51
|
Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021; 24:102512. [PMID: 34041453 PMCID: PMC8141463 DOI: 10.1016/j.isci.2021.102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
52
|
Weerasinghe NW, Habibi Y, Uggowitzer KA, Thibodeaux CJ. Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry. Biochemistry 2021; 60:1506-1519. [PMID: 33887902 DOI: 10.1021/acs.biochem.1c00085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These genetically encoded peptides are biosynthesized by multifunctional enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity and catalyze iterative rounds of post-translational modification. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These "biophysical" processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native mass spectrometry coupled to ion mobility (native IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its noncovalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes native IM-MS as a versatile approach for characterizing intermolecular interactions and for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.
Collapse
Affiliation(s)
- Nuwani W Weerasinghe
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Yeganeh Habibi
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Kevin A Uggowitzer
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
53
|
Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J. Bacteriocins: Potential for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5518825. [PMID: 33936381 PMCID: PMC8055394 DOI: 10.1155/2021/5518825] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Cao
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
54
|
|
55
|
Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021; 78:3921-3940. [PMID: 33532865 PMCID: PMC7853169 DOI: 10.1007/s00018-021-03759-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
The emergence and re-emergence of viral epidemics and the risks of antiviral drug resistance are a serious threat to global public health. New options to supplement or replace currently used drugs for antiviral therapy are urgently needed. The research in the field of ribosomally synthesized and post-translationally modified peptides (RiPPs) has been booming in the last few decades, in particular in view of their strong antimicrobial activities and high stability. The RiPPs with antiviral activity, especially those against enveloped viruses, are now also gaining more interest. RiPPs have a number of advantages over small molecule drugs in terms of specificity and affinity for targets, and over protein-based drugs in terms of cellular penetrability, stability and size. Moreover, the great engineering potential of RiPPs provides an efficient way to optimize them as potent antiviral drugs candidates. These intrinsic advantages underscore the good therapeutic prospects of RiPPs in viral treatment. With the aim to highlight the underrated antiviral potential of RiPPs and explore their development as antiviral drugs, we review the current literature describing the antiviral activities and mechanisms of action of RiPPs, discussing the ongoing efforts to improve their antiviral potential and demonstrate their suitability as antiviral therapeutics. We propose that antiviral RiPPs may overcome the limits of peptide-based antiviral therapy, providing an innovative option for the treatment of viral disease.
Collapse
Affiliation(s)
- Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Ate H Jaarsma
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
56
|
Viel JH, Jaarsma AH, Kuipers OP. Heterologous Expression of Mersacidin in Escherichia coli Elucidates the Mode of Leader Processing. ACS Synth Biol 2021; 10:600-608. [PMID: 33689311 PMCID: PMC7985838 DOI: 10.1021/acssynbio.0c00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The lanthipeptide
mersacidin is a ribosomally synthesized and post-translationally
modified peptide (RiPP) produced by Bacillus amyloliquefaciens. It has antimicrobial activity against a range of Gram-positive
bacteria, including methicillin-resistant Staphylococcus aureus, giving it potential therapeutic relevance. The structure and bioactivity
of mersacidin are derived from a unique combination of lanthionine
ring structures, which makes mersacidin also interesting from a lantibiotic-engineering
point of view. Until now, mersacidin and its derivatives have exclusively
been produced in Bacillus strains and purified from
the supernatant in their bioactive form. However, to fully exploit
its potential in lanthipeptide-engineering, mersacidin would have
to be expressed in a standardized expression system and obtained in
its inactive prepeptide form. In such a system, the mersacidin biosynthetic
enzymes could be employed to create novel peptides, enhanced by the
recent advancements in RiPP engineering, while the leader peptide
prevents activity against the expression host. This system would however
need a means of postpurification in vitro leader
processing to activate the obtained precursor peptides. While mersacidin’s
native leader processing mechanism has not been confirmed, the bifunctional
transporter MrsT and extracellular Bacillus proteases
have been suggested to be responsible. Here, a modular system is presented
for the heterologous expression of mersacidin in Escherichia
coli, which was successfully used to produce and purify inactive
premersacidin. The purified product was used to determine the cleavage
site of MrsT. Additionally, it was concluded from antimicrobial activity
tests that in a second processing step mersacidin is activated by
specific extracellular proteases from Bacillus amyloliquefaciens.
Collapse
Affiliation(s)
- Jakob H. Viel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ate H. Jaarsma
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
57
|
Korneli M, Fuchs SW, Felder K, Ernst C, Zinsli LV, Piel J. Promiscuous Installation of d-Amino Acids in Gene-Encoded Peptides. ACS Synth Biol 2021; 10:236-242. [PMID: 33410661 DOI: 10.1021/acssynbio.0c00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Amino acids can have major effects on the structure, proteolytic stability, and bioactivity of peptides. Proteusin radical S-adenosyl methionine epimerases regioselectively install such residues in ribosomal peptides to generate peptides with the largest number of d-residues currently known in biomolecules. To study their utility in synthetic biology, we investigated the substrate tolerance and substrate-product relationships of the cyanobacterial model epimerase OspD using libraries of point mutants as well as distinct extended peptides that were fused to an N-terminal leader sequence. OspD was found to exhibit exceptional substrate promiscuity in E. coli, accepting 15 different amino acids and converting peptides with a broad range of compositions, secondary structures, and polarities. Diverse single and multiple epimerization patterns were identified that were dictated by the peptide sequence. The data suggest major potential in creating genetically encoded products previously inaccessible by synthetic biology.
Collapse
Affiliation(s)
- Madlen Korneli
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Sebastian W. Fuchs
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Katja Felder
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Léa V. Zinsli
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
58
|
Wu C, van der Donk WA. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 2021; 69:221-231. [PMID: 33556835 DOI: 10.1016/j.copbio.2020.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance. This review highlights recent advances in the discovery of highly unusual new reactions by genome mining and the application of engineering approaches to generate and screen novel RiPP variants. Furthermore, through the use of synthetic biology approaches, hybrid molecules with enhanced or completely new activities have been identified, which opens the door for future advancement of RiPPs as potential next-generation therapeutics.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
59
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
60
|
Napiorkowska M, Pestalozzi L, Panke S, Held M, Schmitt S. High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005523. [PMID: 33325637 DOI: 10.1002/smll.202005523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Efficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production is described. Using droplet microfluidics, large genetic libraries of strains are encapsulated into biocompatible gel beads that are engineered to selectively retain any protein of interest. Bead-retained products are then fluorescently labeled and strains with superior production titers are isolated using flow cytometry. The broad applicability of the platform is demonstrated by successfully culturing several industrially relevant bacterial and yeast strains and detecting peptides or proteins of interest that are secreted or released from the cell via autolysis. Lastly, the platform is applied to optimize cutinase secretion in Komagataella phaffii (Pichia pastoris) and a strain with 5.7-fold improvement is isolated. The platform permits the analysis of >106 genotypes per day and is readily applicable to any protein that can be equipped with a His6 -tag. It is envisioned that the platform will be useful for large screening campaigns that aim to identify improved hosts for large-scale production of biotechnologically relevant proteins, thereby accelerating the costly and time-consuming process of strain engineering.
Collapse
Affiliation(s)
- Marta Napiorkowska
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Luzius Pestalozzi
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
61
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
62
|
Deng J, Viel JH, Kubyshkin V, Budisa N, Kuipers OP. Conjugation of Synthetic Polyproline Moietes to Lipid II Binding Fragments of Nisin Yields Active and Stable Antimicrobials. Front Microbiol 2020; 11:575334. [PMID: 33329435 PMCID: PMC7715017 DOI: 10.3389/fmicb.2020.575334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Coupling functional moieties to lantibiotics offers exciting opportunities to produce novel derivatives with desirable properties enabling new functions and applications. Here, five different synthetic hydrophobic polyproline peptides were conjugated to either nisin AB (the first two rings of nisin) or nisin ABC (the first three rings of nisin) by using click chemistry. The antimicrobial activity of nisin ABC + O6K3 against Enterococcus faecium decreased 8-fold compared to full-length nisin, but its activity was 16-fold better than nisin ABC, suggesting that modifying nisin ABC is a promising strategy to generate semi-synthetic nisin hybrids. In addition, the resulting nisin hybrids are not prone to degradation at the C-terminus, which has been observed for nisin as it can be degraded by nisinase or other proteolytic enzymes. This methodology allows for getting more insight into the possibility of creating semi-synthetic nisin hybrids that maintain antimicrobial activity, in particular when synthetic and non-proteinaceous moieties are used. The success of this approach in creating viable nisin hybrids encourages further exploring the use of different modules, e.g., glycans, lipids, active peptide moieties, and other antimicrobial moieties.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Jakob H Viel
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany.,Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany.,Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
63
|
Vinogradov AA, Nagai E, Chang JS, Narumi K, Onaka H, Goto Y, Suga H. Accurate Broadcasting of Substrate Fitness for Lactazole Biosynthetic Pathway from Reactivity-Profiling mRNA Display. J Am Chem Soc 2020; 142:20329-20334. [PMID: 33211968 DOI: 10.1021/jacs.0c10374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a method for the high-throughput reactivity profiling of genetically encoded libraries as a tool to study substrate fitness landscapes for RiPP (ribosomally synthesized and post-translationally modified peptide) biosynthetic enzymes. This method allowed us to rapidly analyze the substrate preferences of the lactazole biosynthetic pathway using a saturation mutagenesis mRNA display library of lactazole precursor peptides. We demonstrate that the assay produces accurate and reproducible in vitro data, enabling the quantification of reaction yields with temporal resolution. Our results recapitulate the previously established knowledge on lactazole biosynthesis and expand it by identifying the extent of substrate promiscuity exhibited by the enzymes. This work lays a foundation for the construction and screening of mRNA display-based combinatorial thiopeptide libraries for the discovery of lactazole-inspired thiopeptides with de novo designed biological activities.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emiko Nagai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Shi Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kakeru Narumi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
64
|
Deng J, Viel JH, Chen J, Kuipers OP. Synthesis and Characterization of Heterodimers and Fluorescent Nisin Species by Incorporation of Methionine Analogues and Subsequent Click Chemistry. ACS Synth Biol 2020; 9:2525-2536. [PMID: 32786360 PMCID: PMC7507115 DOI: 10.1021/acssynbio.0c00308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Noncanonical
amino acids form a highly diverse pool of building
blocks that can render unique physicochemical properties to peptides
and proteins. Here, four methionine analogues with unsaturated and
varying side chain lengths were successfully incorporated at four
different positions in nisin in Lactococcus lactis through force feeding. This approach allows for residue-specific
incorporation of methionine analogues into nisin to expand their structural
diversity and alter their activity profiles. Moreover, the insertion
of methionine analogues with biorthogonal chemical reactivity, e.g.,
azidohomoalanine and homopropargylglycine, provides the opportunity
for chemical coupling to functional moieties and fluorescent probes
as well as for intermolecular coupling of nisin variants. All resulting
nisin conjugates retained antimicrobial activity, which substantiates
the potential of this method as a tool to further study its localization
and mode of action.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jingqi Chen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
65
|
Liu R, Zhang Y, Zhai G, Fu S, Xia Y, Hu B, Cai X, Zhang Y, Li Y, Deng Z, Liu T. A Cell-Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001616. [PMID: 32995136 PMCID: PMC7507342 DOI: 10.1002/advs.202001616] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Indexed: 05/12/2023]
Abstract
Lanthipeptides have extensive therapeutic and industrial applications. However, because many are bactericidal, traditional in vivo platforms are limited in their capacity to discover and mass produce novel lanthipeptides as bacterial organisms are often critical components in these systems. Herein, the development of a cell-free protein synthesis (CFPS) platform that enables rapid genome mining, screening, and guided overproduction of lanthipeptides in vivo is described. For proof-of-concept studies, a type I lanthipeptide, nisin, is selected. Four novel lanthipeptides with antibacterial activity are identified among all nisin analogs in the National Center for Biotechnology Information (NCBI) database in a single day. Further, the CFPS platform is coupled with a screening assay for anti-gram-negative bacteria growth, resulting in the identification of a potent nisin mutant, M5. The titers of nisin and the nisin analog are found to be improved with CFPS platform guidance. Owing to the similarities in biosynthesis, the CFPS platform is broadly applicable to other lanthipeptides, thereby providing a universal method for lanthipeptide discovery and overproduction.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Guoqing Zhai
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Yao Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
| | - Xuan Cai
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Zhang
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Li
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of Education and Wuhan University School of Pharmaceutical SciencesWuhan430071China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan430075China
| |
Collapse
|
66
|
Jaumaux F, P. Gómez de Cadiñanos L, Gabant P. In the Age of Synthetic Biology, Will Antimicrobial Peptides be the Next Generation of Antibiotics? Antibiotics (Basel) 2020; 9:antibiotics9080484. [PMID: 32781540 PMCID: PMC7460114 DOI: 10.3390/antibiotics9080484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotics have changed human health and revolutionised medical practice since the Second World War. Today, the use of antibiotics is increasingly limited by the rise of antimicrobial-resistant strains. Additionally, broad-spectrum antibiotic activity is not adapted to maintaining a balanced microbiome essential for human health. Targeted antimicrobials could overcome these two drawbacks. Although the rational design of targeted antimicrobial molecules presents a formidable challenge, in nature, targeted genetically encoded killing molecules are used by microbes in their natural ecosystems. The use of a synthetic biology approach allows the harnessing of these natural functions. In this commentary article we illustrate the potential of applying synthetic biology towards bacteriocins to design a new generation of antimicrobials.
Collapse
|
67
|
Mimicry of a Non-ribosomally Produced Antimicrobial, Brevicidine, by Ribosomal Synthesis and Post-translational Modification. Cell Chem Biol 2020; 27:1262-1271.e4. [PMID: 32707039 DOI: 10.1016/j.chembiol.2020.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) forms a rich source of antibiotics, such as daptomycin, vancomycin, and teixobactin. The difficulty of functionally expressing and engineering the corresponding large biosynthetic complexes is a bottleneck in developing variants of such peptides. Here, we apply a strategy to synthesize mimics of the recently discovered antimicrobial NRP brevicidine. We mimicked the molecular structure of brevicidine by ribosomally synthesized, post-translationally modified peptide (RiPP) synthesis, introducing several relevant modifications, such as dehydration and thioether ring formation. Following this strategy, in two rounds peptides were engineered in vivo, which showed antibacterial activity against Gram-negative pathogenic bacteria susceptible to wild-type brevicidine. This study demonstrates the feasibility of a strategy to structurally and functionally mimic NRPs by employing the synthesis and post-translational modifications typical for RiPPs. This enables the future generation of large genetically encoded peptide libraries of NRP-mimicking structures to screen for antimicrobial activity against relevant pathogens.
Collapse
|
68
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
69
|
Rahman IR, Acedo JZ, Liu XR, Zhu L, Arrington J, Gross ML, van der Donk WA. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. ACS Chem Biol 2020; 15:1473-1486. [PMID: 32293871 DOI: 10.1021/acschembio.0c00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class II lanthipeptides belong to a diverse group of natural products known as ribosomally synthesized and post-translationally modified peptides (RiPPs). Most RiPP precursor peptides contain an N-terminal recognition sequence known as the leader peptide, which is typically recognized by biosynthetic enzymes that catalyze modifications on the C-terminal core peptide. For class II lanthipeptides, these are carried out by a bifunctional lanthipeptide synthetase (LanM) that catalyzes dehydration and cyclization reactions on peptidic substrates to generate thioether-containing, macrocyclic molecules. Some lanthipeptide synthetases are extraordinarily substrate tolerant, making them promising candidates for biotechnological applications such as combinatorial biosynthesis and cyclic peptide library construction. In this study, we characterized the mode of leader peptide recognition by HalM2, the lanthipeptide synthetase responsible for the production of the antimicrobial peptide haloduracin β. Using NMR spectroscopic techniques, in vitro binding assays, and enzyme activity assays, we identified substrate residues that are important for binding to HalM2 and for post-translational modification of the peptide substrates. Additionally, we provide evidence of the binding site on the enzyme using binding assays with truncated enzyme variants, hydrogen-deuterium exchange mass spectrometry, and photoaffinity labeling. Understanding the mechanism by which lanthipeptide synthetases recognize their substrate will facilitate their use in biotechnology, as well as further our general understanding of how RiPP enzymes recognize their substrates.
Collapse
Affiliation(s)
- Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeella Z. Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Justine Arrington
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
70
|
Zhao X, Cebrián R, Fu Y, Rink R, Bosma T, Moll GN, Kuipers OP. High-Throughput Screening for Substrate Specificity-Adapted Mutants of the Nisin Dehydratase NisB. ACS Synth Biol 2020; 9:1468-1478. [PMID: 32374981 PMCID: PMC7309312 DOI: 10.1021/acssynbio.0c00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Microbial
lanthipeptides are formed by a two-step enzymatic introduction
of (methyl)lanthionine rings. A dehydratase catalyzes the dehydration
of serine and threonine residues, yielding dehydroalanine and dehydrobutyrine,
respectively. Cyclase-catalyzed coupling of the formed dehydroresidues
to cysteines forms (methyl)lanthionine rings in a peptide. Lanthipeptide
biosynthetic systems allow discovery of target-specific, lanthionine-stabilized
therapeutic peptides. However, the substrate specificity of existing
modification enzymes impose limitations on installing lanthionines
in non-natural substrates. The goal of the present study was to obtain
a lanthipeptide dehydratase with the capacity to dehydrate substrates
that are unsuitable for the nisin dehydratase NisB. We report high-throughput
screening for tailored specificity of intracellular, genetically encoded
NisB dehydratases. The principle is based on the screening of bacterially
displayed lanthionine-constrained streptavidin ligands, which have
a much higher affinity for streptavidin than linear ligands. The designed
NisC-cyclizable high-affinity ligands can be formed via mutant NisB-catalyzed
dehydration but less effectively via wild-type NisB activity. In Lactococcus lactis, a cell surface display precursor was
designed comprising DSHPQFC. The Asp residue preceding the serine
in this sequence disfavors its dehydration by wild-type NisB. The
cell surface display vector was coexpressed with a mutant NisB library
and NisTC. Subsequently, mutant NisB-containing bacteria that display
cyclized strep ligands on the cell surface were selected via panning
rounds with streptavidin-coupled magnetic beads. In this way, a NisB
variant with a tailored capacity of dehydration was obtained, which
was further evaluated with respect to its capacity to dehydrate nisin
mutants. These results demonstrate a powerful method for selecting
lanthipeptide modification enzymes with adapted substrate specificity.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Rick Rink
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Tjibbe Bosma
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Gert N. Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
- Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
71
|
Gerstmans H, Grimon D, Gutiérrez D, Lood C, Rodríguez A, van Noort V, Lammertyn J, Lavigne R, Briers Y. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. SCIENCE ADVANCES 2020; 6:eaaz1136. [PMID: 32537492 PMCID: PMC7269649 DOI: 10.1126/sciadv.aaz1136] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Health care authorities are calling for new antibacterial therapies to cope with the global emergence of antibiotic-resistant bacteria. Bacteriophage-encoded lysins are a unique class of antibacterials with promising (pre)clinical progress. Custom engineering of lysins allows for the creation of variants against potentially any bacterial pathogen. We here present a high-throughput hit-to-lead development platform for engineered lysins. The platform is driven by VersaTile, a new DNA assembly method for the rapid construction of combinatorial libraries of engineered lysins. We constructed approximately 10,000 lysin variants. Using an iterative screening procedure, we identified a lead variant with high antibacterial activity against Acinetobacter baumannii in human serum and an ex vivo pig burn wound model. This generic platform could offer new opportunities to populate the preclinical pipeline with engineered lysins for diverse (therapeutic) applications.
Collapse
Affiliation(s)
- H. Gerstmans
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - D. Grimon
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - D. Gutiérrez
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - C. Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - A. Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - V. van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 Leiden, Netherlands
| | - J. Lammertyn
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - R. Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Y. Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| |
Collapse
|
72
|
Navarro SA, Lanza L, Acuña L, Bellomio A, Chalón MC. Features and applications of Ent35-MccV hybrid bacteriocin: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:6067-6077. [PMID: 32418126 DOI: 10.1007/s00253-020-10650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Bacteriocins are peptides of ribosomal synthesis that are active against bacteria related to the producing strain. They have been widely used in the food industry as biopreservatives. The generation of hybrid peptides by combining the genes that encode two different bacteriocins has made it possible to study the mechanisms of action of the bacteriocins that compose them and also develop new peptides with improved biotechnological applications. Hybrid bacteriocins may be obtained in several ways. In our laboratory, by combining enterocin CRL35 and microcin V (Ent35-MccV), we obtained a broad-spectrum peptide that is active against both Gram-positive and Gram-negative bacteria. Ent35-MccV is sensitive to the action of intestinal proteases and is heat resistant, which makes it a good candidate for use as a biopreservative. For this reason, the peptide was tested in skim milk and beef burgers as food models. We also obtained more potent variants of the hybrid by modifying the central amino acid of the hinge region that connects the two bacteriocins. This review also discusses future applications and perspectives regarding the Ent35-MccV and other hybrid peptides.Key Points• Ent35-MccV is a new broad-spectrum bacteriocin.• The mechanism of action of bacteriocins can be studied using hybrid peptides.• Genetic engineering allows obtaining improved bacteriocin derivatives.• Hybrid peptides can be used in the food, pharmaceutical, and veterinary applications.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE, CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
73
|
Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun 2020; 11:2272. [PMID: 32385237 PMCID: PMC7210931 DOI: 10.1038/s41467-020-16145-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Lactazole A is a cryptic thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, we establish a platform for in vitro biosynthesis of lactazole A, referred to as the FIT-Laz system, via a combination of the flexible in vitro translation (FIT) system with recombinantly produced lactazole biosynthetic enzymes. Systematic dissection of lactazole biosynthesis reveals remarkable substrate tolerance of the biosynthetic enzymes and leads to the development of the minimal lactazole scaffold, a construct requiring only 6 post-translational modifications for macrocyclization. Efficient assembly of such minimal thiopeptides with FIT-Laz opens access to diverse lactazole analogs with 10 consecutive mutations, 14- to 62-membered macrocycles, and 18 amino acid-long tail regions, as well as to hybrid thiopeptides containing non-proteinogenic amino acids. This work suggests that the minimal lactazole scaffold is amenable to extensive bioengineering and opens possibilities to explore untapped chemical space of thiopeptides. Lactazole A is a thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, the authors show a platform for in vitro biosynthesis of lactazole A via a combination of a flexible in vitro translation system with recombinantly produced lactazole biosynthetic enzymes.
Collapse
|
74
|
Barbour A, Wescombe P, Smith L. Evolution of Lantibiotic Salivaricins: New Weapons to Fight Infectious Diseases. Trends Microbiol 2020; 28:578-593. [PMID: 32544444 DOI: 10.1016/j.tim.2020.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Lantibiotic salivaricins are polycyclic peptides containing lanthionine and/or β-methyllanthionine residues produced by certain strains of Streptococcus salivarius, which almost exclusively reside in the human oral cavity. The importance of these molecules stems from their antimicrobial activity towards relevant oral pathogens which has so far been applied through the development of salivaricin-producing probiotic strains. However, salivaricins may also prove to be of great value in the development of new and novel antibacterial therapies in this era of emerging antibiotic resistance. In this review, we describe the biosynthesis, antimicrobial activity, structure, and mode of action of the lantibiotic salivaricins characterized to date. Moreover, we also provide an expert opinion and suggestions for future development of this important field of microbiology.
Collapse
Affiliation(s)
| | - Philip Wescombe
- Yili Innovation Center Oceania, Lincoln University, Christchurch, New Zealand
| | - Leif Smith
- Department of Biology, College of Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
75
|
van Tatenhove-Pel RJ, Hernandez-Valdes JA, Teusink B, Kuipers OP, Fischlechner M, Bachmann H. Microdroplet screening and selection for improved microbial production of extracellular compounds. Curr Opin Biotechnol 2020; 61:72-81. [DOI: 10.1016/j.copbio.2019.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/26/2022]
|
76
|
Sandiford SK. An overview of lantibiotic biosynthetic machinery promiscuity and its impact on antimicrobial discovery. Expert Opin Drug Discov 2020; 15:373-382. [PMID: 31941374 DOI: 10.1080/17460441.2020.1699530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The continued emergence of drug resistant bacteria within the nosocomial and community environment recalcitrant to conventional antimicrobial therapies has enforced the requirement for novel therapeutics. This has led to a renewed interest in peptide antimicrobials, including ribosomally synthesized peptides termed lantibiotics. Lantibiotics represent a novel class of agents that many studies have highlighted as effective against a range of pathogenic bacteria.Areas covered: In this review, the modular nature of lantibiotic synthesis is discussed and how this can be exploited not only to improve known lantibiotics but also for the creation of new to nature lantibiotics exhibiting improved pharmacological properties, antimicrobial activity and ability to bypass bacterial resistance mechanisms.Expert opinion: The use of combinatorial biosynthetic systems to combine different modules or ring structures of known lantibiotics have also been utilized to create new to nature lantibiotics. To fully exploit the available information and its application to lantibiotic engineering, additional structure activity relationship (SAR) analysis is required to fully understand the impact of certain post-translational modifications and the impact they have upon the activity, stability and pharmacological properties.
Collapse
|
77
|
Johnson EO, Hung DT. A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chem Biol 2019; 14:2497-2511. [PMID: 31613592 DOI: 10.1021/acschembio.9b00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the past several decades, chemical biologists have been leveraging chemical principles for understanding biology, tackling disease, and biomanufacturing, while systems biologists have holistically applied computation and genome-scale experimental tools to the same problems. About a decade ago, the benefit of combining the philosophies of chemical biology with systems biology into systems chemical biology was advocated, with the potential to systematically understand the way small molecules affect biological systems. Recently, there has been an explosion in new technologies that permit massive expansion in the scale of biological experimentation, increase access to more diverse chemical space, and enable powerful computational interpretation of large datasets. Fueled by these rapidly increasing capabilities, systems chemical biology is now at an inflection point, poised to enter a new era of more holistic and integrated scientific discovery. Systems chemical biology is primed to reveal an integrated understanding of fundamental biology and to discover new chemical probes to comprehensively dissect and systematically understand that biology, thereby providing a path to novel strategies for discovering therapeutics, designing drug combinations, avoiding toxicity, and harnessing beneficial polypharmacology. In this Review, we examine the emergence of new capabilities driving us to this inflection point in systems chemical biology, and highlight holistic approaches and opportunities that are arising from integrating chemical biology with a systems-level understanding of the intersection of biology and chemistry.
Collapse
Affiliation(s)
- Eachan O. Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
78
|
Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis. Proc Natl Acad Sci U S A 2019; 116:24049-24055. [PMID: 31719203 DOI: 10.1073/pnas.1908364116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes that generate ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products have garnered significant interest, given their ability to produce large libraries of chemically diverse scaffolds. Such RiPP biosynthetic enzymes are predicted to bind their corresponding peptide substrates through sequence-specific recognition of the leader sequence, which is removed after the installation of posttranslational modifications on the core sequence. The conservation of the leader sequence within a given RiPP class, in otherwise disparate precursor peptides, further supports the notion that strict sequence specificity is necessary for leader peptide engagement. Here, we demonstrate that leader binding by a biosynthetic enzyme in the lasso peptide class of RiPPs is directed by a minimal number of hydrophobic interactions. Biochemical and structural data illustrate how a single leader-binding domain can engage sequence-divergent leader peptides using a conserved motif that facilitates hydrophobic packing. The presence of this simple motif in noncognate peptides results in low micromolar affinity binding by binding domains from several different lasso biosynthetic systems. We also demonstrate that these observations likely extend to other RiPP biosynthetic classes. The portability of the binding motif opens avenues for the engineering of semisynthetic hybrid RiPP products.
Collapse
|
79
|
Lee C, Lee H, Park JU, Kim S. Introduction of Bifunctionality into the Multidomain Architecture of the ω-Ester-Containing Peptide Plesiocin. Biochemistry 2019; 59:285-289. [DOI: 10.1021/acs.biochem.9b00803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chanwoo Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunbin Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jung-Un Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
80
|
Van Staden ADP, Faure LM, Vermeulen RR, Dicks LMT, Smith C. Functional Expression of GFP-Fused Class I Lanthipeptides in Escherichia coli. ACS Synth Biol 2019; 8:2220-2227. [PMID: 31553571 DOI: 10.1021/acssynbio.9b00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides, with several having antimicrobial activity. The biosynthetic machinery responsible for modification of the class I lanthipeptide nisin provides a means for modification of a diverse range of lanthipeptides. However, literature regarding expression of class I lanthipeptides in a malleable Gram-negative host such as Escherichia coli is limited. Here, we coexpressed precursor class I lanthipeptides fused to green fluorescent protein (GFP) along with the dehydratase and cyclase from the nisin operon. Fusion to GFP did not interfere with post-translational modifications as antimicrobially active nisin could be proteolytically liberated from the expressed GFP fusion. Additionally, we used this system to express two other class I lanthipeptides precursors fused to GFP (Pep5 and epilancin 15X), although only Pep5 exhibited consistent antimicrobial activity. This is the first report of a GFP-based fusion expression system for the expression of class I lanthipeptides in E. coli. The GFP-based fusion expression system is a robust system with the advantage of directly visualizing expression and purification through GFP fluorescence.
Collapse
Affiliation(s)
- Anton Du Preez Van Staden
- Department of Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Lindsay M. Faure
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Ross R. Vermeulen
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
81
|
Habibi Y, Uggowitzer KA, Issak H, Thibodeaux CJ. Insights into the Dynamic Structural Properties of a Lanthipeptide Synthetase using Hydrogen-Deuterium Exchange Mass Spectrometry. J Am Chem Soc 2019; 141:14661-14672. [PMID: 31449409 DOI: 10.1021/jacs.9b06020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) proceeds via the multistep maturation of genetically encoded precursor peptides, often catalyzed by enzymes with multiple functions and iterative activities. Recent studies have suggested that, among other factors, conformational sampling of enzyme:peptide complexes likely plays a critical role in defining the kinetics and, ultimately, the set of post-translational modifications in these systems. However, detailed characterizations of these putative conformational sampling mechanisms have not yet been possible on many RiPP biosynthetic systems. In this study, we report the first comprehensive application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to study the biophysical properties of a RiPP biosynthetic enzyme. Using the well-characterized class II lanthipeptide synthetase HalM2 as a model system, we have employed HDX-MS to demonstrate that HalM2 is indeed a highly structurally dynamic enzyme. Using this HDX-MS approach, we have identified novel precursor peptide binding elements, have uncovered long-range structural communication across the enzyme that is triggered by ligand binding and ATP hydrolysis, and have detected specific interactions between the HalM2 synthetase and the leader- and core-peptide subdomains of the modular HalA2 precursor peptide substrate. The functional relevance of the dynamic HalM2 elements discovered in this study are validated with biochemical assays and kinetic analysis of a panel of HDX-MS guided variant enzymes. Overall, the data have provided a wealth of fundamentally new information on LanM systems that will inform the rational manipulation and engineering of these impressive multifunctional catalysts. Moreover, this work highlights the broad utility of the HDX-MS platform for revealing important biophysical properties and enzyme structural dynamics that likely play a widespread role in RiPP biosynthesis.
Collapse
Affiliation(s)
- Yeganeh Habibi
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Kevin A Uggowitzer
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Hassan Issak
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| | - Christopher J Thibodeaux
- McGill University , Department of Chemistry , 801 Sherbrooke Street , West Montréal , Québec , Canada H3A 0B8
| |
Collapse
|
82
|
Li Q, Montalban-Lopez M, Kuipers OP. Feasability of Introducing a Thioether Ring in Vasopressin by nisBTC Co-expression in Lactococcus lactis. Front Microbiol 2019; 10:1508. [PMID: 31333616 PMCID: PMC6614560 DOI: 10.3389/fmicb.2019.01508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Introducing one or more intramolecular thioether bridges in a peptide provides a promising approach to create more stable molecules with improved pharmacodynamic properties and especially to protect peptides against proteolytic degradation. Lanthipeptides are compounds that naturally possess thioether bonds in their structure. The model lanthipeptide, nisin, is produced by Lactococcus lactis as a core peptide fused to a leader peptide. The modification machinery responsible for nisin production, including the Ser/Thr-dehydratase NisB and the cyclase NisC, can be applied for introducing a thioether bridge into peptides fused to the nisin leader peptide, e.g., to replace a disulfide bond. Vasopressin plays a key role in water homeostasis in the human body and helps to constrict blood vessels. There are two cysteine residues in the structure of wild type vasopressin, which form a disulfide bridge in the mature peptide. Here, we show it is possible to direct the biosynthesis of vasopressin variants in such a way that the disulfide bridge is replaced by a thioether bridge using the nisin modification machinery NisBTC, albeit at low efficiency. Vasopressin mutants were fused either to the nisin leader peptide directly (Type A), after the first three rings of nisin (Type B/C), or after full nisin (Type D). The type B strategy was optimal for expression. LC-MS/MS data verified the formation of a thioether bridge, which provides proof of principle for this modification in vasopressin. This is a first step prior to the necessary increase of the production yield and further purification of these peptides to finally test their biological activity in tissue and animal models.
Collapse
Affiliation(s)
- Qian Li
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manuel Montalban-Lopez
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
83
|
Cebrián R, Macia-Valero A, Jati AP, Kuipers OP. Design and Expression of Specific Hybrid Lantibiotics Active Against Pathogenic Clostridium spp. Front Microbiol 2019; 10:2154. [PMID: 31616392 PMCID: PMC6768957 DOI: 10.3389/fmicb.2019.02154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile has been reported as the most common cause of nosocomial diarrhea (antibiotic-associated diarrhea), resulting in significant morbidity and mortality in hospitalized patients. The resistance of the clostridial spores to antibiotics and their side effects on the gut microbiota are two factors related to the emergence of infection and its relapses. Lantibiotics provide an innovative alternative for cell growth inhibition due to their dual mechanism of action (membrane pore-forming and cell wall synthesis inhibition) and low resistance rate. Based on the fact that bacteriocins are usually active against bacteria closely related to the producer strains, a new dual approach combining genome mining and synthetic biology was performed, by designing new lantibiotics with high activity and specificity toward Clostridium. We first attempted the heterologous expression of putative lantibiotics identified following Clostridium genome mining. Subsequently, we designed new hybrid lantibiotics combining the start or end of the putative clostridial peptides and the start or end parts of nisin. The designed peptides were cloned and expressed using the nisin biosynthetic machinery in Lactococcus lactis. From the 20 initial peptides, only 1 fulfilled the requirements established in this work to be considered as a good candidate: high heterologous production level and high specificity/activity against clostridial species. The high specificity and activity observed for the peptide AMV10 makes it an interesting candidate as an alternative to traditional antibiotics in the treatment of C. difficile infections, avoiding side effects and protecting the normal gut microbiota.
Collapse
|