hager Said
- Department of Pediatrics, Spaarne Gasthuis Haarlem
| | - Marlies A van Houten
- Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, The Netherlands; Department of Pediatrics, Spaarne Gasthuis Haarlem
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands; Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
56
|
Wang K, Qin X, Ran T, Pan Y, Hong Y, Wang J, Zhang X, Shen X, Liu C, Lu X, Chen Y, Bai Y, Zhang Y, Zhou C, Zou D. Causal link between gut microbiota and four types of pancreatitis: a genetic association and bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1290202. [PMID: 38075894 PMCID: PMC10702359 DOI: 10.3389/fmicb.2023.1290202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND A number of recent observational studies have indicated a correlation between the constitution of gut microbiota and the incidence of pancreatitis. Notwithstanding, observational studies are unreliable for inferring causality because of their susceptibility to confounding, bias, and reverse causality, the causal relationship between specific gut microbiota and pancreatitis is still unclear. Therefore, our study aimed to investigate the causal relationship between gut microbiota and four types of pancreatitis. METHODS An investigative undertaking encompassing a genome-wide association study (GWAS) comprising 18,340 participants was undertaken with the aim of discerning genetic instrumental variables that exhibit associations with gut microbiota, The aggregated statistical data pertaining to acute pancreatitis (AP), alcohol-induced AP (AAP), chronic pancreatitis (CP), and alcohol-induced CP (ACP) were acquired from the FinnGen Consortium. The two-sample bidirectional Mendelian randomization (MR) approach was utilized. Utilizing the Inverse-Variance Weighted (IVW) technique as the cornerstone of our primary analysis. The Bonferroni analysis was used to correct for multiple testing, In addition, a number of sensitivity analysis methodologies, comprising the MR-Egger intercept test, the Cochran's Q test, MR polymorphism residual and outlier (MR-PRESSO) test, and the leave-one-out test, were performed to evaluate the robustness of our findings. RESULTS A total of 28 intestinal microflora were ascertained to exhibit significant associations with diverse outcomes of pancreatitis. Among them, Class Melainabacteria (OR = 1.801, 95% CI: 1.288-2.519, p = 0.008) has a strong causality with ACP after the Bonferroni-corrected test, in order to assess potential reverse causation effects, we used four types of pancreatitis as the exposure variable and scrutinized its impact on gut microbiota as the outcome variable, this analysis revealed associations between pancreatitis and 30 distinct types of gut microflora. The implementation of Cochran's Q test revealed a lack of substantial heterogeneity among the various single nucleotide polymorphisms (SNP). CONCLUSION Our first systematic Mendelian randomization analysis provides evidence that multiple gut microbiota taxa may be causally associated with four types of pancreatitis disease. This discovery may contribute significant biomarkers conducive to the preliminary, non-invasive identification of Pancreatitis. Additionally, it could present viable targets for potential therapeutic interventions in the disease's treatment.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xianzheng Qin
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yundi Pan
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Hong
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianda Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - XiaoNan Shen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxiao Liu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinchen Lu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Chen
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaya Bai
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
57
|
Kaisanlahti A, Turunen J, Byts N, Samoylenko A, Bart G, Virtanen N, Tejesvi MV, Zhyvolozhnyi A, Sarfraz S, Kumpula S, Hekkala J, Salmi S, Will O, Korvala J, Paalanne N, Erawijantari PP, Suokas M, Medina TP, Vainio S, Medina OP, Lahti L, Tapiainen T, Reunanen J. Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles. MICROBIOME 2023; 11:249. [PMID: 37953319 PMCID: PMC10642029 DOI: 10.1186/s40168-023-01694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Reports regarding the presence of bacteria in the fetal environment remain limited and controversial. Recently, extracellular vesicles secreted by the human gut microbiota have emerged as a novel mechanism for host-microbiota interaction. We aimed to investigate the presence of bacterial extracellular vesicles in the fetal environment during healthy pregnancies and determine whether extracellular vesicles derived from the gut microbiota can cross biological barriers to reach the fetus. RESULTS Bacterial extracellular vesicles were detectable in the amniotic fluid of healthy pregnant women, exhibiting similarities to extracellular vesicles found in the maternal gut microbiota. In pregnant mice, extracellular vesicles derived from human maternal gut microbiota were found to reach the intra-amniotic space. CONCLUSIONS Our findings reveal maternal microbiota-derived extracellular vesicles as an interaction mechanism between the maternal microbiota and fetus, potentially playing a pivotal role in priming the prenatal immune system for gut colonization after birth. Video Abstract.
Collapse
Affiliation(s)
- Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland.
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland.
| | - Jenni Turunen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, 90220, Oulu, Finland
| | - Nadiya Byts
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Genevieve Bart
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Nikke Virtanen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, 90570, Oulu, Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Sonia Sarfraz
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Sohvi Kumpula
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Jenni Hekkala
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Sonja Salmi
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, 24105, Kiel, Germany
| | - Johanna Korvala
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, 90220, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, 90220, Oulu, Finland
| | | | - Marko Suokas
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Tuula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, 24105, Kiel, Germany
- Institute for Experimental Cancer Research, Kiel University, 24105, Kiel, Germany
| | - Seppo Vainio
- Laboratory of Developmental Biology, Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Kvantum Institute, University of Oulu, 90570, Oulu, Finland
| | - Oula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, 24105, Kiel, Germany
- Institute for Experimental Cancer Research, Kiel University, 24105, Kiel, Germany
- Lonza Netherlands B.V., 6167 RB, Geleen, Netherlands
| | - Leo Lahti
- Department of Computing, University of Turku, 20014, Turku, Finland
| | - Terhi Tapiainen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, 90220, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, 90220, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, 90220, Oulu, Finland
| |
Collapse
|
58
|
Jia B, Tang L, Liu H, Zhu Y, Chen W, Chen Q, Li J, Zhong M, Yin A. Alterations and potential roles of microbial population of pregnant mouse saliva and amniotic fluid. Am J Reprod Immunol 2023; 90:e13782. [PMID: 37881125 DOI: 10.1111/aji.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in PTB pathophysiology. However, the relationship between microflora and PTB is not fully elucidated. METHOD OF STUDY In this study, we established an intrauterine inflammation mouse model via LPS intrauterine injection. The saliva and amniotic fluid were collected for 16s RNA gene sequencing. The levels of TNF-α and IL-1β in mouse amniotic fluid were determined by ELISA assays. RESULTS Up to 60% of the operational taxonomic units (OTUs) in the saliva and amniotic fluid of PBS-treated mice were overlapped. LPS treatment-induced changes in the abundance of oral and amniotic fluid microorganisms. Both immune-associated probiotics, salivarius and mastitidis, were still detected in saliva (at significantly increased levels) after LPS-induced intrauterine inflammation and almost no probiotics of any type were detected in amniotic fluid, suggesting that the uterine cavity seems to be more susceptible to LPS compared to the oral cavity. Moreover, the abundance of pathogenic bacteria Escherichia coli was increased in both saliva and amniotic fluid after LPS treatment. The level of TNF-α and IL-1β in amniotic fluid is positively related to the amniotic fluid E. coli abundance. CONCLUSIONS The microbial composition of saliva and amniotic fluid of pregnant mice was similar. LPS-induced intrauterine inflammation decreased the consistency of microbial composition in mouse saliva and amniotic fluid, increased the abundance of E. coli in saliva and amniotic fluid, and decreased the abundance of immune-associated probiotics, especially in amniotic fluid.
Collapse
Affiliation(s)
- Bei Jia
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Lijun Tang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Huibing Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Ailan Yin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
59
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
60
|
Lim JA, Cha J, Choi S, Kim JH, Kim D. Early Colonization of the Intestinal Microbiome of Neonatal Piglets Is Influenced by the Maternal Microbiome. Animals (Basel) 2023; 13:3378. [PMID: 37958132 PMCID: PMC10650534 DOI: 10.3390/ani13213378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The intestinal microbiome plays a crucial role in animal health and growth by interacting with the host, inhibiting pathogenic microbial colonization, and regulating immunity. This study investigated dynamic changes in the fecal microbial composition of piglets from birth through weaning and the relationship between the piglet fecal microbiome and sows. Feces, skin, neonatal oral cavity, and vaginal samples were collected from eight sows and sixty-three piglets, and 16S genome sequencing was performed. The results revealed that Firmicutes, Bacteroidetes, and Proteobacteria dominated the piglet microbiome in the early stages, and Firmicutes and Bacteroidetes were crucial for maintaining a balance in the intestinal microbiome during nursing. The abundance of Christensenellaceae_R-7_group, Succinivibrio, and Prevotella increased in weaned piglets fed solid feed. Analysis of the microbiome from sows to piglets indicated a shift in the microbiome colonizing piglet intestines, which became a significant constituent of the piglet intestinal microbiome. This study supports the theory that the neonatal intestinal microbiome is vertically transmitted from the mother. Further research is required to integrate factors related to sows, piglets, and their environments to gain a better understanding of the early establishment of the intestinal microbiome in piglets.
Collapse
Affiliation(s)
| | | | | | | | - Dahye Kim
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (J.C.); (S.C.); (J.-H.K.)
| |
Collapse
|
61
|
Staude B, Gschwendtner S, Frodermann T, Oehmke F, Kohl T, Kublik S, Schloter M, Ehrhardt H. Microbial signatures in amniotic fluid at preterm birth and association with bronchopulmonary dysplasia. Respir Res 2023; 24:248. [PMID: 37845700 PMCID: PMC10577941 DOI: 10.1186/s12931-023-02560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Microbiome dysbiosis can have long-lasting effects on our health and induce the development of various diseases. Bronchopulmonary dysplasia (BPD) is a multifactorial disease with pre- and postnatal origins including intra-amniotic infection as main risk factor. Recently, postnatal pathologic lung microbiota colonization was associated with BPD. The objectives of this prospective observational cohort study were to describe differences in bacterial signatures in the amniotic fluid (AF) of intact pregnancies without clinical signs or risk of preterm delivery and AF samples obtained during preterm deliveries and their variations between different BPD disease severity stages. METHODS AF samples were collected under sterile conditions during fetal intervention from intact pregnancies (n = 17) or immediately before preterm delivery < 32 weeks (n = 126). Metabarcoding based approaches were used for the molecular assessment of bacterial 16S rRNA genes to describe bacterial community structure. RESULTS The absolute amount of 16S rRNA genes was significantly increased in AF of preterm deliveries and detailed profiling revealed a reduced alpha diversity and a significant change in beta diversity with a reduced relative abundance of 16S rRNA genes indicative for Lactobacillus and Acetobacter while Fusobacterium, Pseudomonas, Ureaplasma and Staphylococcus 16S rRNA gene prevailed. Although classification of BPD by disease severity revealed equivalent absolute 16S rRNA gene abundance and alpha and beta diversity in no, mild and moderate/severe BPD groups, for some 16S rRNA genes differences were observed in AF samples. Bacterial signatures of infants with moderate/severe BPD showed predominance of 16S rRNA genes belonging to the Escherichia-Shigella cluster while Ureaplasma and Enterococcus species were enriched in AF samples of infants with mild BPD. CONCLUSIONS Our study identified distinct and diverse intrauterine 16S rRNA gene patterns in preterm infants immediately before birth, differing from the 16S rRNA gene signature of intact pregnancies. The distinct 16S rRNA gene signatures at birth derive from bacteria with varying pathogenicity to the immature lung and are suited to identify preterm infants at risk. Our results emphasize the prenatal impact to the origins of BPD.
Collapse
Affiliation(s)
- Birte Staude
- Department of General Pediatrics and Neonatology, Justus Liebig University and Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tina Frodermann
- Department of General Pediatrics and Neonatology, Justus Liebig University and Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Frank Oehmke
- Department of Gynecology and Obstetrics, Justus Liebig University of Giessen, Giessen, Germany
| | - Thomas Kohl
- Department of Gynecology and Obstetrics, Justus Liebig University of Giessen, Giessen, Germany
- German Center for Fetal Surgery and Minimally Invasive Therapy (DZFT), University of Mannheim (UMM), Mannheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus Liebig University and Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
62
|
Pronovost GN, Yu KB, Coley-O’Rourke EJ, Telang SS, Chen AS, Vuong HE, Williams DW, Chandra A, Rendon TK, Paramo J, Kim RH, Hsiao EY. The maternal microbiome promotes placental development in mice. SCIENCE ADVANCES 2023; 9:eadk1887. [PMID: 37801498 PMCID: PMC10558122 DOI: 10.1126/sciadv.adk1887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The maternal microbiome is an important regulator of gestational health, but how it affects the placenta as the interface between mother and fetus remains unexplored. Here, we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization. The maternal gut microbiota modulates metabolites in the maternal and fetal circulation. Short-chain fatty acids (SCFAs) stimulate cultured endothelial cell tube formation and prevent abnormalities in placental vascularization in microbiota-deficient mice. Furthermore, in a model of maternal malnutrition, gestational supplementation with SCFAs prevents placental growth restriction and vascular insufficiency. These findings highlight the importance of host-microbial symbioses during pregnancy and reveal that the maternal gut microbiome promotes placental growth and vascularization in mice.
Collapse
Affiliation(s)
- Geoffrey N. Pronovost
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristie B. Yu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elena J. L. Coley-O’Rourke
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sahil S. Telang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angela S. Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helen E. Vuong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drake W. Williams
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anisha Chandra
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomiko K. Rendon
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Paramo
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
63
|
Aggarwal D, Rajan D, Bellis KL, Betteridge E, Brennan J, de Sousa C, Parkhill J, Peacock SJ, de Goffau MC, Wagner J, Harrison EM. Optimization of high-throughput 16S rRNA gene amplicon sequencing: an assessment of PCR pooling, mastermix use and contamination. Microb Genom 2023; 9:001115. [PMID: 37843887 PMCID: PMC10634443 DOI: 10.1099/mgen.0.001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
16S rRNA gene sequencing is widely used to characterize human and environmental microbiomes. Sequencing at scale facilitates better powered studies but is limited by cost and time. We identified two areas in our 16S rRNA gene library preparation protocol where modifications could provide efficiency gains, including (1) pooling of multiple PCR amplifications per sample to reduce PCR drift and (2) manual preparation of mastermix to reduce liquid handling. Using nasal samples from healthy human participants and a serially diluted mock microbial community, we compared alpha and beta diversity, and compositional abundance where the PCR amplification was conducted in triplicate, duplicate or as a single reaction, and where manually prepared or premixed mastermix was used. One hundred and fifty-eight 16S rRNA gene sequencing libraries were prepared, including a replicate experiment. Comparing PCR pooling strategies, we found no significant difference in high-quality read counts and alpha diversity, and beta diversity by Bray-Curtis index clustered by replicate on principal coordinate analysis (PCoA) and non-metric dimensional scaling (NMDS) analysis. Choice of mastermix had no significant impact on high-quality read and alpha diversity, and beta diversity by Bray-Curtis index clustered by replicate in PCoA and NMDS analysis. Importantly, we observed contamination and variability of rare species (<0.01 %) across replicate experiments; the majority of contaminants were accounted for by removal of species present at <0.1 %, or were linked to reagents (including a primer stock). We demonstrate no requirement for pooling of PCR amplifications or manual preparation of PCR mastermix, resulting in a more efficient 16S rRNA gene PCR protocol.
Collapse
Affiliation(s)
- Dinesh Aggarwal
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Diana Rajan
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Katherine L. Bellis
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Joe Brennan
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Catarina de Sousa
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - CARRIAGE Study Team‡
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, Netherlands
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Marcus C. de Goffau
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, Netherlands
| | - Josef Wagner
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
64
|
Dahlberg J, Pelve E, Dicksved J. Similarity in milk microbiota in replicates. Microbiologyopen 2023; 12:e1383. [PMID: 37877657 PMCID: PMC10542097 DOI: 10.1002/mbo3.1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Receiving the same results from repeated analysis of the same sample is a basic principle in science. The inability to reproduce previously published results has led to discussions of a reproducibility crisis within science. For studies of microbial communities, the problem of reproducibility is more pronounced and has, in some fields, led to a discussion on the very existence of a constantly present microbiota. In this study, DNA from 44 bovine milk samples were extracted twice and the V3-V4 region of the 16S rRNA gene was sequenced in two separate runs. The FASTQ files from the two data sets were run through the same bioinformatics pipeline using the same settings and results from the two data sets were compared. Milk samples collected maximally 2 h apart were used as replicates and permitted comparisons to be made within the same run. Results show a significant difference in species richness between the two sequencing runs although Shannon and Simpson's diversity was the same. Multivariate analyses of all samples demonstrate that the sequencing run was a driver for variation. Direct comparison of similarity between samples and sequencing run showed an average similarity of 42%-45% depending on whether binary or abundance-based similarity indices were used. Within-run comparisons of milk samples collected maximally 2 h apart showed an average similarity of 39%-47% depending on the similarity index used and that similarity differed significantly between runs. We conclude that repeated DNA extraction and sequencing significantly can affect the results of a low microbial biomass microbiota study.
Collapse
Affiliation(s)
- Josef Dahlberg
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Erik Pelve
- Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural SciencesUppsalaSweden
| | - Johan Dicksved
- Department of Animal Nutrition and ManagementSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
65
|
Li L, Li S, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The difference of intestinal microbiota composition between Lantang and Landrace newborn piglets. BMC Vet Res 2023; 19:174. [PMID: 37759242 PMCID: PMC10523759 DOI: 10.1186/s12917-023-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn. RESULTS The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples. CONCLUSIONS Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.
Collapse
Affiliation(s)
- Ling Li
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuai Li
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
66
|
Bo T, Tang L, Xu X, Liu M, Wen J, Lv J, Wang D. Role of gut microbiota in the postnatal thermoregulation of Brandt's voles. Cell Rep 2023; 42:113021. [PMID: 37647198 DOI: 10.1016/j.celrep.2023.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/08/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Homeothermy is crucial for mammals. Postnatal growth is the key period for young offspring to acquire gut microbiota. Although gut microbiota may affect mammal thermogenesis, the impact of developmental regulation of gut microbiota on the ability of young pups to produce heat remains unclear. Antibiotics were used to interfere with the establishment of gut microbiota during the development of Brandt's voles, and their thermogenic development and regulatory pathways were determined. Deprivation of microbiota by antibiotics inhibits the development of thermogenesis in pups. Butyric acid and bile acid, as metabolites of gut microbiota, participated in the thermoregulation of pups. We propose that gut microbiota promote the development of thermoregulation through the butyric acid-free fatty acid receptor-2-uncoupling protein-1 or the deoxycholic acid-Takeda-G-protein-receptor-5-uncoupling protein-1 pathway in pups. These results show a relationship between gut microbiota and thermogenesis and expand the mechanism of postnatal development of thermogenesis in small mammals.
Collapse
Affiliation(s)
- Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Liqiu Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jinzhen Lv
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Shandong University, Qingdao 266237, China.
| |
Collapse
|
67
|
Morin C, Bokobza C, Fleiss B, Hill-Yardin EL, Van Steenwinckel J, Gressens P. Preterm Birth by Cesarean Section: The Gut-Brain Axis, a Key Regulator of Brain Development. Dev Neurosci 2023; 46:179-187. [PMID: 37717575 DOI: 10.1159/000534124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Understanding the long-term functional implications of gut microbial communities during the perinatal period is a bourgeoning area of research. Numerous studies have revealed the existence of a "gut-brain axis" and the impact of an alteration of gut microbiota composition in brain diseases. Recent research has highlighted how gut microbiota could affect brain development and behavior. Many factors in early life such as the mode of delivery or preterm birth could lead to disturbance in the assembly and maturation of gut microbiota. Notably, global rates of cesarean sections (C-sections) have increased in recent decades and remain important when considering premature delivery. Both preterm birth and C-sections are associated with an increased risk of neurodevelopmental disorders such as autism spectrum disorders, with neuroinflammation a major risk factor. In this review, we explore links between preterm birth by C-sections, gut microbiota alteration, and neuroinflammation. We also highlight C-sections as a risk factor for developmental disorders due to alterations in the microbiome.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Hôpital Robert Debré, Assistance Publique, Hôpitaux de Paris (APHP), Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
| | - Bobbi Fleiss
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Hôpital Robert Debré, Assistance Publique, Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
68
|
Yin H, Yu J, Wu W, Li X, Hu R. Analysis of the microbiome in maternal, intrauterine and fetal environments based on 16S rRNA genes following different durations of membrane rupture. Sci Rep 2023; 13:15010. [PMID: 37696898 PMCID: PMC10495440 DOI: 10.1038/s41598-023-41777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
The incidence of chorioamnionitis and neonatal sepsis increases with the increasing time of rupture of membranes. Changes in the amount and categories of microbiomes in maternal and fetal environments after membrane rupture have yet to be discussed. In order to determine the microbiome diversity and signature in the maternal, intrauterine, and fetal environments of different durations following membrane rupture, we collected samples of fetal membrane, amniotic fluid, cord blood and maternal peripheral blood from singleton pregnant women and divided them into five groups according to the duration of membrane rupture. DNA was isolated from the samples, and the V3V4 region of bacterial 16S rRNA genes was sequenced. We found that the alpha diversity of the fetal membrane microbiome increased significantly 12 h after membrane rupture, while the beta diversity of the amniotic fluid microbiome increased 24 h after membrane rupture. In cord blood, the mean proportion of Methylobacterium and Halomonadaceae reached the highest 12 h after membrane rupture, and the mean proportion of Prevotella reached the highest 24 h after membrane rupture. The LEfSe algorithm showed that Ruminococcus, Paludibaculum, Lachnospiraceae, and Prevotella were detected earlier in cord blood or maternal blood and then detected in fetal membranes or amniotic fluid, which may suggest a reverse infection model. In conclusion, the microbes may invade the placenta 12 h after membrane rupture and invaded the amniotic cavity 24 h after membrane rupture. In addition to the common ascending pattern of infection, the hematogenous pathway of intrauterine infection should also be considered among people with rupture of membranes.
Collapse
Affiliation(s)
- Huifen Yin
- The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China
| | - Jiao Yu
- The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China
| | - Wei Wu
- The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China
| | - Xiaotian Li
- The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
| | - Rong Hu
- The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
69
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
70
|
Xiang Q, Yan X, Shi W, Li H, Zhou K. Early gut microbiota intervention in premature infants: Application perspectives. J Adv Res 2023; 51:59-72. [PMID: 36372205 PMCID: PMC10491976 DOI: 10.1016/j.jare.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth is the leading cause of death in children under the age of five. One of the major factors contributing to the high risk of diseases and deaths in premature infants is the incomplete development of the intestinal immune system. The gut microbiota has been widely recognized as a critical factor in promoting the development and function of the intestinal immune system after birth. However, the gut microbiota of premature infants is at high risk of dysbiosis, which is highly associated with adverse effects on the development and education of the early life immune system. Early intervention can modulate the colonization and development of gut microbiota and has a long-term influence on the development of the intestinal immune system. AIM OF REVIEW This review aims to summarize the characterization, interconnection, and underlying mechanism of gut microbiota and intestinal innate immunity in premature infants, and to discuss the status, applicability, safety, and prospects of different intervention strategies in premature infants, thus providing an overview and outlook of the current applications and remaining gaps of early intervention strategies in premature infants. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, the gut microbiota of premature infants is at high risk of dysbiosis, resulting in dysfunctional intestinal immune system processes. Secondly, contributing roles of early intervention have been observed in improving the intestinal environment and promoting gut microbiota colonization, which is significant in the development and function of gut immunity in premature infants. Thirdly, different strategies of early intervention, such as probiotics, fecal microbiota transplantation, and nutrients, show different safety, applicability, and outcome in premature infants, and the underlying mechanism is complex and poorly understood.
Collapse
Affiliation(s)
- Quanhang Xiang
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xudong Yan
- Department of Neonatal Intensive Care Unit, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, the first affiliated hospital of Southern University of Science and Technology of China, Shenzhen People's Hospital, Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
71
|
Dias S, Pheiffer C, Adam S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023; 11:2217. [PMID: 37764061 PMCID: PMC10535124 DOI: 10.3390/microorganisms11092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health concern that affects many pregnancies globally. The condition is associated with adverse maternal and neonatal outcomes including gestational hypertension, preeclampsia, placental abruption, preterm birth, stillbirth, and fetal growth restriction. In the long-term, mothers and children have an increased risk of developing metabolic diseases such as type 2 diabetes and cardiovascular disease. Accumulating evidence suggest that alterations in the maternal microbiome may play a role in the pathogenesis of GDM and adverse pregnancy outcomes. This review describes changes in the maternal microbiome during the physiological adaptations of pregnancy, GDM and adverse maternal and neonatal outcomes. Findings from this review highlight the importance of understanding the link between the maternal microbiome and GDM. Furthermore, new therapeutic approaches to prevent or better manage GDM are discussed. Further research and clinical trials are necessary to fully realize the therapeutic potential of the maternal microbiome and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
72
|
Lloyd CM, Saglani S. Early-life respiratory infections and developmental immunity determine lifelong lung health. Nat Immunol 2023; 24:1234-1243. [PMID: 37414905 DOI: 10.1038/s41590-023-01550-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Respiratory infections are common in infants and young children. However, the immune system develops and matures as the child grows, thus the effects of infection during this time of dynamic change may have long-term consequences. The infant immune system develops in conjunction with the seeding of the microbiome at the respiratory mucosal surface, at a time that the lungs themselves are maturing. We are now recognizing that any disturbance of this developmental trajectory can have implications for lifelong lung health. Here, we outline our current understanding of the molecular mechanisms underlying relationships between immune and structural cells in the lung with the local microorganisms. We highlight the importance of gaining greater clarity as to what constitutes a healthy respiratory ecosystem and how environmental exposures influencing this network will aid efforts to mitigate harmful effects and restore lung immune health.
Collapse
Affiliation(s)
- Clare M Lloyd
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| | - Sejal Saglani
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
73
|
Liu Z, Hong L, Ling Z. Potential role of intratumor bacteria outside the gastrointestinal tract: More than passengers. Cancer Med 2023; 12:16756-16773. [PMID: 37377377 PMCID: PMC10501248 DOI: 10.1002/cam4.6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Tumor-associated bacteria and gut microbiota have gained significant attention in recent years due to their potential role in cancer development and therapeutic response. This review aims to discuss the contributions of intratumor bacteria outside the gastrointestinal tract, in addition to exploring the mechanisms, functions, and implications of these bacteria in cancer therapy. METHODS We reviewed current literature on intratumor bacteria and their impact on tumorigenesis, progression, metastasis, drug resistance, and anti-tumor immune modulation. Additionally, we examined techniques used to detect intratumor bacteria, precautions necessary when handling low microbial biomass tumor samples, and the recent progress in bacterial manipulation for tumor treatment. RESULTS Research indicates that each type of cancer uniquely interacts with its microbiome, and bacteria can be detected even in non-gastrointestinal tumors with low bacterial abundance. Intracellular bacteria have the potential to regulate tumor cells' biological behavior and contribute to critical aspects of tumor development. Furthermore, bacterial-based anti-tumor therapies have shown promising results in cancer treatment. CONCLUSIONS Understanding the complex interactions between intratumor bacteria and tumor cells could lead to the development of more precise cancer treatment strategies. Further research into non-gastrointestinal tumor-associated bacteria is needed to identify new therapeutic approaches and expand our knowledge of the microbiota's role in cancer biology.
Collapse
Affiliation(s)
- Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Lian‐Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Zhi‐Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
74
|
Wei W, Zhou Y, Zuo H, Li M, Pan Z, Liu B, Wang L, Tan Y, Yang R, Shang W, Bi Y, Wang W. Characterization of the follicular fluid microbiota based on culturomics and sequencing analysis. J Med Microbiol 2023; 72. [PMID: 37578331 DOI: 10.1099/jmm.0.001741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. The human oocyte microenvironment is follicular fluid, which is important for follicle growth, ovulation and maturation of the oocyte. The micro-organisms present in follicular fluid could be a predictor of in vitro fertilization outcomes.Hypothesis/Gap Statement. Women with follicular fluid colonized with micro-organisms can be asymptomatic, but the presence of some genera in the follicular fluid correlates with in vitro fertilization.Aim. To confirm the existence of micro-organisms in follicular fluid, and to profile the micro-organisms present in follicular fluid sampled from women undergoing in vitro fertilization with different outcomes.Methodology. Women undergoing in vitro fertilization (n=163) were divided into different subgroups according to their in vitro fertilization outcomes. Their follicular fluid samples were collected, and among them, 157 samples were analysed by 16S rDNA sequencing, and 19 samples were analysed using culturomics.Results. The culturomics results suggested that the 19 follicular fluid samples were not sterile. The isolation rates for Streptococcus, Finegoldia and Peptoniphilus were >50 % in the 19 samples. Linear discriminant analysis effect size analysis showed differential bacteria abundance according to the pregnancy rate, the rate of normal fertilization, the rate of high-quality embryos and the rate of available oocytes. The sequencing results showed that micro-organisms could be detected in all 157 samples. Pseudomonas, Lactobacillus, Comamonas, Streptococcus and Acinetobacter were detected in all of the samples, but with a wide range of relative abundance. Pseudomonas, Lactobacillus, Ralstonia and Vibrio constituted a notable fraction of the microbiota.Conclusions. Follicular fluid is not sterile. Micro-organisms in follicular fluid could be a predictor of in vitro fertilization outcomes.
Collapse
Affiliation(s)
- Wenting Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
- Department of Clinical Laboratory, Air Force Medical Center, Beijing, PR China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Haiyang Zuo
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Min Li
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Bin Liu
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lu Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, PR China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
75
|
Gong S, Gaccioli F, Aye ILMH, Avellino G, Cook E, Lawson ARJ, Harvey LMR, Smith GCS, Charnock-Jones DS. The human placenta exhibits a unique transcriptomic void. Cell Rep 2023; 42:112800. [PMID: 37453066 DOI: 10.1016/j.celrep.2023.112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/08/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
The human placenta exhibits a unique genomic architecture with an unexpectedly high mutation burden and many uniquely expressed genes. The aim of this study is to identify transcripts that are uniquely absent or depleted in the placenta. Here, we show that 40 of 46 of the other organs have no selectively depleted transcripts and that, of the remaining six, the liver has the largest number, with 26. In contrast, the term placenta has 762 depleted transcripts. Gene Ontology analysis of this depleted set highlighted multiple pathways reflecting known unique elements of placental physiology. For example, transcripts associated with neuronal function are in the depleted set-as expected given the lack of placental innervation. However, this demonstrated overrepresentation of genes involved in mitochondrial function (p = 5.8 × 10-10), including PGC-1α, the master regulator of mitochondrial biogenesis, and genes involved in polyamine metabolism (p = 2.1 × 10-4).
Collapse
Affiliation(s)
- Sungsam Gong
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Irving L M H Aye
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Giulia Avellino
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
76
|
Holliday M, Uddipto K, Castillo G, Vera LE, Quinlivan JA, Mendz GL. Insights into the Genital Microbiota of Women Who Experienced Fetal Death in Utero. Microorganisms 2023; 11:1877. [PMID: 37630436 PMCID: PMC10456767 DOI: 10.3390/microorganisms11081877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this work was to achieve a better understanding of the bacterial pathogens associated with stillbirths that would serve to inform clinical interventions directed at reducing this adverse pregnancy outcome. A prospective observational study was conducted with the participation of 22 women from northern Peru, of whom 11 experienced fetal death in utero and 11 delivered preterm births. Swabs were taken from the vagina, placenta, amniotic fluid and axilla of the infant at birth by Caesarean section. The bacterial populations in the vagina and the amniotic space of each participant were determined by employing the amplicon sequencing of the V4 region of the 16S rRNA genes. The sequence data were analysed using bioinformatics tools. The work showed differences in the composition of the genital microbiomes of women who experienced preterm birth or fetal death in utero. There were no differences in the alpha diversity between the genital microbiotas of both groups of women, but there were more different taxa in the vagina and amniotic space of the preterm participants. Lactobacillus spp. was less abundant in the stillbirth cases. E. coli/Shigella, Staphylococcus, Gardnerella, Listeria and Bacteroides taxa were associated with the stillbirths. In each woman, there was a minimal concordance between the bacterial populations in the vagina and amniotic space.
Collapse
Affiliation(s)
- Mira Holliday
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia; (M.H.); (J.A.Q.)
| | - Kumar Uddipto
- School of Medicine, Sydney, University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia;
| | - Gerardo Castillo
- Área de Ciencias Biomédicas y Policlínico, University of Piura, San Eduardo, Piura 20009, Peru; (G.C.); (L.E.V.)
| | - Luz Estela Vera
- Área de Ciencias Biomédicas y Policlínico, University of Piura, San Eduardo, Piura 20009, Peru; (G.C.); (L.E.V.)
| | - Julie A. Quinlivan
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia; (M.H.); (J.A.Q.)
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - George L. Mendz
- School of Medicine, Sydney, University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia;
| |
Collapse
|
77
|
Menon R, Khanipov K, Radnaa E, Ganguly E, Bento GFC, Urrabaz-Garza R, Kammala AK, Yaklic J, Pyles R, Golovko G, Tantengco OAG. Amplification of microbial DNA from bacterial extracellular vesicles from human placenta. Front Microbiol 2023; 14:1213234. [PMID: 37520380 PMCID: PMC10374210 DOI: 10.3389/fmicb.2023.1213234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The placenta is essential for fetal growth and survival and maintaining a successful pregnancy. The sterility of the placenta has been challenged recently; however, the presence of a placental microbiome has been controversial. We tested the hypothesis that the bacterial extracellular vesicles (BEVs) from Gram-negative bacteria as an alternate source of microbial DNA, regardless of the existence of a microbial community in the placenta. Methods Placentae from the term, not in labor Cesareans deliveries, were used for this study, and placental specimens were sampled randomly from the fetal side. We developed a protocol for the isolation of BEVs from human tissues and this is the first study to isolate the BEVs from human tissue and characterize them. Results The median size of BEVs was 130-140 nm, and the mean concentration was 1.8-5.5 × 1010 BEVs/g of the wet placenta. BEVs are spherical and contain LPS and ompA. Western blots further confirmed ompA but not human EVs markers ALIX confirming the purity of preparations. Taxonomic abundance profiles showed BEV sequence reads above the levels of the negative controls (all reagent controls). In contrast, the sequence reads in the same placenta were substantially low, indicating nothing beyond contamination (low biomass). Alpha-diversity showed the number of detected genera was significantly higher in the BEVs than placenta, suggesting BEVs as a likely source of microbial DNA. Beta-diversity further showed significant overlap in the microbiome between BEV and the placenta, confirming that BEVs in the placenta are likely a source of microbial DNA in the placenta. Uptake studies localized BEVs in maternal (decidual) and placental cells (cytotrophoblast), confirming their ability to enter these cells. Lastly, BEVs significantly increased inflammatory cytokine production in THP-1 macrophages in a high-dose group but not in the placental or decidual cells. Conclusion We conclude that the BEVs are normal constituents during pregnancy and likely reach the placenta through hematogenous spread from maternal body sites that harbor microbiome. Their presence may result in a low-grade localized inflammation to prime an antigen response in the placenta; however, insufficient to cause a fetal inflammatory response and adverse pregnancy events. This study suggests that BEVs can confound placental microbiome studies, but their low biomass in the placenta is unlikely to have any immunologic impact.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Esha Ganguly
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Giovana Fernanda Cosi Bento
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Richard Pyles
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| |
Collapse
|
78
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
79
|
Chagas AP, da Silva NG, Ribeiro CM, Amato AA. Early-life exposure to antibiotics and excess body weight in childhood and adolescence: A systematic review and meta-analysis. Obes Res Clin Pract 2023; 17:318-334. [PMID: 37573229 DOI: 10.1016/j.orcp.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The association between early-life exposure to antibiotics and overweight/obesity is unclear. We conducted a systematic review and meta-analysis to address this issue. METHODS We searched PubMed, Web of Science, Scopus, and grey literature from inception to August 10, 2022, for cohort studies investigating the association between early-life exposure to antibiotics and weight outcomes. Two independent reviewers screened studies for eligibility, extracted data, assessed risk of bias, and examined the certainty of the evidence. Random-effects meta-analyses was used for pooling the data. The review was registered in PROSPERO, CRD42021265417. RESULTS We included 42 studies and data from 28 of them were pooled in the quantitative synthesis. Overall antenatal (OR 1.10, 95% CI 1.04-1.16; 518,095 children, very low certainty) and second trimester (OR 1.11, 95% CI 1.08-1.14, 248,469 children, low certainty) exposure to antibiotics were associated with increased risk of overweight/obesity in childhood/adolescence. Overall early postnatal antibiotic exposure was also associated with increased likelihood of overweight/obesity in childhood/adolescence (OR 1.09, 95% CI 1.05-1.12, 1,488,316 children, very low certainty). The magnitude of the association increased from exposure to one (OR 1.07, 95% CI 1.00-1.15, 512,954 children) to four or more courses of antibiotics (OR 1.31, 95% CI 1.17-1.46, 543,627 children). CONCLUSION Antenatal and early postnatal exposure to antibiotics is associated increased likelihood of overweight/obesity, although the findings are limited by the very low certainty of evidence. We highlight the need for homogeneous prospective studies addressing potential confounding factors to further explore the link between exposure to antibiotics and the risk of excess body weight.
Collapse
Affiliation(s)
| | | | - Carolina Martins Ribeiro
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brazil.
| |
Collapse
|
80
|
Krupa-Kotara K, Grajek M, Grot M, Czarnota M, Wypych-Ślusarska A, Oleksiuk K, Głogowska-Ligus J, Słowiński J. Pre- and Postnatal Determinants Shaping the Microbiome of the Newborn in the Opinion of Pregnant Women from Silesia (Poland). Life (Basel) 2023; 13:1383. [PMID: 37374165 PMCID: PMC10305644 DOI: 10.3390/life13061383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Pre- and postnatal factors influence the formation of the newborn's microbiome as early as birth and the intrauterine period has a substantial impact on the composition of the baby's gastrointestinal microbiota and its subsequent development. This study intends to measure pregnant women's knowledge of the importance of microbiota for the health of the newborn. The sample was selected based on defined inclusion and exclusion criteria. The assessment of women's knowledge was assessed by the Kolmogorov-Smirnov and Kruskal-Wallis statistical tests. This study population comprised 291 adult pregnant women with a mean age of 28.4 ± 4.7 years. A total of 34% (n = 99), 35% (n = 101), and 31.3% (n = 91) were at the 1-3 trimester, respectively. The results showed that 36.4% of the women were aware that the intrauterine period changes the makeup of the gastrointestinal microbiota, whereas 5.8% exhibited awareness of the composition of the child's normal gut microbiota. Most of the women surveyed-(72.1%)-know that colonization of the tract occurs as early as the birth period. Women with student status (those who will pursue higher education in the future) and those who had given birth to the most children exhibited higher levels of knowledge.
Collapse
Affiliation(s)
- Karolina Krupa-Kotara
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Martina Grot
- Student Scientific Society, Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.G.); (M.C.)
- Doctoral School, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Martina Czarnota
- Student Scientific Society, Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (M.G.); (M.C.)
| | - Agata Wypych-Ślusarska
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Klaudia Oleksiuk
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Joanna Głogowska-Ligus
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | - Jerzy Słowiński
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| |
Collapse
|
81
|
Dahlberg J, Johnzon CF, Sun L, Pejler G, Östensson K, Dicksved J. Absence of changes in the milk microbiota during Escherichia coli endotoxin induced experimental bovine mastitis. Vet Res 2023; 54:46. [PMID: 37291624 DOI: 10.1186/s13567-023-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Changes in the milk microbiota during the course of mastitis are due to the nature of a sporadic occurring disease difficult to study. In this study we experimentally induced mastitis by infusion of Escherichia coli endotoxins in one udder quarter each of nine healthy lactating dairy cows and assessed the bacteriological dynamics and the milk microbiota at four time points before and eight time points after infusion. As control, saline was infused in one udder quarter each of additionally nine healthy cows that followed the same sampling protocol. The milk microbiota was assessed by sequencing of the 16 S rRNA gene and a range of positive and negative controls were included for methodological evaluation. Two different data filtration models were used to identify and cure data from contaminating taxa. Endotoxin infused quarters responded with transient clinical signs of inflammation and increased SCC while no response was observed in the control cows. In the milk microbiota data no response to inflammation was identified. The data analysis of the milk microbiota was largely hampered by laboratory and reagent contamination. Application of the filtration models caused a marked reduction in data but did not reveal any associations with the inflammatory reaction. Our results indicate that the microbiota in milk from healthy cows is unaffected by inflammation.
Collapse
Affiliation(s)
- Josef Dahlberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Carl-Fredrik Johnzon
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Östensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
82
|
Zhao L, Lundy SR, Eko FO, Igietseme JU, Omosun YO. Genital tract microbiome dynamics are associated with time of Chlamydia infection in mice. Sci Rep 2023; 13:9006. [PMID: 37268696 PMCID: PMC10238418 DOI: 10.1038/s41598-023-36130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
We have previously shown that the time of Chlamydia infection was crucial in determining the chlamydial infectivity and pathogenesis. This study aims to determine whether the time of Chlamydia infection affects the genital tract microbiome. This study analyzed mice vaginal, uterine, and ovary/oviduct microbiome with and without Chlamydia infection. The mice were infected with Chlamydia at either 10:00 am (ZT3) or 10:00 pm (ZT15). The results showed that mice infected at ZT3 had higher Chlamydia infectivity than those infected at ZT15. There was more variation in the compositional complexity of the vaginal microbiome (alpha diversity) of mice infected at ZT3 than those mice infected at ZT15 throughout the infection within each treatment group, with both Shannon and Simpson diversity index values decreased over time. The analysis of samples collected four weeks post-infection showed that there were significant taxonomical differences (beta diversity) between different parts of the genital tract-vagina, uterus, and ovary/oviduct-and this difference was associated with the time of infection. Firmicutes and Proteobacteria were the most abundant phyla within the microbiome in all three genital tract regions for all the samples collected during this experiment. Additionally, Firmicutes was the dominant phylum in the uterine microbiome of ZT3 Chlamydia infected mice. The results show that the time of infection is associated with the microbial dynamics in the genital tract. And this association is more robust in the upper genital tract than in the vagina. This result implies that more emphasis should be placed on understanding the changes in the microbial dynamics of the upper genital tract over the course of infection.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA.
| | - Stephanie R Lundy
- Duke Human Vaccine Institute, Durham, NC, USA
- Division of STD Prevention, NCHHSTP, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Joeseph U Igietseme
- Molecular Pathogenesis Laboratory, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
83
|
Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol 2023; 13:1151021. [PMID: 37333848 PMCID: PMC10272569 DOI: 10.3389/fcimb.2023.1151021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer`s disease (AD) is the most prevalent cause of dementia. It is often assumed that AD is caused by an aggregation of extracellular beta-amyloid and intracellular tau-protein, supported by a recent study showing reduced brain amyloid levels and reduced cognitive decline under treatment with a beta-amyloid-binding antibody. Confirmation of the importance of amyloid as a therapeutic target notwithstanding, the underlying causes of beta-amyloid aggregation in the human brain, however, remain to be elucidated. Multiple lines of evidence point towards an important role of infectious agents and/or inflammatory conditions in the etiology of AD. Various microorganisms have been detected in the cerebrospinal fluid and brains of AD-patients and have thus been hypothesized to be linked to the development of AD, including Porphyromonas gingivalis (PG) and Spirochaetes. Intriguingly, these microorganisms are also found in the oral cavity under normal physiological conditions, which is often affected by multiple pathologies like caries or tooth loss in AD patients. Oral cavity pathologies are mostly accompanied by a compositional shift in the community of oral microbiota, mainly affecting commensal microorganisms and referred to as 'dysbiosis'. Oral dysbiosis seems to be at least partly mediated by key pathogens such as PG, and it is associated with a pro-inflammatory state that promotes the destruction of connective tissue in the mouth, possibly enabling the translocation of pathogenic microbiota from the oral cavity to the nervous system. It has therefore been hypothesized that dysbiosis of the oral microbiome may contribute to the development of AD. In this review, we discuss the infectious hypothesis of AD in the light of the oral microbiome and microbiome-host interactions, which may contribute to or even cause the development of AD. We discuss technical challenges relating to the detection of microorganisms in relevant body fluids and approaches for avoiding false-positives, and introduce the antibacterial protein lactoferrin as a potential link between the dysbiotic microbiome and the host inflammatory reaction.
Collapse
|
84
|
Vidal MS, Menon R. In utero priming of fetal immune activation: Myths and mechanisms. J Reprod Immunol 2023; 157:103922. [PMID: 36913842 PMCID: PMC10205680 DOI: 10.1016/j.jri.2023.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Mechanisms of fetal immune system development in utero remain incompletely elucidated. Protective immunity, the arm of reproductive immunology concerned with the progressive education of the fetal immune system as pregnancy advances, allows for programming of the immune system and immune maturation in utero and provides a responsive system to respond to rapid microbial and other antigenic exposure ex utero. Challenges in studying fetal tissues, immune system development, and the contributions of various endogenous and exogenous factors to this process are difficult to study as a progressive sampling of fetal biological samples is impractical during pregnancy, and animal models are limited. This review provides a summary of mechanisms of protective immunity and how it has been shaped, from transplacental transfer of immunoglobulins, cytokines, metabolites, as well as antigenic microchimeric cells to perhaps more controversial notions of materno-fetal transfer of bacteria that subsequently organize into microbiomes within the fetal tissues. This review will also provide a quick overview of future direction in the area of research on fetal immune system development and discusses methods to visualize fetal immune populations and determine fetal immune functions, as well as a quick look into appropriate models for studying fetal immunity.
Collapse
Affiliation(s)
- Manuel S Vidal
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston TX, USA.
| |
Collapse
|
85
|
Stupak A, Kwaśniewski W. Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules 2023; 13:911. [PMID: 37371491 PMCID: PMC10296270 DOI: 10.3390/biom13060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The microbiome is of great interest due to its potential influence on the occurrence and treatment of some human illnesses. It may be regarded as disruptions to the delicate equilibrium that humans ordinarily maintain with their microorganisms or the microbiota in their environment. The focus of this review is on the methodologies and current understanding of the functional microbiome in pregnancy outcomes. We present how novel techniques bring new insights to the contemporary field of maternal-fetal medicine with a critical analysis. The maternal microbiome in late pregnancy has been extensively studied, although data on maternal microbial changes during the first trimester are rare. Research has demonstrated that, in healthy pregnancies, the origin of the placental microbiota is oral (gut) rather than vaginal. Implantation, placental development, and maternal adaptation to pregnancy are complex processes in which fetal and maternal cells interact. Microbiome dysbiosis or microbial metabolites are rising as potential moderators of antenatal illnesses related to the placenta, such as fetal growth restriction, preeclampsia, and others, including gestational diabetes and preterm deliveries. However, because of the presence of antimicrobial components, it is likely that the bacteria identified in placental tissue are (fragments of) bacteria that have been destroyed by the placenta's immune cells. Using genomic techniques (metagenomics, metatranscriptomics, and metaproteomics), it may be possible to predict some properties of a microorganism's genome and the biochemical (epigenetic DNA modification) and physical components of the placenta as its environment. Despite the results described in this review, this subject needs further research on some major and crucial aspects. The phases of an in utero translocation of the maternal gut microbiota to the fetus should be explored. With a predictive knowledge of the impacts of the disturbance on microbial communities that influence human health and the environment, genomics may hold the answer to the development of novel therapies for the health of pregnant women.
Collapse
Affiliation(s)
- Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica Str. 16, 20-081 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
86
|
Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, Mihai L, Ungureanu A, Kassim MAK, Andrusca A, Nicolae M, Cuzic V, Lupu VV, Cambrea SC. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023; 15:nu15112529. [PMID: 37299492 DOI: 10.3390/nu15112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The intestinal microbiota is a diverse and complex microecosystem that lives and thrives within the human body. The microbiota stabilizes by the age of three. This microecosystem plays a crucial role in human health, particularly in the early years of life. Dysbiosis has been linked to the development of various allergic diseases with potential long-term implications. Next-generation sequencing methods have established that allergic diseases are associated with dysbiosis. These methods can help to improve the knowledge of the relationship between dysbiosis and allergic diseases. The aim of this review paper is to synthesize the current understanding on the development of the intestinal microbiota in children, the long-term impact on health, and the relationship between dysbiosis and allergic diseases. Furthermore, we examine the connection between the microbiome and specific allergies such as atopic dermatitis, asthma, and food allergies, and which mechanisms could determine the induction of these diseases. Furthermore, we will review how factors such as mode of delivery, antibiotic use, breastfeeding, and the environment influence the development of the intestinal flora, as well as review various interventions for the prevention and treatment of gut microbiota-related allergies.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Corina Elena Frecus
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adina Ungureanu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| | | | - Antonio Andrusca
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Maria Nicolae
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viviana Cuzic
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| |
Collapse
|
87
|
Hunter PJ, Awoyemi T, Ayede AI, Chico RM, David AL, Dewey KG, Duggan CP, Gravett M, Prendergast AJ, Ramakrishnan U, Ashorn P, Klein N. Biological and pathological mechanisms leading to the birth of a small vulnerable newborn. Lancet 2023; 401:1720-1732. [PMID: 37167990 DOI: 10.1016/s0140-6736(23)00573-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
The pathway to a thriving newborn begins before conception and continues in utero with a healthy placenta and the right balance of nutrients and growth factors that are timed and sequenced alongside hormonal suppression of labour until a mature infant is ready for birth. Optimal nutrition that includes adequate quantities of quality protein, energy, essential fats, and an extensive range of vitamins and minerals not only supports fetal growth but could also prevent preterm birth by supporting the immune system and alleviating oxidative stress. Infection, illness, undernourishment, and harmful environmental exposures can alter this trajectory leading to an infant who is too small due to either poor growth during pregnancy or preterm birth. Systemic inflammation suppresses fetal growth by interfering with growth hormone and its regulation of insulin-like growth factors. Evidence supports the prevention and treatment of several maternal infections during pregnancy to improve newborn health. However, microbes, such as Ureaplasma species, which are able to ascend the cervix and cause membrane rupture and chorioamnionitis, require new strategies for detection and treatment. The surge in fetal cortisol late in pregnancy is essential to parturition at the right time, but acute or chronically high maternal cortisol levels caused by psychological or physical stress could also trigger labour onset prematurely. In every pathway to the small vulnerable newborn, there is a possibility to modify the course of pregnancy by supporting improved nutrition, protection against infection, holistic maternal wellness, and healthy environments.
Collapse
Affiliation(s)
- Patricia J Hunter
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | | | - Adejumoke I Ayede
- Department of Paediatrics, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - R Matthew Chico
- Department of Disease Control, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna L David
- UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Kathryn G Dewey
- Department of Nutrition, University of California at Davis, Davis, CA, USA
| | - Christopher P Duggan
- Department of Nutrition and Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA; Center for Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Gravett
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal & Child Health Research, Harare, Zimbabwe
| | | | - Per Ashorn
- Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
88
|
Ye L, Wu BS, Xu ZA, Ji XF, Guan L, Li PP, Li Y, Cheng HW, Xiao J. Evidence for an intra-tumoral microbiome in pituitary neuroendocrine tumors with different clinical phenotypes. J Neurooncol 2023; 163:133-142. [PMID: 37140882 DOI: 10.1007/s11060-023-04318-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Bacteria have been observed in the tumor environment for decades and have been demonstrated to play important roles in the pathogenesis and development of several different tumors. So far there is a clear lack of specific studies relating to the presence of bacteria in pituitary neuroendocrine tumors (PitNETs). METHODS In this study, we performed five region-based amplification and bacterial 16 S rRNA sequencing to identify the microbiome of PitNET tissues across four clinical phenotypes. Multiple filter procedures were performed to inhibit the risk of contamination with bacteria and bacterial DNA. Histological analysis was also conducted to validate the localization of bacteria in the intra-tumoral region. RESULTS We identified common and diverse bacterial types across the four clinical phenotypes of PitNET. We also predicted the potential functions of these bacteria in tumor phenotypes and found that these functions were reported in certain previous mechanistic studies. Our data indicate that the pathogenesis and development of tumors may correlate with the behavior of intra-tumoral bacteria. Histological results, including lipopolysaccharide (LPS) staining and fluorescence in situ hybridization (FISH) for bacterial 16 S rRNA clearly demonstrated the localization of bacteria in the intra-tumoral region. Staining for Iba-1 suggested that the proportion of microglia was more abundant in FISH-positive regions than in FISH-negative regions. Furthermore, in FISH-positive regions, the microglia exhibited a longitudinally branched morphology that was different to the compact morphology observed in FISH-negative regions. CONCLUSION In summary, we provide an evidence for the existence of intra-tumoral bacteria in PitNET.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Bing-Shan Wu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Zi-Ao Xu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Xue-Fei Ji
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Liao Guan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Ping-Ping Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Yan Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| | - Jin Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| |
Collapse
|
89
|
van Heule M, Monteiro HF, Bazzazan A, Scoggin K, Rolston M, El-Sheikh Ali H, Weimer BC, Ball B, Daels P, Dini P. Characterization of the equine placental microbial population in healthy pregnancies. Theriogenology 2023; 206:60-70. [PMID: 37187056 DOI: 10.1016/j.theriogenology.2023.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In spite of controversy, recent studies present evidence that a microbiome is present in the human placenta. However, there is limited information about a potential equine placental microbiome. In the present study, we characterized the microbial population in the equine placenta (chorioallantois) of healthy prepartum (280 days of gestation, n = 6) and postpartum (immediately after foaling, 351 days of gestation, n = 11) mares, using 16S rDNA sequencing (rDNA-seq). In both groups, the majority of bacteria belonged to the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidota. The five most abundant genera were Bradyrhizobium, an unclassified Pseudonocardiaceae, Acinetobacter, Pantoea, and an unclassified Microbacteriaceae. Alpha diversity (p < 0.05) and beta diversity (p < 0.01) were significantly different between pre- and postpartum samples. Additionally, the abundance of 7 phyla and 55 genera was significantly different between pre- and postpartum samples. These differences suggest an effect of the caudal reproductive tract microbiome on the postpartum placental microbial DNA composition, since the passage of the placenta through the cervix and vagina during normal parturition had a significant influence on the composition of the bacteria found in the placenta when using 16S rDNA-seq. These data support the hypothesis that bacterial DNA is present in healthy equine placentas and opens the possibility for further exploration of the impact of the placental microbiome on fetal development and pregnancy outcome.
Collapse
Affiliation(s)
- Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Hugo Fernando Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ali Bazzazan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Matthew Rolston
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
90
|
LeBlanc SJ. Review: Postpartum reproductive disease and fertility in dairy cows. Animal 2023; 17 Suppl 1:100781. [PMID: 37567665 DOI: 10.1016/j.animal.2023.100781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 08/13/2023] Open
Abstract
This paper reviews recent data and concepts on metritis, purulent vaginal discharge (PVD), and endometritis in dairy cows and the ways in which these diseases affect reproductive performance. Metritis is characterized by fetid discharge from the uterus, with or without fever. Purulent vaginal discharge describes exudate that is >50% pus that may be attributable to uterine infection or cervicitis. Endometritis is inflammation of the uterus diagnosed by endometrial cytology with a proportion of neutrophils (typically ≥5%) that is associated with impaired fertility. Metritis and PVD are associated with uterine bacterial dysbiosis: changes in the microbiota to lesser diversity and greater abundance of pathogens, especially Gram-negative anaerobic bacteria, and Trueperella pyogenes in the case of PVD. Metritis is justifiably treated with approved antibiotics but criteria for more selective treatment without loss of performance are emerging. Purulent vaginal discharge is not synonymous with clinical endometritis, and greater precision in terminology is warranted. PVD is likely under-diagnosed and represents an opportunity for improved management in many herds. Endometritis seems in many cases to reflect persistent, dysregulated inflammation, for which the inciting cause is unclear. Postpartum uterine infection and inflammation have harmful effects on oocytes, embryo development, and the endometrium for at least three months, even if the disease is apparently resolved. Emerging concepts of the resolution and regulation of inflammation are promising for the improvement of prevention and therapy of endometritis.
Collapse
Affiliation(s)
- Stephen J LeBlanc
- Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
91
|
Stephens K, Charnock-Jones DS, Smith GCS. Group B Streptococcus and the risk of perinatal morbidity and mortality following term labor. Am J Obstet Gynecol 2023; 228:S1305-S1312. [PMID: 37164497 DOI: 10.1016/j.ajog.2022.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 05/12/2023]
Abstract
Streptococcus agalactiae (group B Streptococcus) colonizes the genital tract of approximately 20% of pregnant women. In the absence of intervention, approximately 1% of infants born to colonized mothers exhibit a clinical infection. This has led to implementation of screening and intervention in the form of intrapartum antibiotic prophylaxis in many countries, including the United States. However, screening has not been introduced in a substantial minority of other countries because of the absence of supportive level 1 evidence, the very large number needed to treat to prevent 1 case, and concerns about antimicrobial resistance. Optimal screening would involve rapid turnaround (to facilitate intrapartum testing) and report antibiotic sensitivity, but no such method exists. There is significant scope for a personalized medicine approach, targeting intrapartum antibiotic prophylaxis to cases at greatest risk, but the pathogen and host factors determining the risk of invasive disease are incompletely understood. Epidemiologic data have indicated the potential of prelabor invasion of the uterus by group B Streptococcus, and metagenomic analysis revealed the presence of group B Streptococcus in the placenta in approximately 5% of pregnant women at term before onset of labor and membrane rupture. However, the determinants and consequences of prelabor invasion of the uterus by group B Streptococcus remain to be established. The vast majority (98%) of invasive neonatal disease is caused by 6 serotypes, and hexavalent vaccines against these serotypes have completed phase 2 trials. However, an obstacle to phase 3 studies is conducting an adequately powered trial to demonstrate clinical effectiveness given that early-onset disease affects approximately 1 in 1000 births in the absence of vaccination.
Collapse
Affiliation(s)
- Katie Stephens
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
92
|
Li Z, Hua L, Xie L, Wang D, Jiang X. Automated Microfluidic Nucleic Acid Detection Platform-Integrated RPA-T7-Cas13a for Pathogen Diagnosis. Anal Chem 2023; 95:6940-6947. [PMID: 37083348 DOI: 10.1021/acs.analchem.3c00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
There is a growing urgent need for point-of-care testing (POCT) devices that integrate sample pretreatment and nucleic acid detection in a rapid, economical, and non-labor-intensive way. Here, we have developed an automated, portable nucleic acid detection system employing microfluidic chips integrating rotary valve-assisted sample pretreatment and recombinase polymerase amplification (RPA)-T7-Cas13a into one-step nucleic acid detection. The RPA and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a were integrated into a single-chamber reaction. As a validation model, we used this method to detect Group B streptococci (GBS) DNA and achieved a detection sensitivity of 8 copies/reaction, which is 6 times more sensitive than gold-standard polymerase chain reactions (PCRs). Dual specific recognition of RPA with CRISPR/Cas13a makes our method ultraspecific, with correct detection of Group B streptococci from 8 kinds of pathogenic bacteria. For the 16 positive and 24 negative clinical GBS samples, our assay achieved 100% accuracy compared to the PCR technique. The whole procedure can be automatically completed within 30 min, providing a more robust, sensitive, and accurate molecular diagnostic tool for POCT.
Collapse
Affiliation(s)
- Zheng Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Liyan Hua
- Shaoguan Maternal and Child Health Hospital, No. 3, Dongdi South Road, Shaoguan 512026, Guangdong, China
| | - Liming Xie
- Shaoguan Maternal and Child Health Hospital, No. 3, Dongdi South Road, Shaoguan 512026, Guangdong, China
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
93
|
Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective. Parasite Immunol 2023; 45:e12949. [PMID: 36063358 DOI: 10.1111/pim.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
94
|
Tan CCS, Ko KKK, Chen H, Liu J, Loh M, Chia M, Nagarajan N. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat Microbiol 2023; 8:973-985. [PMID: 36997797 PMCID: PMC10159858 DOI: 10.1038/s41564-023-01350-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023]
Abstract
Human blood is conventionally considered sterile but recent studies suggest the presence of a blood microbiome in healthy individuals. Here we characterized the DNA signatures of microbes in the blood of 9,770 healthy individuals using sequencing data from multiple cohorts. After filtering for contaminants, we identified 117 microbial species in blood, some of which had DNA signatures of microbial replication. They were primarily commensals associated with the gut (n = 40), mouth (n = 32) and genitourinary tract (n = 18), and were distinct from pathogens detected in hospital blood cultures. No species were detected in 84% of individuals, while the remainder only had a median of one species. Less than 5% of individuals shared the same species, no co-occurrence patterns between different species were observed and no associations between host phenotypes and microbes were found. Overall, these results do not support the hypothesis of a consistent core microbiome endogenous to human blood. Rather, our findings support the transient and sporadic translocation of commensal microbes from other body sites into the bloodstream.
Collapse
Affiliation(s)
- Cedric C S Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- UCL Genetics Institute, University College London, London, UK.
| | - Karrie K K Ko
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology, Singapore General Hospital, Singapore, Republic of Singapore
- Department of Molecular Pathology, Singapore General Hospital, Singapore, Republic of Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Hui Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jianjun Liu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Marie Loh
- Population and Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, South Kensington, London, UK
- National Skin Centre, Singapore, Republic of Singapore
| | - Minghao Chia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
95
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
96
|
Panzer JJ, Romero R, Greenberg JM, Winters AD, Galaz J, Gomez-Lopez N, Theis KR. Is there a placental microbiota? A critical review and re-analysis of published placental microbiota datasets. BMC Microbiol 2023; 23:76. [PMID: 36934229 PMCID: PMC10024458 DOI: 10.1186/s12866-023-02764-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 03/20/2023] Open
Abstract
The existence of a placental microbiota is debated. The human placenta has historically been considered sterile and microbial colonization was associated with adverse pregnancy outcomes. Yet, recent DNA sequencing investigations reported a microbiota in typical human term placentas. However, this detected microbiota could represent background DNA or delivery-associated contamination. Using fifteen publicly available 16S rRNA gene datasets, existing data were uniformly re-analyzed with DADA2 to maximize comparability. While Amplicon Sequence Variants (ASVs) identified as Lactobacillus, a typical vaginal bacterium, were highly abundant and prevalent across studies, this prevalence disappeared after applying likely DNA contaminant removal to placentas from term cesarean deliveries. A six-study sub-analysis targeting the 16S rRNA gene V4 hypervariable region demonstrated that bacterial profiles of placental samples and technical controls share principal bacterial ASVs and that placental samples clustered primarily by study origin and mode of delivery. Contemporary DNA-based evidence does not support the existence of a placental microbiota.ImportanceEarly-gestational microbial influences on human development are unclear. By applying DNA sequencing technologies to placental tissue, bacterial DNA signals were observed, leading some to conclude that a live bacterial placental microbiome exists in typical term pregnancy. However, the low-biomass nature of the proposed microbiome and high sensitivity of current DNA sequencing technologies indicate that the signal may alternatively derive from environmental or delivery-associated bacterial DNA contamination. Here we address these alternatives with a re-analysis of 16S rRNA gene sequencing data from 15 publicly available placental datasets. After identical DADA2 pipeline processing of the raw data, subanalyses were performed to control for mode of delivery and environmental DNA contamination. Both environment and mode of delivery profoundly influenced the bacterial DNA signal from term-delivered placentas. Aside from these contamination-associated signals, consistency was lacking across studies. Thus, placentas delivered at term are unlikely to be the original source of observed bacterial DNA signals.
Collapse
Affiliation(s)
- Jonathan J Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.
- Detroit Medical Center, Detroit, Michigan, USA.
| | - Jonathan M Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
97
|
Bogaert D, van Beveren GJ, de Koff EM, Lusarreta Parga P, Balcazar Lopez CE, Koppensteiner L, Clerc M, Hasrat R, Arp K, Chu MLJN, de Groot PCM, Sanders EAM, van Houten MA, de Steenhuijsen Piters WAA. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 2023; 31:447-460.e6. [PMID: 36893737 DOI: 10.1016/j.chom.2023.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
Early-life microbiota seeding and subsequent development is crucial to future health. Cesarean-section (CS) birth, as opposed to vaginal delivery, affects early mother-to-infant transmission of microbes. Here, we assess mother-to-infant microbiota seeding and early-life microbiota development across six maternal and four infant niches over the first 30 days of life in 120 mother-infant pairs. Across all infants, we estimate that on average 58.5% of the infant microbiota composition can be attributed to any of the maternal source communities. All maternal source communities seed multiple infant niches. We identify shared and niche-specific host/environmental factors shaping the infant microbiota. In CS-born infants, we report reduced seeding of infant fecal microbiota by maternal fecal microbes, whereas colonization with breastmilk microbiota is increased when compared with vaginally born infants. Therefore, our data suggest auxiliary routes of mother-to-infant microbial seeding, which may compensate for one another, ensuring that essential microbes/microbial functions are transferred irrespective of disrupted transmission routes.
Collapse
Affiliation(s)
- Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK.
| | - Gina J van Beveren
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Emma M de Koff
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Paula Lusarreta Parga
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Carlos E Balcazar Lopez
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Melanie Clerc
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Raiza Hasrat
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Kayleigh Arp
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Mei Ling J N Chu
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | - Pieter C M de Groot
- Department of Obstetrics and Gynaecology, Spaarne Gasthuis, 2035 RC Haarlem, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands
| | | | - Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
98
|
Banaszak M, Górna I, Woźniak D, Przysławski J, Drzymała-Czyż S. Association between Gut Dysbiosis and the Occurrence of SIBO, LIBO, SIFO and IMO. Microorganisms 2023; 11:573. [PMID: 36985147 PMCID: PMC10052891 DOI: 10.3390/microorganisms11030573] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Gut microbiota is the aggregate of all microorganisms in the human digestive system. There are 1014 CFU/mL of such microorganisms in the human body, including bacteria, viruses, fungi, archaea and protozoa. The Firmicutes and Bacteroidetes bacteria phyla comprise 90% of the human gut microbiota. The microbiota support the healthy functioning of the human body by helping with digestion (mainly via short-chain fatty acids and amino acids) and producing short-chain fatty acids. In addition, it exhibits many physiological functions, such as forming the intestinal epithelium, intestinal integrity maintenance, the production of vitamins, and protection against pathogens. An altered composition or the number of microorganisms, known as dysbiosis, disrupts the body's homeostasis and can lead to the development of inflammatory bowel disease, irritable bowel syndrome, and metabolic diseases such as diabetes, obesity and allergies. Several types of disruptions to the gut microbiota have been identified: SIBO (Small Intestinal Bacterial Overgrowth), LIBO (Large Intestinal Bacterial Overgrowth), SIFO (Small Intestinal Fungal Overgrowth), and IMO (Intestinal Methanogen Overgrowth). General gastrointestinal problems such as abdominal pain, bloating, gas, diarrhoea and constipation are the main symptoms of dysbiosis. They lead to malabsorption, nutrient deficiencies, anaemia and hypoproteinaemia. Increased lipopolysaccharide (LPS) permeability, stimulating the inflammatory response and resulting in chronic inflammation, has been identified as the leading cause of microbial overgrowth in the gut. The subject literature is extensive but of limited quality. Despite the recent interest in the gut microbiome and its disorders, more clinical research is needed to determine the pathophysiology, effective treatments, and prevention of small and large intestinal microbiota overgrowth. This review was designed to provide an overview of the available literature on intestinal microbial dysbiosis (SIBO, LIBO, SIFO and IMO) and to determine whether it represents a real threat to human health.
Collapse
Affiliation(s)
- Michalina Banaszak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Poznan University of Medical Sciences Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dagmara Woźniak
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Poznan University of Medical Sciences Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
99
|
Ault-Seay TB, Moorey SE, Mathew DJ, Schrick FN, Pohler KG, McLean KJ, Myer PR. Importance of the female reproductive tract microbiome and its relationship with the uterine environment for health and productivity in cattle: A review. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Once thought to be sterile, the reproductive tract microbiome has been characterized due to the transition from culture-dependent identification of bacteria to culture-independent sequencing methods. The urogenital microbiome was first identified in women through the Human Microbiome Project, which led to research in other species such as the bovine. Previous research focused on uterine bacteria associated with postpartum disease, but next generation sequencing methods identified a normal, healthy bacterial community of the reproductive tract of cows and heifers. Bacterial communities are now understood to differ between the uterus and vagina, and throughout the estrous cycle with changes in hormone dominance. In a healthy state, the bacterial communities largely interact with the uterine environment by assisting in maintaining the proper pH, providing and utilizing nutrients and metabolites, and influencing the immunological responses of the reproductive tract. If the bacterial communities become unbalanced due to an increase in potentially pathogenic bacteria, the health and fertility of the host may be affected. Although the presence of a reproductive tract microbiome has become widely accepted, the existence of a placental microbiome and in utero colonization of the fetus is still a popular debate due to conflicting study results. Currently, researchers are evaluating methods to manipulate the reproductive bacterial communities, such as diet changes and utilizing probiotics, to improve reproductive outcomes. The following review discusses the current understanding of the reproductive tract microbiome, how it differs between humans and cattle, and its relationship with the uterine environment.
Collapse
|
100
|
Campisciano G, Zanotta N, Quadrifoglio M, Careri A, Torresani A, Cason C, De Seta F, Ricci G, Comar M, Stampalija T. The Bacterial DNA Profiling of Chorionic Villi and Amniotic Fluids Reveals Overlaps with Maternal Oral, Vaginal, and Gut Microbiomes. Int J Mol Sci 2023; 24:ijms24032873. [PMID: 36769194 PMCID: PMC9917689 DOI: 10.3390/ijms24032873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The in utero microbiome hypothesis has been long debated. This hypothesis will change our comprehension of the pioneer human microbiome if proved correct. In 60 uncomplicated pregnancies, we profiled the microbiome of chorionic villi (CV) and amniotic fluids (AF) in relation to maternal saliva, rectum, and vagina and the soluble cytokines cascade in the vagina, CV and AF. In our series, 12/37 (32%) AF and 10/23 (44%) CV tested positive for bacterial DNA. CV and AF harbored bacterial DNA of Streptococcus and Lactobacillus, overlapping that of the matched oral and vaginal niches, which showed a dysbiotic microbiome. In these pregnant women, the immune profiling revealed an immune hyporesponsiveness in the vagina and a high intraamniotic concentration of inflammatory cytokines. To understand the eventual role of bacterial colonization of the CV and AF and the associated immune response in the pregnancy outcome, further appropriate studies are needed. In this context, further studies should highlight if the hematogenous route could justify the spread of bacterial DNA from the oral microbiome to the placenta and if vaginal dysbiosis could favor the likelihood of identifying CV and AF positive for bacterial DNA.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
- Correspondence:
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
| | - Mariachiara Quadrifoglio
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
| | - Annalisa Careri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alessandra Torresani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
| | - Francesco De Seta
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
| | - Giuseppe Ricci
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria, 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|