51
|
Hao H, Guo Z, Li Z, Li J, Jiang S, Fu J, Jiao Y, Deng X, Han S, Li P. Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154409. [PMID: 36070661 DOI: 10.1016/j.phymed.2022.154409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Modified Bu-Fei decoction (MBFD), a formula of traditional Chinese medicine, is used for treating lung cancer in clinic. The actions and mechanisms of MBFD on modulating lung microenvironment is not clear. PURPOSE Lung microenvironment is rich in vascular endothelial cells (ECs). This study is aimed to examine the actions of MBFD on tumor biology, and to uncover the underlying mechanisms by focusing on pulmonary ECs. METHODS The Lewis lung carcinoma (LLC) xenograft model and the metastatic cancer model were used to determine the efficacy of MBFD on inhibiting tumor growth and metastasis. Flow cytometry and trans-well analysis were used to determine the role of ECs in anti-metastatic actions of MBFD. The in silico analysis and function assays were used to identify the mechanisms of MBFD in retarding lung metastasis. Plasma from lung cancer patients were used to verify the effects of MBFD on angiogenin-like protein 4 (ANGPTL4) in clinical conditions. RESULTS MBFD significantly suppressed spontaneous lung metastasis of LLC tumors, but not tumor growth, at clinically relevant concentrations. The anti-metastatic effects of MBFD were verified in metastatic cancer models created by intravenous injection of LLC or 4T1 cells. MBFD inhibited lung infiltration of circulating tumor cells, without reducing tumor cell proliferations in lung. In vitro, MBFD dose-dependently inhibited trans-endothelial migrations of tumor cells. RNA-seq assay and verification experiments confirmed that MBFD potently depressed endothelial ANGPTL4 which is able to broke endothelial barrier and protect tumor cells from anoikis. Database analysis revealed that high ANGPTL4 levels is negatively correlated with overall survival of cancer patients. Importantly, MBFD therapy reduced plasma levels of ANGPTL4 in lung cancer patients. Finally, MBFD was revealed to inhibit ANGPTL4 expressions in a hypoxia inducible factor-1α (HIF-1α)-dependent manner, based on results from specific signaling inhibitors and network pharmacology analysis. CONCLUSION MBFD, at clinically relevant concentrations, inhibits cancer lung metastasis via suppressing endothelial ANGPTL4. These results revealed novel effects and mechanisms of MBFD in treating cancer, and have a significant clinical implication of MBFD therapy in combating metastasis.
Collapse
Affiliation(s)
- Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhengwang Guo
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhandong Li
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Junfeng Li
- Departments of Thoracic Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Shantong Jiang
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China; Vascular Medicine Center, Peking University Shougang Hospital, Beijing, 100144, P.R. China
| | - Jialei Fu
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China.
| | - Pingping Li
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China.
| |
Collapse
|
52
|
Hoden B, DeRubeis D, Martinez-Moczygemba M, Ramos KS, Zhang D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front Immunol 2022; 13:1033483. [PMID: 36389785 PMCID: PMC9659925 DOI: 10.3389/fimmu.2022.1033483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer-related deaths worldwide. Significant improvements in lung cancer therapeutics have relied on a better understanding of lung cancer immunity and the development of novel immunotherapies, as best exemplified by the introduction of PD-1/PD-L1-based therapies. However, this improvement is limited to lung cancer patients who respond to anti-PD-1 immunotherapy. Further improvements in immunotherapy may benefit from a better understanding of innate immune response mechanisms in the lung. Toll-like receptors (TLRs) are a key component of the innate immune response and mediate the early recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLR signaling modulates the tumor microenvironment from "cold" to "hot" leading to immune sensitization of tumor cells to treatments and improved patient prognosis. In addition, TLR signaling activates the adaptive immune response to improve the response to cancer immunotherapy through the regulation of anti-tumor T cell activity. This review will highlight recent progress in our understanding of the role of TLRs in lung cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Bettina Hoden
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - David DeRubeis
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| |
Collapse
|
53
|
Song Q, Hou Y, Zhang Y, Liu J, Wang Y, Fu J, Zhang C, Cao M, Cui Y, Zhang X, Wang X, Zhang J, Liu C, Zhang Y, Wang P. Integrated multi-omics approach revealed cellular senescence landscape. Nucleic Acids Res 2022; 50:10947-10963. [PMID: 36243980 PMCID: PMC9638896 DOI: 10.1093/nar/gkac885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/27/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular senescence is a complex multifactorial biological phenomenon that plays essential roles in aging, and aging-related diseases. During this process, the senescent cells undergo gene expression altering and chromatin structure remodeling. However, studies on the epigenetic landscape of senescence using integrated multi-omics approaches are limited. In this research, we performed ATAC-seq, RNA-seq and ChIP-seq on different senescent types to reveal the landscape of senescence and identify the prime regulatory elements. We also obtained 34 key genes and deduced that NAT1, PBX1 and RRM2, which interacted with each other, could be the potential markers of aging and aging-related diseases. In summary, our work provides the landscape to study accessibility dynamics and transcriptional regulations in cellular senescence. The application of this technique in different types of senescence allows us to identify the regulatory elements responsible for the substantial regulation of transcription, providing the insights into molecular mechanisms of senescence.
Collapse
Affiliation(s)
- Qiao Song
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yuli Hou
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yiyin Zhang
- Shanghai Jiayin Biotechnology, Shanghai 200092, PR China
| | - Jing Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yaqi Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingxuan Fu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Chi Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Min Cao
- Department of Clinical Laboratory, Beijing Huairou Hospital, Beijing 101400, PR China
| | - Yuting Cui
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaomin Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaoling Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingjing Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Congcong Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yingzhen Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Peichang Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| |
Collapse
|
54
|
Yang S, Zou X, Li J, Yang H, Zhang A, Zhu Y, Zhu L, Zhang L. Immunoregulation and clinical significance of neutrophils/NETs-ANGPT2 in tumor microenvironment of gastric cancer. Front Immunol 2022; 13:1010434. [PMID: 36172371 PMCID: PMC9512293 DOI: 10.3389/fimmu.2022.1010434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Although significant progress has been made in the study of gastric cancer (GC), clinicians lack reliable protein markers for accurate diagnosis and tumor stratification. Neutrophil extracellular traps (NETs) are networks of extracellular fibers composed of DNA from neutrophils. We have previously reported that abundant NETs are deposited in GC, damaging human umbilical vein endothelial cells (HUVECs) and triggering the release of tissue factors, leading to a hypercoagulable state in GC. However, the specific effects of NETs on HUVECs are unclear. We aimed to explore the functional changes caused by NETs on HUVECs, providing evidence that NETs may fuel GC progression. Through quantitative proteomics, we identified 6182 differentially expressed proteins in NET-stimulated HUVECs by TMT. The reliability of the TMT technique was confirmed by parallel reaction monitoring (PRM) analysis of 17 differentially expressed proteins. Through bioinformatics analysis, we found that NETs upregulate ANGPT2 in HUVECs. We comprehensively analyzed the prognosis, biological function, immune response, and therapeutic value of ANGPT2 in GC. We found that overexpression of ANGPT2 in GC is associated with poor prognosis and potentially regulates multiple biological functions. At the same time, ANGPT2 also predicted immunotherapeutic and chemotherapeutic responses in GC. In conclusion, NETs promoted ANGPT2 overexpression in the GC microenvironment. In the future, the neutrophil/NETs-ANGPT2 axis may provide a new target for the treatment of GC.
Collapse
Affiliation(s)
- Shifeng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiaoming Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaoming Zou, ; Jiacheng Li,
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
- *Correspondence: Xiaoming Zou, ; Jiacheng Li,
| | - Hao Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ange Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanli Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lisha Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
55
|
Xia F, Ma Y, Chen K, Duong B, Ahmed S, Atwal R, Philpott D, Ketela T, Pantea J, Lin S, Angers S, Kelley SO. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. SCIENCE ADVANCES 2022; 8:eabo7792. [PMID: 36054348 PMCID: PMC10848953 DOI: 10.1126/sciadv.abo7792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Bill Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - David Philpott
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
56
|
Zhang TJ, Xu ZJ, Wen XM, Gu Y, Ma JC, Yuan Q, Lin J, Zhou JD, Qian J. SLIT2 promoter hypermethylation-mediated SLIT2-IT1/miR-218 repression drives leukemogenesis and predicts adverse prognosis in myelodysplastic neoplasm. Leukemia 2022; 36:2488-2498. [PMID: 35906386 DOI: 10.1038/s41375-022-01659-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Epigenetic modifications have been found to play crucial roles in myelodysplastic neoplasm (MDS) progression. Previously, we investigated genome-wide DNA methylation alterations during MDS evolution to acute myeloid leukemia (AML) by next-generation sequencing (NGS). Herein, we further determined the role and clinical implications of an evident methylation change in CpG islands at the SLIT2 promoter identified by NGS. First, increased SLIT2 promoter methylation was validated in 11 paired MDS/AML patients during disease evolution. Additionally, SLIT2 promoter methylation was markedly increased in MDS/AML patients compared with controls and was correlated with poor clinical phenotype and outcome. Interestingly, SLIT2 expression was particularly upregulated in AML patients and was not correlated with SLIT2 promoter methylation. However, the SLIT2-embedded genes SLIT2-IT1 and miR-218 were downregulated in AML patients, which was negatively associated with SLIT2 promoter methylation and further validated by demethylation studies. Functionally, SLIT2-IT1/miR-218 overexpression exhibited antileukemic effects by affecting cell proliferation, apoptosis and colony formation in vitro and in vivo. Mechanistically, SLIT2-IT1 may function as a competing endogenous RNA by sponging miR-3156-3p to regulate BMF expression, whereas miR-218 may directly target HOXA1 in MDS progression. In summary, our findings demonstrate that SLIT2 promoter hypermethylation is associated with disease evolution in MDS and predicts poor prognoses in both MDS and AML. Epigenetic inactivation of SLIT2-IT1/miR-218 by SLIT2 promoter hypermethylation could be a promising therapeutic target in MDS.
Collapse
Affiliation(s)
- Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Qian Yuan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
57
|
Tsavlis D, Katopodi T, Anestakis D, Petanidis S, Charalampidis C, Chatzifotiou E, Eskitzis P, Zarogoulidis P, Porpodis K. Molecular and Immune Phenotypic Modifications during Metastatic Dissemination in Lung Carcinogenesis. Cancers (Basel) 2022; 14:cancers14153626. [PMID: 35892884 PMCID: PMC9332629 DOI: 10.3390/cancers14153626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Metastatic cancer is a multifaceted complex disease. It is mainly characterized by a strong invasive potential, metastasis, resistance to therapy, and poor clinical prognosis. Although the use of immune checkpoint inhibitors (ICI) has substantially improved cancer treatment and therapy, there are many significant challenges to be addressed. In this review, we provide an overview of the mechanisms used by metastatic or disseminating tumor cells (DTCs) in order to understand cancer progression to metastasis, and establish new strategies for novel therapeutic interventions. Abstract The tumor microenvironment plays a key role in the progression of lung tumorigenesis, progression, and metastasis. Recent data reveal that disseminated tumor cells (DTCs) appear to play a key role in the development and progression of lung neoplasiaby driving immune system dysfunction and established immunosuppression, which is vital for evading the host immune response. As a consequence, in this review we will discuss the role and function of DTCs in immune cell signaling routes which trigger drug resistance and immunosuppression. We will also discuss the metabolic biology of DTCs, their dormancy, and their plasticity, which are critical for metastasis and drive lung tumor progression. Furthermore, we will consider the crosstalk between DTCs and myeloid cells in tumor-related immunosuppression. Specifically, we will investigate the molecular immune-related mechanisms in the tumor microenvironment that lead to decreased drug sensitivity and tumor relapse, along with strategies for reversing drug resistance and targeting immunosuppressive tumor networks. Deciphering these molecular mechanisms is essential for preclinical and clinical investigations in order to enhance therapeutic efficacy. Furthermore, a better understanding of these immune cell signaling pathways that drive immune surveillance, immune-driven inflammation, and tumor-related immunosuppression is necessary for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia 1678, Cyprus; (D.A.); (C.C.)
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-999-205; Fax: +30-2310-999-208
| | | | - Evmorfia Chatzifotiou
- Department of Pathology, Forensic Medical Service of Thessaloniki, 57008 Diavata, Greece;
| | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece;
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece;
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| |
Collapse
|
58
|
Liu X, Mei W, Padmanaban V, Alwaseem H, Molina H, Passarelli MC, Tavora B, Tavazoie SF. A pro-metastatic tRNA fragment drives Nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol Cell 2022; 82:2604-2617.e8. [PMID: 35654044 PMCID: PMC9444141 DOI: 10.1016/j.molcel.2022.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023]
Abstract
Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.
Collapse
Affiliation(s)
- Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Veena Padmanaban
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Maria C Passarelli
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Bernardo Tavora
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
59
|
Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy. Pharmacol Res 2022; 182:106333. [PMID: 35779815 DOI: 10.1016/j.phrs.2022.106333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment (TME) through limiting immune cell infiltration into tumors. The defective vascular perfusion in tumors also impairs the delivery and efficacy of chemotherapeutic agents. Targeting abnormal tumor blood vessels has emerged as an effective therapeutic strategy to improve the outcome of chemotherapy and immunotherapy. In this study, we demonstrated that Salvianolic acid B (SalB), one of the major ingredients of Salvia miltiorriza elicited vascular normalization in the mouse models of breast cancer, contributing to improved delivery and response of chemotherapeutic agent cisplatin as well as attenuated metastasis. Moreover, SalB in combination with anti-PD-L1 blockade retarded tumor growth, which was mainly due to elevated infiltration of immune effector cells and boosted delivery of anti-PD-L1 into tumors. Mechanistically, tumor cell enhancer of zeste homolog 2 (Ezh2)-driven cytokines disrupted the endothelial junctions with diminished VE-cadherin expression, which could be rescued in the presence of SalB. The restored vascular integrity by SalB via modulating the interactions between tumor cells and endothelial cells (ECs) offered a principal route for achieving vascular normalization. Taken together, our data elucidated that SalB enhanced sensitivity of tumor cells to chemotherapy and immunotherapy through triggering tumor vascular normalization, providing a potential therapeutic strategy of combining SalB and chemotherapy or immunotherapy for patients with breast cancer.
Collapse
|
60
|
Zeng Z, Xu S, Wang F, Peng X, Zhang W, Zhan Y, Ding Y, Liu Z, Liang L. HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps. Oncogene 2022; 41:3719-3731. [PMID: 35739335 PMCID: PMC9287177 DOI: 10.1038/s41388-022-02248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Metabolic reprogramming has been shown to be involved in cancer-induced pre-metastatic niche (PMN) formation, but the underlying mechanisms have been insufficiently explored. Here, we showed that hydroxyacid oxidase 1 (HAO1), a rate-limiting enzyme of oxalate synthesis, was upregulated in the alveolar epithelial cells of mice bearing metastatic breast cancer cells at the pre-metastatic stage, leading to oxalate accumulation in lung tissue. Lung oxalate accumulation induced neutrophil extracellular trap (NET) formation by activating NADPH oxidase, which facilitated the formation of pre-metastatic niche. In addition, lung oxalate accumulation promoted the proliferation of metastatic cancer cells by activating the MAPK signaling pathway. Pharmacologic inhibition of HAO1 could effectively suppress the lung oxalate accumulation induced by primary cancer, consequently dampening lung metastasis of breast cancer. Breast cancer cells induced HAO1 expression and oxalate accumulation in alveolar epithelial cells by activating TLR3-IRF3 signaling. Collectively, these findings underscore the role of HAO1-mediated oxalate metabolism in cancer-induced lung PMN formation and metastasis. HAO1 could be an appealing therapeutic target for preventing lung metastasis of cancer.
Collapse
Affiliation(s)
- Zhicheng Zeng
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), foshan, Guangdong, PR China.,Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Shaowan Xu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Xin Peng
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Wanning Zhang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China
| | - Ziguang Liu
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), foshan, Guangdong, PR China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, PR China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
61
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
62
|
Zhou T, Zhang Y, Chen Y, Shan J, Wang J, Wang Y, Chang J, Jiang W, Chen R, Wang Z, Shi X, Yu Y, Li C, Li X. ROBO1 p.E280* Loses the Inhibitory Effects on the Proliferation and Angiogenesis of Wild-Type ROBO1 in Cholangiocarcinoma by Interrupting SLIT2 Signal. Front Oncol 2022; 12:879963. [PMID: 35615148 PMCID: PMC9124974 DOI: 10.3389/fonc.2022.879963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) remains one of the most lethal malignancies with an increasing incidence globally. Through whole-exome sequencing of 67 CCA tissues, we identified new mutated genes in CCA, including MACF1, METTL14, ROBO1, and so on. The study was designed to explore the effects and mechanism of ROBO1 wild type (ROBO1WT) and ROBO1E280* mutation on the progression of CCA. Methods Whole-exome sequencing was performed to identify novel mutations in CCAs. In vitro and in vivo experiments were used to examine the function and mechanism of ROBO1WT and ROBO1E280* in cholangiocarcinoma. A tissue microarray including 190 CCA patients and subsequent analyses were performed to indicate the clinical significance of ROBO1. Results Through whole-exome sequencing, we identified a novel CCA-related mutation, ROBO1E280*. ROBO1 was downregulated in CCA tissues, and the downregulation of ROBO1 was significantly correlated with poor prognosis. ROBO1WT suppressed the proliferation and angiogenesis of CCA in vitro and in vivo, while ROBO1E280* lost the inhibitory effects. Mechanically, ROBO1E280* translocated from the cytomembrane to the cytoplasm and interrupted the interaction between SLIT2 and ROBO1. We identified OLFML3 as a potential target of ROBO1 by conducting RNA-Seq assays. OLFML3 expression was downregulated by ROBO1WT and recovered by ROBO1E280*. Functionally, the silence of OLFML3 inhibited CCA proliferation and angiogenesis and was sufficient to repress the loss-of-function role of ROBO1E280*. Conclusions These results suggest that ROBO1 may act as a tumor suppressor and potential prognostic marker for CCA. ROBO1E280* mutation is a loss-of-function mutation, and it might serve as a candidate therapeutic target for CCA patients.
Collapse
Affiliation(s)
- Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yananlan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
- *Correspondence: Xiangcheng Li, ; Changxian Li,
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Liver Transplantation, Nanjing, China
- *Correspondence: Xiangcheng Li, ; Changxian Li,
| |
Collapse
|
63
|
Zhang Z, Li H, Gan H, Tang Z, Guo Y, Yao S, Liuyu T, Zhong B, Lin D. RNF115 Inhibits the Post-ER Trafficking of TLRs and TLRs-Mediated Immune Responses by Catalyzing K11-Linked Ubiquitination of RAB1A and RAB13. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105391. [PMID: 35343654 PMCID: PMC9165487 DOI: 10.1002/advs.202105391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/07/2022] [Indexed: 05/16/2023]
Abstract
The subcellular localization and intracellular trafficking of Toll-like receptors (TLRs) critically regulate TLRs-mediated antimicrobial immunity and autoimmunity. Here, it is demonstrated that the E3 ubiquitin ligase RNF115 inhibits the post-endoplasmic reticulum (ER) trafficking of TLRs and TLRs-mediated immune responses by catalyzing ubiquitination of the small GTPases RAB1A and RAB13. It is shown that the 14-3-3 chaperones bind to AKT1-phosphorylated RNF115 and facilitate RNF115 localizing on the ER and the Golgi apparatus. RNF115 interacts with RAB1A and RAB13 and catalyzes K11-linked ubiquitination on the Lys49 and Lys61 residues of RAB1A and on the Lys46 and Lys58 residues of RAB13, respectively. Such a modification impairs the recruitment of guanosine diphosphate (GDP) dissociation inhibitor 1 (GDI1) to RAB1A and RAB13, a prerequisite for the reactivation of RAB proteins. Consistently, knockdown of RAB1A and RAB13 in Rnf115+/+ and Rnf115-/- cells markedly inhibits the post-ER and the post-Golgi trafficking of TLRs, respectively. In addition, reconstitution of RAB1AK49/61R or RAB13K46/58R into Rnf115+/+ cells but not Rnf115-/- cells promotes the trafficking of TLRs from the ER to the Golgi apparatus and from the Golgi apparatus to the cell surface, respectively. These findings uncover a common and step-wise regulatory mechanism for the post-ER trafficking of TLRs.
Collapse
Affiliation(s)
- Zhi‐Dong Zhang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| | - Hong‐Xu Li
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hu Gan
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Zhen Tang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Yu‐Yao Guo
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Shu‐Qi Yao
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Tianzi Liuyu
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| |
Collapse
|
64
|
Yang R, Yu S, Xu T, Zhang J, Wu S. Emerging role of RNA sensors in tumor microenvironment and immunotherapy. J Hematol Oncol 2022; 15:43. [PMID: 35413927 PMCID: PMC9006576 DOI: 10.1186/s13045-022-01261-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
RNA sensors detect foreign and endogenous RNAs to protect the host by initiating innate and adaptive immune response. In tumor microenvironment (TME), activation of RNA sensors induces tumor-inhibitory cytotoxic T lymphocyte responses and inhibits the activity of immunosuppressive cells though stimulating type I IFN signaling pathway. These characteristics allow RNA sensors to be prospective targets in tumor immunotherapy. Therefore, a comprehensive understanding of the roles of RNA sensors in TME could provide new insight into the antitumor immunotherapy. Moreover, RNA sensors could be prominent triggering targets to synergize with immunotherapies. In this review, we highlight the diverse mechanisms of RNA sensors in cancer immunity and their emerging contributions in cancer immunotherapy, including monotherapy with RNA sensor agonists, as well as combination with chemotherapy, radiotherapy, immune checkpoint blockade or cancer vaccine.
Collapse
Affiliation(s)
- Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
65
|
Gómez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T, Geng F, Bram Y, Adelson RP, Lu TM, Inghirami G, Xiang JZ, Lis R, Redmond D, Schreiner R, Rabbany SY, Landau DA, Schwartz RE, Rafii S. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 2022; 29:593-609.e7. [PMID: 35364013 PMCID: PMC9290393 DOI: 10.1016/j.stem.2022.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
The liver vascular network is patterned by sinusoidal and hepatocyte co-zonation. How intra-liver vessels acquire their hierarchical specialized functions is unknown. We study heterogeneity of hepatic vascular cells during mouse development through functional and single-cell RNA-sequencing. The acquisition of sinusoidal endothelial cell identity is initiated during early development and completed postnatally, originating from a pool of undifferentiated vascular progenitors at E12. The peri-natal induction of the transcription factor c-Maf is a critical switch for the sinusoidal identity determination. Endothelium-restricted deletion of c-Maf disrupts liver sinusoidal development, aberrantly expands postnatal liver hematopoiesis, promotes excessive postnatal sinusoidal proliferation, and aggravates liver pro-fibrotic sensitivity to chemical insult. Enforced c-Maf overexpression in generic human endothelial cells switches on a liver sinusoidal transcriptional program that maintains hepatocyte function. c-Maf represents an inducible intra-organotypic and niche-responsive molecular determinant of hepatic sinusoidal cell identity and lays the foundation for the strategies for vasculature-driven liver repair.
Collapse
Affiliation(s)
- Jesus Maria Gómez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Franco Izzo
- Division of Hematology and Medical Oncology, Department of Medicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean Houghton
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer Itkin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert P Adelson
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Tyler M Lu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Raphael Lis
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sina Y Rabbany
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Dan A Landau
- Division of Hematology and Medical Oncology, Department of Medicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
66
|
Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat Cell Biol 2022; 24:307-315. [PMID: 35288656 PMCID: PMC8977047 DOI: 10.1038/s41556-022-00856-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
Tumourigenesis and cancer progression require enhanced global protein translation1–3. Such enhanced translation is caused by oncogenic and tumour suppressive events that drive the synthesis and activity of translational machinery4,5. Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase—along with its downstream cognate tRNAs—elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.
Collapse
|
67
|
Metabolic Response in Endothelial Cells to Catecholamine Stimulation Associated with Increased Vascular Permeability. Int J Mol Sci 2022; 23:ijms23063162. [PMID: 35328583 PMCID: PMC8950318 DOI: 10.3390/ijms23063162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Disruption to endothelial cell homeostasis results in an extensive variety of human pathologies that are particularly relevant to major trauma. Circulating catecholamines, such as adrenaline and noradrenaline, activate endothelial adrenergic receptors triggering a potent response in endothelial function. The regulation of the endothelial cell metabolism is distinct and profoundly important to endothelium homeostasis. However, a precise catalogue of the metabolic alterations caused by sustained high catecholamine levels that results in endothelial dysfunction is still underexplored. Here, we uncover a set of up to 46 metabolites that exhibit a dose–response relationship to adrenaline-noradrenaline equimolar treatment. The identified metabolites align with the glutathione-ascorbate cycle and the nitric oxide biosynthesis pathway. Certain key metabolites, such as arginine and reduced glutathione, displayed a differential response to treatment in early (4 h) compared to late (24 h) stages of sustained stimulation, indicative of homeostatic metabolic feedback loops. Furthermore, we quantified an increase in the glucose consumption and aerobic respiration in endothelial cells upon catecholamine stimulation. Our results indicate that oxidative stress and nitric oxide metabolic pathways are downstream consequences of endothelial cell stimulation with sustained high levels of catecholamines. A precise understanding of the metabolic response in endothelial cells to pathological levels of catecholamines will facilitate the identification of more efficient clinical interventions in trauma patients.
Collapse
|
68
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
69
|
Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022; 21:58. [PMID: 35189921 PMCID: PMC8860277 DOI: 10.1186/s12943-022-01528-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractAccumulating research suggests that the tumor immune microenvironment (TIME) plays an essential role in regulation of tumor growth and metastasis. The cellular and molecular nature of the TIME influences cancer progression and metastasis by altering the ratio of immune- suppressive versus cytotoxic responses in the vicinity of the tumor. Targeting or activating the TIME components show a promising therapeutic avenue to combat cancer. The success of immunotherapy is both astounding and unsatisfactory in the clinic. Advancements in RNA-based technology have improved understanding of the complexity and diversity of the TIME and its effects on therapy. TIME-related RNA or RNA regulators could be promising targets for anticancer immunotherapy. In this review, we discuss the available RNA-based cancer immunotherapies targeting the TIME. More importantly, we summarize the potential of various RNA-based therapeutics clinically available for cancer treatment. RNA-dependent targeting of the TIME, as monotherapy or combined with other evolving therapeutics, might be beneficial for cancer patients’ treatment in the near future.
Collapse
|
70
|
Li Z, Gao Y, Zhang H, Lan F, Wu Y. Hydrophilic magnetic covalent triazine frameworks for differential N-glycopeptides enrichment in breast cancer plasma membranes. J Mater Chem B 2022; 10:717-727. [PMID: 35015022 DOI: 10.1039/d1tb02290c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alterations in plasma membrane glycoproteins (PMGs) have been identified as a hallmark of cancer. The comparison and identification of differential PMGs is significant for finding new markers and understanding pathological processes. However, the research on PMGs is often constrained by the low abundance and the disturbance of abundant endogenous biomolecules during direct analysis. Here, we report a bottom-up strategy to enrich the PMGs of breast cancer cells using hydrophilic magnetic covalent triazine frameworks (CTFs). A total of 972 N-glycopeptides and 1006 N-glycosites belonging to 526 N-glycoproteins were enriched in MCF-10A plasma membrane tryptic digest by magnetic CTFs. And 680 N-glycopeptides and 806 N-glycosites belonging to 443 N-glycoproteins were enriched in SK-BR-3 plasma membrane tryptic digest. Furthermore, comparative analysis was performed based on gene ontology to verify breast cancer biomarkers (SUSD2 and ALCAM) and differential PMGs' function. This strategy which systematically integrates efficient enrichment of differential PMGs and in-depth comparative analysis has great potential for helping illuminate the atlas of breast cancer PMGs and the causes of tumor metastasis.
Collapse
Affiliation(s)
- Zhiyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yichun Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Huinan Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
71
|
Eteshola EO, Landa K, Rempel RE, Naqvi IA, Hwang ES, Nair SK, Sullenger BA. Breast cancer-derived DAMPs enhance cell invasion and metastasis, while nucleic acid scavengers mitigate these effects. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1-10. [PMID: 34513289 PMCID: PMC8408553 DOI: 10.1016/j.omtn.2021.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022]
Abstract
Breast cancer (BC) is the most common malignancy in women. Particular subtypes with aggressive behavior are major contributors to poor outcomes. Triple-negative breast cancer (TNBC) is difficult to treat, pro-inflammatory, and highly metastatic. We demonstrate that TNBC cells express TLR9 and are responsive to TLR9 ligands, and treatment of TNBC cells with chemotherapy increases the release of nucleic-acid-containing damage-associated molecular patterns (NA DAMPs) in cell culture. Such culture-derived and breast cancer patient-derived NA DAMPs increase TLR9 activation and TNBC cell invasion in vitro. Notably, treatment with the polyamidoamine dendrimer generation 3.0 (PAMAM-G3) behaved as a nucleic acid scavenger (NAS) and significantly mitigates such effects. In mice that develop spontaneous BC induced by polyoma middle T oncoprotein (MMTV-PyMT), treatment with PAMAM-G3 significantly reduces lung metastasis. Thus, NAS treatment mitigates cancer-induced inflammation and metastasis and represents a novel therapeutic approach for combating breast cancer.
Collapse
Affiliation(s)
- Elias O.U. Eteshola
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - Karenia Landa
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - Rachel E. Rempel
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - Ibtehaj A. Naqvi
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
| | - E. Shelley Hwang
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Smita K. Nair
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Bruce A. Sullenger
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
- Duke University Medical Center, Department of Surgery, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
72
|
Kaul K, Benej M, Mishra S, Ahirwar DK, Yadav M, Stanford KI, Jacob NK, Denko NC, Ganju RK. Slit2-Mediated Metabolic Reprogramming in Bone Marrow-Derived Macrophages Enhances Antitumor Immunity. Front Immunol 2021; 12:753477. [PMID: 34777365 PMCID: PMC8581492 DOI: 10.3389/fimmu.2021.753477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation in vitro. Moreover, myeloablated PyMT mice injected with Slit2-treated bone marrow allografts showed a marked reduction in tumor growth, with enhanced recruitment of M1 macrophage in their tumor stroma. Mechanistic studies revealed that Slit2 significantly enhanced glycolysis and reduced fatty acid oxidation in bone marrow-derived macrophages (BMDMs). Slit2 treatment also altered mitochondrial respiration metabolites in macrophages isolated from healthy human blood that were treated with plasma from breast cancer patients. Overall, this study, for the first time, shows that Slit2 increases BMDM polarization toward antitumor phenotype by modulating immune-metabolism. Furthermore, this study provides evidence that soluble Slit2 could be developed as novel therapeutic strategy to enhance antitumor immune response.
Collapse
Affiliation(s)
- Kirti Kaul
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Martin Benej
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Mishra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Marshleen Yadav
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Naduparambil K Jacob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Nicholas C Denko
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
73
|
Li Z, Ning F, Wang C, Yu H, Ma Q, Sun Y. Normalization of the tumor microvasculature based on targeting and modulation of the tumor microenvironment. NANOSCALE 2021; 13:17254-17271. [PMID: 34651623 DOI: 10.1039/d1nr03387e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angiogenesis is an essential process for tumor development. Owing to the imbalance between pro- and anti-angiogenic factors, the tumor vasculature possesses the characteristics of tortuous, hyperpermeable vessels and compressive force, resulting in a reduction in the effect of traditional chemotherapy and radiotherapy. Anti-angiogenesis has emerged as a promising strategy for cancer treatment. Tumor angiogenesis, however, has been proved to be a complex process in which the tumor microenvironment (TME) plays a vital role in the initiation and development of the tumor microvasculature. The host stromal cells in the TME, such as cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs) and Treg cells, contribute to angiogenesis. Furthermore, the abnormal metabolic environment, such as hypoxia and acidosis, leads to the up-regulated expression of angiogenic factors. Indeed, normalization of the tumor microvasculature via targeting and modulating the TME has become a promising strategy for anti-angiogenesis and anti-tumor therapy. In this review, we summarize the abnormalities of the tumor microvasculature, tumor angiogenesis induced by an abnormal metabolic environment and host stromal cells, as well as drug delivery therapies to restore the balance between pro- and anti-angiogenic factors by targeting and normalizing the tumor vasculature in the TME.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
74
|
Hunyenyiwa T, Hendee K, Matus K, Kyi P, Mammoto T, Mammoto A. Obesity Inhibits Angiogenesis Through TWIST1-SLIT2 Signaling. Front Cell Dev Biol 2021; 9:693410. [PMID: 34660572 PMCID: PMC8511494 DOI: 10.3389/fcell.2021.693410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is required for functional adipose tissue maintenance, remodeling, and expansion. Physiologically balanced adipogenesis and angiogenesis are inhibited in subcutaneous adipose tissue in obese humans. However, the mechanism by which angiogenesis is inhibited in obese adipose tissue is not fully understood. Transcription factor TWIST1 controls angiogenesis and vascular function. TWIST1 expression is lower in obese human adipose tissues. Here, we have demonstrated that angiogenesis is inhibited in endothelial cells (ECs) isolated from adipose tissues of obese humans through TWIST1-SLIT2 signaling. The levels of TWIST1 and SLIT2 are lower in ECs isolated from obese human adipose tissues compared to those from lean tissues. Knockdown of TWIST1 in lean human adipose ECs decreases, while overexpression of TWIST1 in obese adipose ECs restores SLIT2 expression. DNA synthesis and cell migration are inhibited in obese adipose ECs and the effects are restored by TWIST1 overexpression. Obese adipose ECs also inhibit blood vessel formation in the gel subcutaneously implanted in mice, while these effects are restored when gels are mixed with SLIT2 or supplemented with ECs overexpressing TWIST1. These findings suggest that obesity impairs adipose tissue angiogenesis through TWIST1-SLIT2 signaling.
Collapse
Affiliation(s)
- Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
75
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
76
|
Ahirwar DK, Charan M, Mishra S, Verma AK, Shilo K, Ramaswamy B, Ganju RK. Slit2 Inhibits Breast Cancer Metastasis by Activating M1-Like Phagocytic and Antifibrotic Macrophages. Cancer Res 2021; 81:5255-5267. [PMID: 34400395 DOI: 10.1158/0008-5472.can-20-3909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are heterogeneous in nature and comprise antitumor M1-like (M1-TAM) or pro-tumor M2-like (M2-TAM) TAMs. M2-TAMs are a major component of stroma in breast tumors and enhance metastasis by reducing their phagocytic ability and increasing tumor fibrosis. However, the molecular mechanisms that regulate phenotypic plasticity of TAMs are not well known. Here we report a novel tumor suppressor Slit2 in breast cancer by regulating TAMs in the tumor microenvironment. Slit2 reduced the in vivo growth and metastasis of spontaneous and syngeneic mammary tumor and xenograft breast tumor models. Slit2 increased recruitment of M1-TAMs to the tumor and enhanced the ability of M1-TAMs to phagocytose tumor cells in vitro and in vivo. This Slit2-mediated increase in M1-TAM phagocytosis occurred via suppression of IL6. Slit2 was also shown to diminish fibrosis in breast cancer mouse models by increasing the expression of matrix metalloproteinase 13 in M1-TAMs. Analysis of patient samples showed high Slit2 expression strongly associated with better patient survival and inversely correlated with the abundance of CD163+ TAMs. Overall, these studies define the role of Slit2 in inhibiting metastasis by activating M1-TAMs and depleting tumor fibrosis. Furthermore, these findings suggest that Slit2 can be a promising immunotherapeutic agent to redirect TAMs to serve as tumor killers for aggressive and metastatic breast cancers. In addition, Slit2 expression along with CD163+ TAMs could be used as an improved prognostic biomarker in patients with breast cancer. SIGNIFICANCE: This study provides evidence that the antitumor effect of Slit2 in breast cancer occurs by activating the phagocytic activity of M1-like tumor-associated macrophages against tumor cells and diminishing fibrosis.
Collapse
Affiliation(s)
- Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Manish Charan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sanjay Mishra
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ajeet K Verma
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio. .,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
77
|
Li P, Lin Z, Liu Q, Chen S, Gao X, Guo W, Gong F, Wei J, Lin H. Enhancer RNA SLIT2 Inhibits Bone Metastasis of Breast Cancer Through Regulating P38 MAPK/c-Fos Signaling Pathway. Front Oncol 2021; 11:743840. [PMID: 34722297 PMCID: PMC8554345 DOI: 10.3389/fonc.2021.743840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the most common cancer in women, while the bones are one of the most common sites of metastasis. Although new diagnostic methods or radiation or chemotherapies and targeted therapies have made huge advances, the occurrence of bone metastasis is also linked with poorer survival. Enhancer RNAs (eRNAs) have been demonstrated to participate in the progression of tumorigenesis and metastasis. However, the role of eRNAs in BRCA bone metastasis remains largely unclear. METHOD Gene expression profiling of 1,211 primary BRCA and 17 bone metastases samples were retrieved from The Cancer Genome Atlas (TCGA) database, and the significant prognostic eRNAs were identified by Cox regression and least absolute shrinkage and selection operator (LASSO) regression. The acceptable accuracy and discrimination of the nomogram were indicated by the receiver operating characteristic (ROC) and the calibration curves. Then target genes of eRNA, immune cell percentage by CIBERSORT analysis, immune genes by single-sample gene set enrichment analysis (ssGSEA), hallmark of cancer signaling pathway by gene set variation analysis (GSVA), and reverse phase protein array (RPPA) protein chip were used to build a co-expression regulation network and identified the key eRNAs in bone metastasis of BRCA. Finally, Cell Counting Kit-8 (CCK8) assay, cell cycle assay, and transwell assay were used to study changes in cell proliferation, migration, and invasiveness. Immunoprecipitation assay and Western blotting were used to test the interaction and the regulation signaling pathways. RESULTS The 27 hub eRNAs were selected, and a survival-related linear risk assessment model with a relatively high accuracy (area under curve (AUC): 0.726) was constructed. In addition, seven immune-related eRNAs (SLIT2, CLEC3B, LBPL1, FRY, RASGEF1B, DST, and ITIH5) as prognostic signatures for bone metastasis of BRCA were further confirmed by LASSO and multivariate Cox regression and CIBERSORT analysis. Finally, in vitro assay demonstrated that overexpression of SLIT2 reduced proliferation and metastasis in BRCA cells. Using high-throughput co-expression regulation network, we identified that SLIT2 may regulating P38 MAPK/c-Fos signaling pathway to promote the effects of metastasis. CONCLUSION Based on the co-expression network for bone metastasis of BRCA, we screened key eRNAs to explore a prognostic model in predicting the bone metastasis by bioinformatics analysis. Besides, we identified the potential regulatory signaling pathway of SLIT2 in BRCA bone metastasis, which provides a promising therapeutic strategy for metastasis of BRCA.
Collapse
Affiliation(s)
- Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiping Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Orthopedic Center, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qianzheng Liu
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Siyuan Chen
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weixiong Guo
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Gong
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
78
|
Geraldo LH, Xu Y, Jacob L, Pibouin-Fragner L, Rao R, Maissa N, Verreault M, Lemaire N, Knosp C, Lesaffre C, Daubon T, Dejaegher J, Solie L, Rudewicz J, Viel T, Tavitian B, De Vleeschouwer S, Sanson M, Bikfalvi A, Idbaih A, Lu QR, Lima FR, Thomas JL, Eichmann A, Mathivet T. SLIT2/ROBO signaling in tumor-associated microglia and macrophages drives glioblastoma immunosuppression and vascular dysmorphia. J Clin Invest 2021; 131:141083. [PMID: 34181595 PMCID: PMC8363292 DOI: 10.1172/jci141083] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
SLIT2 is a secreted polypeptide that guides migration of cells expressing Roundabout 1 and 2 (ROBO1 and ROBO2) receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and patient-derived GBM xenografts reduced tumor growth and rendered tumors sensitive to immunotherapy. Tumor cell SLIT2 knockdown inhibited macrophage invasion and promoted a cytotoxic gene expression profile, which improved tumor vessel function and enhanced efficacy of chemotherapy and immunotherapy. Mechanistically, SLIT2 promoted microglia/macrophage chemotaxis and tumor-supportive polarization via ROBO1- and ROBO2-mediated PI3K-γ activation. Macrophage Robo1 and Robo2 deletion and systemic SLIT2 trap delivery mimicked SLIT2 knockdown effects on tumor growth and the tumor microenvironment (TME), revealing SLIT2 signaling through macrophage ROBOs as a potentially novel regulator of the GBM microenvironment and immunotherapeutic target for brain tumors.
Collapse
Affiliation(s)
- Luiz H. Geraldo
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Brazil
| | - Yunling Xu
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Laurent Jacob
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | | | - Rohit Rao
- Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nawal Maissa
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Maïté Verreault
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Nolwenn Lemaire
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Camille Knosp
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Corinne Lesaffre
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | | | - Joost Dejaegher
- Department of Neurosciences and
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Lien Solie
- Department of Neurosciences and
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | | | - Thomas Viel
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Bertrand Tavitian
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | | | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
- Onconeurotek Tumor Bank, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France
| | | | - Ahmed Idbaih
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Q. Richard Lu
- Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Flavia R.S. Lima
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Brazil
| | - Jean-Leon Thomas
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
- Department of Neurology
| | - Anne Eichmann
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
- Cardiovascular Research Center, Department of Internal Medicine, and
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Mathivet
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| |
Collapse
|
79
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
80
|
Control of Tumor Progression by Angiocrine Factors. Cancers (Basel) 2021; 13:cancers13112610. [PMID: 34073394 PMCID: PMC8198241 DOI: 10.3390/cancers13112610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression, therapy resistance and metastasis are profoundly controlled by the tumor microenvironment. The contribution of endothelial cells to tumor progression was initially only attributed to the formation of new blood vessels (angiogenesis). Research in the last decade has revealed however that endothelial cells control their microenvironment through the expression of membrane-bound and secreted factors. Such angiocrine functions are frequently hijacked by cancer cells, which deregulate the signaling pathways controlling the expression of angiocrine factors. Here, we review the crosstalk between cancer cells and endothelial cells and how this contributes to the cancer stem cell phenotype, epithelial to mesenchymal transition, immunosuppression, remodeling of the extracellular matrix and intravasation of cancer cells into the bloodstream. We also address the long-distance crosstalk of a primary tumor with endothelial cells at the pre-metastatic niche and how this contributes to metastasis.
Collapse
|
81
|
Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, Taniguchi K. Inflammation-Induced Tumorigenesis and Metastasis. Int J Mol Sci 2021; 22:ijms22115421. [PMID: 34063828 PMCID: PMC8196678 DOI: 10.3390/ijms22115421] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation, especially chronic inflammation, plays a pivotal role in tumorigenesis and metastasis through various mechanisms and is now recognized as a hallmark of cancer and an attractive therapeutic target in cancer. In this review, we discuss recent advances in molecular mechanisms of how inflammation promotes tumorigenesis and metastasis and suppresses anti-tumor immunity in various types of solid tumors, including esophageal, gastric, colorectal, liver, and pancreatic cancer as well as hematopoietic malignancies.
Collapse
Affiliation(s)
- Sana Hibino
- Research Center for Advanced Science and Technology, Department of Inflammology, The University of Tokyo, Tokyo 153-0041, Japan;
| | - Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hidenori Kasahara
- National Center for Global Health and Medicine, Department of Stem Cell Biology, Research Institute, Tokyo 162-8655, Japan;
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan;
| | | | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Correspondence: ; Tel.: +81-11-706-5050
| |
Collapse
|
82
|
Development and Validation of a Robust Immune-Related Prognostic Signature for Gastric Cancer. J Immunol Res 2021; 2021:5554342. [PMID: 34007851 PMCID: PMC8110424 DOI: 10.1155/2021/5554342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing number of reports have found that immune-related genes (IRGs) have a significant impact on the prognosis of a variety of cancers, but the prognostic value of IRGs in gastric cancer (GC) has not been fully elucidated. Methods Univariate Cox regression analysis was adopted for the identification of prognostic IRGs in three independent cohorts (GSE62254, n = 300; GSE15459, n = 191; and GSE26901, n = 109). After obtaining the intersecting prognostic genes, the three independent cohorts were merged into a training cohort (n = 600) to establish a prognostic model. The risk score was determined using multivariate Cox and LASSO regression analyses. Patients were classified into low-risk and high-risk groups according to the median risk score. The risk score performance was validated externally in the three independent cohorts (GSE26253, n = 432; GSE84437, n = 431; and TCGA, n = 336). Immune cell infiltration (ICI) was quantified by the CIBERSORT method. Results A risk score comprising nine genes showed high accuracy for the prediction of the overall survival (OS) of patients with GC in the training cohort (AUC > 0.7). The risk of death was found to have a positive correlation with the risk score. The univariate and multivariate Cox regression analyses revealed that the risk score was an independent indicator of the prognosis of patients with GC (p < 0.001). External validation confirmed the universal applicability of the risk score. The low-risk group presented a lower infiltration level of M2 macrophages than the high-risk group (p < 0.001), and the prognosis of patients with GC with a higher infiltration level of M2 macrophages was poor (p = 0.011). According to clinical correlation analysis, compared with patients with the diffuse and mixed type of GC, those with the Lauren classification intestinal GC type had a significantly lower risk score (p = 0.00085). The patients' risk score increased with the progression of the clinicopathological stage. Conclusion In this study, we constructed and validated a robust prognostic signature for GC, which may help improve the prognostic assessment system and treatment strategy for GC.
Collapse
|
83
|
Chen Z, Huang Y, Hu Z, Zhao M, Li M, Bi G, Zheng Y, Liang J, Lu T, Jiang W, Xu S, Zhan C, Xi J, Wang Q, Tan L. Landscape and dynamics of single tumor and immune cells in early and advanced-stage lung adenocarcinoma. Clin Transl Med 2021; 11:e350. [PMID: 33783985 PMCID: PMC7943914 DOI: 10.1002/ctm2.350] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients with different American Joint Committee on Cancer stages have different overall 5-year survival rates. The tumor microenvironment (TME) and intra-tumor heterogeneity (ITH) have been shown to play a crucial role in the occurrence and development of tumors. However, the TME and ITH in different lesions of LUAD have not been extensively explored. METHODS We present a 204,157-cell catalog of the TME transcriptome in 29 lung samples to systematically explore the TME and ITH in the different stages of LUAD. Traditional RNA sequencing data and complete clinical information were downloaded from publicly available databases. RESULTS Based on these high-quality cells, we constructed a single-cell network underlying cellular and molecular features of normal lung, early LUAD, and advanced LUAD cells. In contrast with early malignant cells, we noticed that advanced malignant cells had a remarkably more complex TME and higher ITH level. We also found that compared with other immune cells, more differences in CD8+/CTL T cells, regulatory T cells, and follicular B cells were evident between early and advanced LUAD. Additionally, cell-cell communication analyses, revealed great diversity between different lesions of LUAD at the single-cell level. Flow cytometry and qRT-PCR were used to validate our results. CONCLUSION Our results revealed the cellular diversity and molecular complexity of cell lineages in different stages of LUAD. We believe our research, which serves as a basic framework and valuable resource, can facilitate exploration of the pathogenesis of LUAD and identify novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiwei Huang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Zhengyang Hu
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mengnan Zhao
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ming Li
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Guoshu Bi
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yuansheng Zheng
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Jiaqi Liang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Tao Lu
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Wei Jiang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Songtao Xu
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Cheng Zhan
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Junjie Xi
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Qun Wang
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lijie Tan
- Department of Thoracic SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
84
|
Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling. Cancers (Basel) 2021; 13:cancers13040794. [PMID: 33672863 PMCID: PMC7917913 DOI: 10.3390/cancers13040794] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Low-grade, early-stage endometrial cancer (EC) is the most frequent malignant tumor of the uterine corpus. Our study aimed to assess dysregulated pathways in this specific subset of EC through proteomic analysis. We describe and validate the dysregulation of the SLIT/ROBO signaling pathway, as well as cellular death processes such as necroptosis and ferroptosis. We identify several immune-related pathways, with a dominance of innate immune response associated pathways. Our findings reveal the singular biology of low-grade, early-stage ECs and could guide future research in the field. Abstract Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway analysis was performed to discover dysregulated pathways and/or proteins using different databases and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified. The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC. These results could guide future research in this group of tumors.
Collapse
|
85
|
Nakayama J, Han Y, Kuroiwa Y, Azuma K, Yamamoto Y, Semba K. The In Vivo Selection Method in Breast Cancer Metastasis. Int J Mol Sci 2021; 22:1886. [PMID: 33672831 PMCID: PMC7918415 DOI: 10.3390/ijms22041886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
Metastasis is a complex event in cancer progression and causes most deaths from cancer. Repeated transplantation of metastatic cancer cells derived from transplanted murine organs can be used to select the population of highly metastatic cancer cells; this method is called as in vivo selection. The in vivo selection method and highly metastatic cancer cell lines have contributed to reveal the molecular mechanisms of cancer metastasis. Here, we present an overview of the methodology for the in vivo selection method. Recent comparative analysis of the transplantation methods for metastasis have revealed the divergence of metastasis gene signatures. Even cancer cells that metastasize to the same organ show various metastatic cascades and gene expression patterns by changing the transplantation method for the in vivo selection. These findings suggest that the selection of metastasis models for the study of metastasis gene signatures has the potential to influence research results. The study of novel gene signatures that are identified from novel highly metastatic cell lines and patient-derived xenografts (PDXs) will be helpful for understanding the novel mechanisms of metastasis.
Collapse
Affiliation(s)
- Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (Y.K.); (Y.Y.)
| | - Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
| | - Yuka Kuroiwa
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (Y.K.); (Y.Y.)
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
| | - Kazushi Azuma
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (Y.K.); (Y.Y.)
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (K.A.); (K.S.)
- Department of Cell Factory, Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
86
|
Yusuf B, Mukovozov I, Patel S, Huang YW, Liu GY, Reddy EC, Skrtic M, Glogauer M, Robinson LA. The neurorepellent, Slit2, prevents macrophage lipid loading by inhibiting CD36-dependent binding and internalization of oxidized low-density lipoprotein. Sci Rep 2021; 11:3614. [PMID: 33574432 PMCID: PMC7878733 DOI: 10.1038/s41598-021-83046-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Atherosclerosis is characterized by retention of modified lipoproteins, especially oxidized low density lipoprotein (oxLDL) within the sub-endothelial space of affected blood vessels. Recruited monocyte-derived and tissue-resident macrophages subsequently ingest oxLDL by binding and internalizing oxLDL via scavenger receptors, particularly CD36. The secreted neurorepellent, Slit2, acting through its transmembrane receptor, Roundabout-1 (Robo-1), was previously shown to inhibit recruitment of monocytes into nascent atherosclerotic lesions. The effects of Slit2 on oxLDL uptake by macrophages have not been explored. We report here that Slit2 inhibits uptake of oxLDL by human and murine macrophages, and the resulting formation of foam cells, in a Rac1-dependent and CD36-dependent manner. Exposure of macrophages to Slit2 prevented binding of oxLDL to the surface of cells. Using super-resolution microscopy, we observed that exposure of macrophages to Slit2 induced profound cytoskeletal remodeling with formation of a thick ring of cortical actin within which clusters of CD36 could not aggregate, thereby attenuating binding of oxLDL to the surface of cells. By inhibiting recruitment of monocytes into early atherosclerotic lesions, and the subsequent binding and internalization of oxLDL by macrophages, Slit2 could represent a potent new tool to combat individual steps that collectively result in progression of atherosclerosis.
Collapse
Affiliation(s)
- Bushra Yusuf
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2Z9, Canada
| | - Ilya Mukovozov
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Guang Ying Liu
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Emily C Reddy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Marko Skrtic
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada
| | - Michael Glogauer
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2Z9, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
87
|
Hooglugt A, van der Stoel MM, Boon RA, Huveneers S. Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature. Front Oncol 2021; 10:612802. [PMID: 33614496 PMCID: PMC7890025 DOI: 10.3389/fonc.2020.612802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature, proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/TAZ activation is important for the formation of new blood and lymphatic vessels during development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has been studied in great detail, however the role of YAP/TAZ within the tumor endothelium remains insufficiently understood, which complicates therapeutic strategies aimed at targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor microenvironment that control endothelial YAP/TAZ activation and explore the role of their downstream targets in driving tumor angiogenesis. We further discuss the potential for anti-cancer treatments and vascular normalization strategies to improve tumor therapies.
Collapse
Affiliation(s)
- Aukie Hooglugt
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
| | - Miesje M. van der Stoel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, Amsterdam, Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
88
|
Okude H, Ori D, Kawai T. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front Immunol 2021; 11:625833. [PMID: 33633744 PMCID: PMC7902034 DOI: 10.3389/fimmu.2020.625833] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by pattern-recognition receptors (PRRs) is essential for eliciting antiviral immune responses by inducing the production of type I interferons (IFNs) and proinflammatory cytokines. Such responses are a prerequisite for mounting innate and pathogen-specific adaptive immune responses. However, host cells also use nucleic acids as carriers of genetic information, and the aberrant recognition of self-nucleic acids by PRRs is associated with the onset of autoimmune or autoinflammatory diseases. In this review, we describe the mechanisms of nucleic acid sensing by PRRs, including Toll-like receptors, RIG-I-like receptors, and DNA sensor molecules, and their signaling pathways as well as the disorders caused by uncontrolled or unnecessary activation of these PRRs.
Collapse
Affiliation(s)
- Haruna Okude
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
89
|
Kaulen LD, Erson-Omay EZ, Henegariu O, Karschnia P, Huttner A, Günel M, Baehring JM. Exome sequencing identifies SLIT2 variants in primary CNS lymphoma. Br J Haematol 2021; 193:375-379. [PMID: 33481259 DOI: 10.1111/bjh.17319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
SLIT2 constitutes a known tumour suppressor gene, which has not yet been implicated in the pathogenesis of primary central nervous system lymphoma (PCNSL). Performing exome sequencing on paired blood and tumour DNA samples from six treatment-naïve PCNSL patients, we identified novel SLIT2 variants (p.N63S, p.T590M, p.T732S) that were associated with shorter progression-free survival in our cohort and shorter overall survival in a large validation cohort of lymphoid malignancies from the cBio Cancer Genomics Portal. WNT- and NF-κB-reporter luciferase assays suggest detected alterations are loss-of-function variants. Given the possible prognostic implications, the role of SLIT2 in PCNSL pathogenesis and progression warrants further investigation.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, Yale School of Medicine, New Haven, USA.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neurosurgery, Yale School of Medicine, New Haven, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Philipp Karschnia
- Department of Neurology, Yale School of Medicine, New Haven, USA.,Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Munich, Germany
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, USA.,Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Joachim M Baehring
- Department of Neurology, Yale School of Medicine, New Haven, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, USA
| |
Collapse
|
90
|
Pellerino A, Internò V, Mo F, Franchino F, Soffietti R, Rudà R. Management of Brain and Leptomeningeal Metastases from Breast Cancer. Int J Mol Sci 2020; 21:E8534. [PMID: 33198331 PMCID: PMC7698162 DOI: 10.3390/ijms21228534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The management of breast cancer (BC) has rapidly evolved in the last 20 years. The improvement of systemic therapy allows a remarkable control of extracranial disease. However, brain (BM) and leptomeningeal metastases (LM) are frequent complications of advanced BC and represent a challenging issue for clinicians. Some prognostic scales designed for metastatic BC have been employed to select fit patients for adequate therapy and enrollment in clinical trials. Different systemic drugs, such as targeted therapies with either monoclonal antibodies or small tyrosine kinase molecules, or modified chemotherapeutic agents are under investigation. Major aims are to improve the penetration of active drugs through the blood-brain barrier (BBB) or brain-tumor barrier (BTB), and establish the best sequence and timing of radiotherapy and systemic therapy to avoid neurocognitive impairment. Moreover, pharmacologic prevention is a new concept driven by the efficacy of targeted agents on macrometastases from specific molecular subgroups. This review aims to provide an overview of the clinical and molecular factors involved in the selection of patients for local and/or systemic therapy, as well as the results of clinical trials on advanced BC. Moreover, insight on promising therapeutic options and potential directions of future therapeutic targets against BBB and microenvironment are discussed.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Francesca Mo
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|