51
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
52
|
Baba T, Zhang Z, Liu S, Burton L, Ryumin P, Le Blanc JCY. Localization of Multiple O-Linked Glycans Exhibited in Isomeric Glycopeptides by Hot Electron Capture Dissociation. J Proteome Res 2022; 21:2462-2471. [PMID: 36074808 DOI: 10.1021/acs.jproteome.2c00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a method to obtain a comprehensive profile of multiple glycosylations in glycopeptide isoforms. We detected a wide range of abundances of various O-glycoforms in isomeric glycopeptides using hot electron capture dissociation (hot ECD) in liquid chromatography-tandem mass spectrometry. To capture low abundant glycosylated species, a prototype of a ZenoTOF 7600 system incorporating an efficient electron-activated dissociation device to perform hot ECD was operated in targeted or scheduled high-resolution multiple reaction monitoring workflows. In addition, Zeno trap pulsing was activated to enhance the sensitivity of the time-of-flight mass spectrometer. Sixty-nine O-glycopeptides of the long O-glycopeptides in tryptic bovine fetuin digest were obtained with a relative abundance range from 100 to 0.2%, which included sialylated glycans with Neu5Ac and Neu5Gc.
Collapse
Affiliation(s)
- Takashi Baba
- Sciex, 71 Four Valley Dr., Concord, Ontario L4K 4V8, Canada
| | - Zoe Zhang
- Sciex, 1201 Radio Rd., Redwood City, California 94065, United States
| | - Suya Liu
- Sciex, 71 Four Valley Dr., Concord, Ontario L4K 4V8, Canada
| | - Lyle Burton
- Sciex, 71 Four Valley Dr., Concord, Ontario L4K 4V8, Canada
| | - Pavel Ryumin
- Sciex, 71 Four Valley Dr., Concord, Ontario L4K 4V8, Canada
| | | |
Collapse
|
53
|
Ince D, Lucas TM, Malaker SA. Current strategies for characterization of mucin-domain glycoproteins. Curr Opin Chem Biol 2022; 69:102174. [PMID: 35752002 DOI: 10.1016/j.cbpa.2022.102174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Glycosylation, and especially O-linked glycosylation, remains a critical blind spot in the understanding of post-translational modifications. Due to their nature as proteins defined by a large density and abundance of O-glycosylation, mucins present extra challenges in the analysis of their structure and function. However, recent breakthroughs in multiple areas of research have rendered mucin-domain glycoproteins more accessible to current characterization techniques. In particular, the adaptation of mucinases to glycoproteomic workflows, the manipulation of cellular glycosylation pathways, and the advances in synthetic methods to more closely mimic mucin domains have introduced new and exciting avenues to study mucin glycoproteins. Here, we summarize recent developments in understanding the structure and biological function of mucin domains and their associated glycans, from glycoproteomic tools and visualization methods to synthetic glycopeptide mimetics.
Collapse
Affiliation(s)
- Deniz Ince
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Taryn M Lucas
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States.
| |
Collapse
|
54
|
Abstract
Mucin domains are densely O-glycosylated modular protein domains found in various extracellular and transmembrane proteins. Mucin-domain glycoproteins play important roles in many human diseases, such as cancer and cystic fibrosis, but the scope of the mucinome remains poorly defined. Recently, we characterized a bacterial O-glycoprotease, StcE, and demonstrated that an inactive point mutant retains binding selectivity for mucin-domain glycoproteins. In this work, we leverage inactive StcE to selectively enrich and identify mucin-domain glycoproteins from complex samples like cell lysate and crude ovarian cancer patient ascites fluid. Our enrichment strategy is further aided by an algorithm to assign confidence to mucin-domain glycoprotein identifications. This mucinomics platform facilitates detection of hundreds of glycopeptides from mucin domains and highly overlapping populations of mucin-domain glycoproteins from ovarian cancer patients. Ultimately, we demonstrate our mucinomics approach can reveal key molecular signatures of cancer from in vitro and ex vivo sources. Mucin-domain glycoproteins are densely O-glycosylated proteins with unique secondary structure that imparts a large influence on cellular environments. Here, the authors develop a technique to selectively enrich and characterize mucin-domain glycoproteins from cell lysate and patient biofluids.
Collapse
|
55
|
Mao Y, Su T, Lin T, Yang H, Zhao Y, Zhang Y, Dai X. Comprehensive Plasma N-Glycoproteome Profiling Based on EThcD-sceHCD-MS/MS. Front Chem 2022; 10:920009. [PMID: 35795219 PMCID: PMC9251008 DOI: 10.3389/fchem.2022.920009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 01/05/2023] Open
Abstract
Glycoproteins are involved in a variety of biological processes. More than one-third of the plasma protein biomarkers of tumors approved by the FDA are glycoproteins, and could improve the diagnostic specificity and/or sensitivity. Therefore, it is of great significance to perform the systematic characterization of plasma N-glycoproteome. In previous studies, we developed an integrated method based on the combinatorial peptide ligand library (CPLL) and stepped collision energy/higher energy collisional dissociation (sceHCD) for comprehensive plasma N-glycoproteome profiling. Recently, we presented a new fragmentation method, EThcD-sceHCD, which outperformed sceHCD in the accuracy of identification. Herein, we integrated the combinatorial peptide ligand library (CPLL) into EThcD-sceHCD and compared the performance of different mass spectrometry dissociation methods (EThcD-sceHCD, EThcD, and sceHCD) in the intact N-glycopeptide analysis of prostate cancer plasma. The results illustrated that EThcD-sceHCD was better than EThcD and sceHCD in the number of identified intact N-glycopeptides (two-folds). A combination of sceHCD and EThcD-sceHCD methods can cover almost all glycoproteins (96.4%) and intact N-glycopeptides (93.6%), indicating good complementarity between the two. Our study has great potential for medium- and low-abundance plasma glycoprotein biomarker discovery.
Collapse
Affiliation(s)
- Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
- *Correspondence: Yang Zhao, ; Yong Zhang, ; Xinhua Dai,
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Zhao, ; Yong Zhang, ; Xinhua Dai,
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
- *Correspondence: Yang Zhao, ; Yong Zhang, ; Xinhua Dai,
| |
Collapse
|
56
|
Burt RA, Alghusen IM, John Ephrame S, Villar MT, Artigues A, Slawson C. Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease. Front Mol Biosci 2022; 9:920727. [PMID: 35664676 PMCID: PMC9161079 DOI: 10.3389/fmolb.2022.920727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
O-GlcNAc is a pleotropic, enigmatic post-translational modification (PTM). This PTM modifies thousands of proteins differentially across tissue types and regulates diverse cellular signaling processes. O-GlcNAc is implicated in numerous diseases, and the advent of O-GlcNAc perturbation as a novel class of therapeutic underscores the importance of identifying and quantifying the O-GlcNAc modified proteome. Here, we review recent advances in mass spectrometry-based proteomics that will be critical in elucidating the role of this unique glycosylation system in health and disease.
Collapse
Affiliation(s)
- Rajan A. Burt
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
| | - Ibtihal M. Alghusen
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Sophiya John Ephrame
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Maria T. Villar
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Antonio Artigues
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Chad Slawson
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
57
|
Tabang DN, Wang D, Li L. A Spin-Tip Enrichment Strategy for Simultaneous Analysis of N-Glycopeptides and Phosphopeptides from Human Pancreatic Tissues. J Vis Exp 2022:10.3791/63735. [PMID: 35604151 PMCID: PMC9186302 DOI: 10.3791/63735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024] Open
Abstract
Mass spectrometry can provide deep coverage of post-translational modifications (PTMs), although enrichment of these modifications from complex biological matrices is often necessary due to their low stoichiometry in comparison to non-modified analytes. Most enrichment workflows of PTMs on peptides in bottom-up proteomics workflows, where proteins are enzymatically digested before the resulting peptides are analyzed, only enrich one type of modification. It is the entire complement of PTMs, however, that leads to biological functions, and enrichment of a single type of PTM may miss such crosstalk of PTMs. PTM crosstalk has been observed between protein glycosylation and phosphorylation, the two most common PTMs in human proteins and also the two most studied PTMs using mass spectrometry workflows. Using the simultaneous enrichment strategy described herein, both PTMs are enriched from post-mortem human pancreatic tissue, a complex biological matrix. Dual-functional Ti(IV)-immobilized metal affinity chromatography is used to separate various forms of glycosylation and phosphorylation simultaneously in multiple fractions in a convenient spin tip-based method, allowing downstream analyses of potential PTM crosstalk interactions. This enrichment workflow for glyco- and phosphopeptides can be applied to various sample types to achieve deep profiling of multiple PTMs and identify potential target molecules for future studies.
Collapse
Affiliation(s)
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison; School of Pharmacy, University of Wisconsin-Madison;
| |
Collapse
|
58
|
Nalehua MR, Zaia J. Measuring change in glycoprotein structure. Curr Opin Struct Biol 2022; 74:102371. [PMID: 35452871 DOI: 10.1016/j.sbi.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022]
Abstract
Biosynthetic enzymes in the secretory pathway create distributions of glycans at each glycosite that elaborate the biophysical properties and biological functions of glycoproteins. Because the biosynthetic glycosylation reactions do not go to completion, each protein glycosite is heterogeneous with respect to glycosylation. This heterogeneity means that it is not sufficient to measure protein abundance in omics experiments. Rather, it is necessary to sample the distribution of glycosylation at each glycosite to quantify the changes that occur during biological processes. On the one hand, the use of data-dependent acquisition methods to sample glycopeptides is limited by the instrument duty cycle and the missing value problem. On the other, stepped window data-independent acquisition samples all precursors, but ion abundances are limited by duty cycle. Therefore, the ability to quantify accurately the flux in glycoprotein glycosylation that occurs during biological processes requires the exploitation of emerging mass spectrometry technologies capable of deep, comprehensive sampling and selective high confidence assignment of the complex glycopeptide mixtures. This review summarizes recent technical advances and mass spectral glycoproteomics analysis strategies and how these developments impact our ability to quantify the changes in glycosylation that occur during biological processes. We highlight specific improvements to glycopeptide characterization through activated electron dissociation, ion mobility trends and instrumentation, and efficient algorithmic approaches for glycopeptide assignment. We also discuss the emerging need for unified standards to enable interlaboratory collaborations and effective monitoring of structural changes in glycoproteins.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University, United States.
| |
Collapse
|
59
|
Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:5776-5784. [PMID: 35388686 PMCID: PMC9272412 DOI: 10.1021/acs.analchem.1c04874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Characterization of protein glycosylation by tandem mass spectrometry remains challenging owing to the vast diversity of oligosaccharides bound to proteins, the variation in monosaccharide linkage patterns, and the lability of the linkage between the glycan and protein. Here, we have adapted an HCD-triggered-ultraviolet photodissociation (UVPD) approach for the simultaneous localization of glycosites and full characterization of both glycan compositions and intersaccharide linkages, the latter provided by extensive cross-ring cleavages enabled by UVPD. The method is applied to study glycan compositions based on analysis of glycopeptides from proteolytic digestion of recombinant human coronaviruse spike proteins from SARS-CoV-2 and HKU1. UVPD reveals unique intersaccharide linkage information and is leveraged to localize N-linked glycoforms with confidence.
Collapse
Affiliation(s)
- Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shuaishuai Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Michael B Lanzillotti
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
60
|
Fang Z, Qin H, Mao J, Wang Z, Zhang N, Wang Y, Liu L, Nie Y, Dong M, Ye M. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nat Commun 2022; 13:1900. [PMID: 35393418 PMCID: PMC8990002 DOI: 10.1038/s41467-022-29530-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Glycopeptides with unusual glycans or poor peptide backbone fragmentation in tandem mass spectrometry are unaccounted for in typical site-specific glycoproteomics analysis and thus remain unidentified. Here, we develop a glycoproteomics tool, Glyco-Decipher, to address these issues. Glyco-Decipher conducts glycan database-independent peptide matching and exploits the fragmentation pattern of shared peptide backbones in glycopeptides to improve the spectrum interpretation. We benchmark Glyco-Decipher on several large-scale datasets, demonstrating that it identifies more peptide-spectrum matches than Byonic, MSFragger-Glyco, StrucGP and pGlyco 3.0, with a 33.5%-178.5% increase in the number of identified glycopeptide spectra. The database-independent and unbiased profiling of attached glycans enables the discovery of 164 modified glycans in mouse tissues, including glycans with chemical or biological modifications. By enabling in-depth characterization of site-specific protein glycosylation, Glyco-Decipher is a promising tool for advancing glycoproteomics analysis in biological research.
Collapse
Affiliation(s)
- Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
61
|
Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences. J Biol Chem 2022; 298:101917. [PMID: 35405095 PMCID: PMC9118916 DOI: 10.1016/j.jbc.2022.101917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Akkermansia muciniphila, a mucin-degrading microbe found in the human gut, is often associated with positive health outcomes. The abundance of A. muciniphila is modulated by the presence and accessibility of nutrients, which can be derived from diet or host glycoproteins. In particular, the ability to degrade host mucins, a class of proteins carrying densely O-glycosylated domains, provides a competitive advantage in the sustained colonization of niche mucosal environments. Although A. muciniphila is known to rely on mucins as a carbon and nitrogen source, the enzymatic machinery used by this microbe to process mucins in the gut is not yet fully characterized. Here, we focus on the mucin-selective metalloprotease, Amuc_0627 (AM0627), which is known to cleave between adjacent residues carrying truncated core 1 O-glycans. We showed that this enzyme is capable of degrading purified mucin 2 (MUC2), the major protein component of mucus in the gut. An X-ray crystal structure of AM0627 (1.9 Å resolution) revealed O-glycan–binding residues that are conserved between structurally characterized enzymes from the same family. We further rationalized the substrate cleavage motif using molecular modeling to identify nonconserved glycan-interacting residues. We conclude that mutagenesis of these residues resulted in altered substrate preferences down to the glycan level, providing insight into the structural determinants of O-glycan recognition.
Collapse
|
62
|
Mao J, Zhu H, Liu L, Fang Z, Dong M, Qin H, Ye M. MS-Decipher: a user-friendly proteome database search software with an emphasis on deciphering the spectra of O-linked glycopeptides. Bioinformatics 2022; 38:1911-1919. [PMID: 35020790 DOI: 10.1093/bioinformatics/btac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The interpretation of mass spectrometry (MS) data is a crucial step in proteomics analysis, and the identification of post-translational modifications (PTMs) is vital for the understanding of the regulation mechanism of the living system. Among various PTMs, glycosylation is one of the most diverse ones. Though many search engines have been developed to decipher proteomic data, some of them are difficult to operate and have poor performance on glycoproteomic datasets compared to advanced glycoproteomic software. RESULTS To simplify the analysis of proteomic datasets, especially O-glycoproteomic datasets, here, we present a user-friendly proteomic database search platform, MS-Decipher, for the identification of peptides from MS data. Two scoring schemes can be chosen for peptide-spectra matching. It was found that MS-Decipher had the same sensitivity and confidence in peptide identification compared to traditional database searching software. In addition, a special search mode, O-Search, is integrated into MS-Decipher to identify O-glycopeptides for O-glycoproteomic analysis. Compared with Mascot, MetaMorpheus and MSFragger, MS-Decipher can obtain about 139.9%, 48.8% and 6.9% more O-glycopeptide-spectrum matches. A useful tool is provided in MS-Decipher for the visualization of O-glycopeptide-spectra matches. MS-Decipher has a user-friendly graphical user interface, making it easier to operate. Several file formats are available in the searching and validation steps. MS-Decipher is implemented with Java, and can be used cross-platform. AVAILABILITY AND IMPLEMENTATION MS-Decipher is freely available at https://github.com/DICP-1809/MS-Decipher for academic use. For detailed implementation steps, please see the user guide. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - He Zhu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|
63
|
Zhi Y, Jia L, Shen J, Li J, Chen Z, Zhu B, Hao Z, Xu Y, Sun S. Formylation: an undesirable modification on glycopeptides and glycans during storage in formic acid solution. Anal Bioanal Chem 2022; 414:3311-3317. [PMID: 35229171 DOI: 10.1007/s00216-022-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
In glycomic and glycoproteomic studies, solutions containing diluted organic acids such as formic acid (FA) have been widely used for dissolving intact glycopeptide and glycan samples prior to mass spectrometry analysis. Here, we show that an undesirable + 28 Da modification occurred in a time-dependent manner when the glycan and glycopeptide samples were stored in FA solution at - 20 °C. We confirmed that this unexpected modification was caused by formylation between the hydroxyl groups of glycans and FA with a relatively low reaction rate. As this incomplete modification affected the glycan and glycopeptide identification and quantification in glycomic and glycoproteomic studies, the storage at - 20 °C should be avoided once the glycan and glycopeptide samples have been dissolved in FA solution.
Collapse
Affiliation(s)
- Yuan Zhi
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jun Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Zhifang Hao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Yintai Xu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
64
|
Zeng W, Zheng S, Su T, Cheng J, Mao Y, Zhong Y, Liu Y, Chen J, Zhao W, Lin T, Liu F, Li G, Yang H, Zhang Y. Comparative N-Glycoproteomics Analysis of Clinical Samples Via Different Mass Spectrometry Dissociation Methods. Front Chem 2022; 10:839470. [PMID: 35281567 PMCID: PMC8907888 DOI: 10.3389/fchem.2022.839470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific N-glycosylation characterization requires intact N-glycopeptide analysis based on suitable tandem mass spectrometry (MS/MS) method. Electron-transfer/higher-energy collisional dissociation (EThcD), stepped collision energy/higher-energy collisional dissociation (sceHCD), higher-energy collisional dissociation-product-dependent electron-transfer dissociation (HCD-pd-ETD), and a hybrid mass spectrometry fragmentation method EThcD-sceHCD have emerged as valuable approaches for glycoprotein analysis. However, each of them incurs some compromise, necessitating the systematic performance comparisons when applied to the analysis of complex clinical samples (e.g., plasma, urine, cells, and tissues). Herein, we compared the performance of EThcD-sceHCD with those previous approaches (EThcD, sceHCD, HCD-pd-ETD, and sceHCD-pd-ETD) in the intact N-glycopeptide analysis, and determined its applicability for clinical N-glycoproteomic study. The intact N-glycopeptides of distinct samples, namely, plasma from prostate cancer (PCa) patients, urine from immunoglobulin A nephropathy (IgAN) patients, human hepatocarcinoma cell line (HepG2), and thyroid tissues from thyroid cancer (TC) patients were analyzed by these methods. We found that EThcD-sceHCD outperformed other methods in the balance of depth and accuracy of intact N-glycopeptide identification, and sceHCD and EThcD-sceHCD have good complementarity. EThcD-sceHCD holds great potential for biomarker discovery from clinical samples.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahan Cheng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yueqiu Liu
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhai Chen
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanjun Zhao
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Hao Yang
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hao Yang, ; Yong Zhang,
| | - Yong Zhang
- Institutes for Systems Genetics, National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hao Yang, ; Yong Zhang,
| |
Collapse
|
65
|
Pabst M, Grouzdev DS, Lawson CE, Kleikamp HBC, de Ram C, Louwen R, Lin YM, Lücker S, van Loosdrecht MCM, Laureni M. A general approach to explore prokaryotic protein glycosylation reveals the unique surface layer modulation of an anammox bacterium. THE ISME JOURNAL 2022; 16:346-357. [PMID: 34341504 PMCID: PMC8776859 DOI: 10.1038/s41396-021-01073-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.
Collapse
Affiliation(s)
- Martin Pabst
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | | | - Christopher E. Lawson
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Hugo B. C. Kleikamp
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Carol de Ram
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Rogier Louwen
- grid.5645.2000000040459992XDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yue Mei Lin
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Mark C. M. van Loosdrecht
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Michele Laureni
- grid.5292.c0000 0001 2097 4740Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| |
Collapse
|
66
|
Polasky DA, Geiszler DJ, Yu F, Nesvizhskii AI. Multi-attribute Glycan Identification and FDR Control for Glycoproteomics. Mol Cell Proteomics 2022; 21:100205. [PMID: 35091091 PMCID: PMC8933705 DOI: 10.1016/j.mcpro.2022.100205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Rapidly improving methods for glycoproteomics have enabled increasingly large-scale analyses of complex glycopeptide samples, but annotating the resulting mass spectrometry data with high confidence remains a major bottleneck. We recently introduced a fast and sensitive glycoproteomics search method in our MSFragger search engine, which reports glycopeptides as a combination of a peptide sequence and the mass of the attached glycan. In samples with complex glycosylation patterns, converting this mass to a specific glycan composition is not straightforward; however, as many glycans have similar or identical masses. Here, we have developed a new method for determining the glycan composition of N-linked glycopeptides fragmented by collisional or hybrid activation that uses multiple sources of information from the spectrum, including observed glycan B-type (oxonium) and Y-type ions and mass and precursor monoisotopic selection errors to discriminate between possible glycan candidates. Combined with false discovery rate estimation for the glycan assignment, we show that this method is capable of specifically and sensitively identifying glycans in complex glycopeptide analyses and effectively controls the rate of false glycan assignments. The new method has been incorporated into the PTM-Shepherd modification analysis tool to work directly with the MSFragger glyco search in the FragPipe graphical user interface, providing a complete computational pipeline for annotation of N-glycopeptide spectra with false discovery rate control of both peptide and glycan components that is both sensitive and robust against false identifications. Identifying the glycan on intact glycopeptides remains difficult in glycoproteomics. We developed a method to assign glycan compositions in N-glycoproteomics searches. We demonstrate well-controlled glycan FDR in multiple sample types. The method annotates more glycopeptide spectra than competing tools. The method is included PTM-Shepherd for a full glycoproteomics workflow in FragPipe.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
67
|
Scott NE. Glycopeptide-Centric Approaches for the Characterization of Microbial Glycoproteomes. Methods Mol Biol 2022; 2456:153-171. [PMID: 35612741 DOI: 10.1007/978-1-0716-2124-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is increasingly recognized as a common class of modifications within microbial species that can shape protein functions and the proteome at large. Due to this, there is an increasing need for robust analytical methods, which allow for the identification and characterization of microbial glycopeptides from proteome samples in a high-throughput manner. Using affinity-based enrichment (either hydrophilicity or antibody-based approaches) glycopeptides can easily be separated from non-glycosylated peptides and analyzed using mass spectrometry. By utilizing multiple mass spectrometry fragmentation approaches and open searching-based bioinformatic techniques, novel glycopeptides can be identified and characterized without prior knowledge of the glycans used for glycosylation. Using these approaches, glycopeptides within samples can rapidly be identified as well as quantified to understand how glycosylation changes in response to stimuli or how changes in glycosylation systems impact the glycoproteome. This chapter outlines a set of robust protocols for the initial preparation, enrichment, and analysis of microbial glycopeptides for both qualitative and quantitative glycoproteomic studies. Using these approaches, glycosylation events can be easily identified by researchers without the need for extensive manual analysis of proteomic datasets.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
68
|
|
69
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
70
|
Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M, Hu Y, Huang Y, Kim JY, Kletter D, Liquet B, Liu M, Mechref Y, Meng B, Neelamegham S, Nguyen-Khuong T, Nilsson J, Pap A, Park GW, Parker BL, Pegg CL, Penninger JM, Phung TK, Pioch M, Rapp E, Sakalli E, Sanda M, Schulz BL, Scott NE, Sofronov G, Stadlmann J, Vakhrushev SY, Woo CM, Wu HY, Yang P, Ying W, Zhang H, Zhang Y, Zhao J, Zaia J, Haslam SM, Palmisano G, Yoo JS, Larson G, Khoo KH, Medzihradszky KF, Kolarich D, Packer NH, Thaysen-Andersen M. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 DOI: 10.1101/2021.03.14.435332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 05/18/2023]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anastasia Chernykh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | | | - Weiqian Cao
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Robert J Chalkley
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Kai Cheng
- State University of New York, Buffalo, NY, USA
| | - Matthew S Choo
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Edwards
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Yingwei Hu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | | | - Benoit Liquet
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
- CNRS, Laboratoire de Mathématiques et de leurs Applications de PAU, E2S-UPPA, Pau, France
| | - Mingqi Liu
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Bo Meng
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | | | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska academy, University of Gothenburg, Gothenburg, Sweden
| | - Adam Pap
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gun Wook Park
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Markus Pioch
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Enes Sakalli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Miloslav Sanda
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Nichollas E Scott
- Deparment of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Georgy Sofronov
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Johannes Stadlmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pengyuan Yang
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yong Zhang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University Medical Campus, Boston, MA, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jong Shin Yoo
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kai-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Katalin F Medzihradszky
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
71
|
Burt RA, Dejanovic B, Peckham HJ, Lee KA, Li X, Ounadjela JR, Rao A, Malaker SA, Carr SA, Myers SA. Novel Antibodies for the Simple and Efficient Enrichment of Native O-GlcNAc Modified Peptides. Mol Cell Proteomics 2021; 20:100167. [PMID: 34678516 PMCID: PMC8605273 DOI: 10.1016/j.mcpro.2021.100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease. Anti-O-GlcNAc antibodies are fast and simple enrichment reagents. Anti-O-GlcNAc antibodies are sensitive and achieve significant depth of coverage. Anti-O-GlcNAc antibodies are specific for singular O-GlcNAc modifications. Anti-O-GlcNAc antibody enrichment techniques can be applied to cells and tissues. HCD product-triggered EThcD data acquisition improves depth of coverage.
Collapse
Affiliation(s)
- Rajan A Burt
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Borislav Dejanovic
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kimberly A Lee
- Cell Signaling Technology, Inc, Danvers, Massachusetts, USA
| | - Xiang Li
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Anjana Rao
- La Jolla Institute for Immunology, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA; Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Samuel A Myers
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
72
|
Yang Y, Yan G, Kong S, Wu M, Yang P, Cao W, Qiao L. GproDIA enables data-independent acquisition glycoproteomics with comprehensive statistical control. Nat Commun 2021; 12:6073. [PMID: 34663801 PMCID: PMC8523693 DOI: 10.1038/s41467-021-26246-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Large-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics. Data independent acquisition (DIA) is an emerging technology with deep proteome coverage and accurate quantitative capability in proteomics studies, but is still in the early stage of development in the field of glycoproteomics. We propose GproDIA, a framework for the proteome-wide characterization of intact glycopeptides from DIA data with comprehensive statistical control by a 2-dimentional false discovery rate approach and a glycoform inference algorithm, enabling accurate identification of intact glycopeptides using wide isolation windows. We further utilize a semi-empirical spectrum prediction strategy to expand the coverage of spectral libraries of glycopeptides. We benchmark our method for N-glycopeptide profiling on DIA data of yeast and human serum samples, demonstrating that DIA with GproDIA outperforms the data-dependent acquisition-based methods for glycoproteomics in terms of capacity and data completeness of identification, as well as accuracy and precision of quantification. We expect that this work can provide a powerful tool for glycoproteomic studies.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Siyuan Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Mengxi Wu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
- The Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, 200000, China
- The International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, 200000, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200000, China
| | - Weiqian Cao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China.
- The Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, 200000, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, 200000, China.
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
73
|
Abstract
Mucin-domain glycoproteins comprise a class of proteins whose densely O-glycosylated mucin domains adopt a secondary structure with unique biophysical and biochemical properties. The canonical family of mucins is well-known to be involved in various diseases, especially cancer. Despite this, very little is known about the site-specific molecular structures and biological activities of mucins, in part because they are extremely challenging to study by mass spectrometry (MS). Here, we summarize recent advancements toward this goal, with a particular focus on mucin-domain glycoproteins as opposed to general O-glycoproteins. We summarize proteolytic digestion techniques, enrichment strategies, MS fragmentation, and intact analysis, as well as new bioinformatic platforms. In particular, we highlight mucin directed technologies such as mucin-selective proteases, tunable mucin platforms, and a mucinomics strategy to enrich mucin-domain glycoproteins from complex samples. Finally, we provide examples of targeted mucin-domain glycoproteomics that combine these techniques in comprehensive site-specific analyses of proteins. Overall, this Review summarizes the methods, challenges, and new opportunities associated with studying enigmatic mucin domains.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
74
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
75
|
Xu Y, Zhang H. Putting the pieces together: mapping the O-glycoproteome. Curr Opin Biotechnol 2021; 71:130-136. [PMID: 34358979 PMCID: PMC8629430 DOI: 10.1016/j.copbio.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Protein glycosylation is the most diverse and omnipresent protein modification. Glycosylation provides glycoproteins with important structural and functional properties to facilitate critical biological processes. Despite the significance of protein glycosylation, the investigation of glycoproteome, especially O-linked glycoproteome, remains elusive due to the lack of a comprehensive methodology to conform with the diversity of O-linked glycoforms of O-linked glycoproteins. In recent years, mass spectrometry has become an indispensable tool for the characterization of O-linked glycosylated proteins across biological systems. We herein highlight the recent developments in MS-based O-linked glycoproteomic technologies, quantitative data acquisition strategy and bioinformatic tools, with a special focus on mucin-type O-linked glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
76
|
[Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses]. Se Pu 2021; 39:1045-1054. [PMID: 34505426 PMCID: PMC9404232 DOI: 10.3724/sp.j.1123.2021.06011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。
Collapse
|
77
|
Hayes AJ, Lewis JM, Davies MR, Scott NE. Burkholderia PglL enzymes are Serine preferring oligosaccharyltransferases which target conserved proteins across the Burkholderia genus. Commun Biol 2021; 4:1045. [PMID: 34493791 PMCID: PMC8423747 DOI: 10.1038/s42003-021-02588-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is increasingly recognised as a common protein modification within bacterial proteomes. While great strides have been made in identifying species that contain glycosylation systems, our understanding of the proteins and sites targeted by these systems is far more limited. Within this work we explore the conservation of glycoproteins and glycosylation sites across the pan-Burkholderia glycoproteome. Using a multi-protease glycoproteomic approach, we generate high-confidence glycoproteomes in two widely utilized B. cenocepacia strains, K56-2 and H111. This resource reveals glycosylation occurs exclusively at Serine residues and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates. This preference for glycosylation at Serine residues is observed across at least 9 Burkholderia glycoproteomes, supporting that Serine is the dominant residue targeted by PglL-mediated glycosylation across the Burkholderia genus. Combined, this work demonstrates that PglL enzymes of the Burkholderia genus are Serine-preferring oligosaccharyltransferases that target conserved and shared protein substrates. Hayes et al provide a glycosylation site focused analysis of the glycoproteome of two widely utilized B. cenocepacia strains, K56-2 and H111. This team demonstrates that within these glycoproteomes Serine is the sole residue targeted for protein glycosylation and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates.
Collapse
Affiliation(s)
- Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
78
|
|
79
|
Calle B, Bineva-Todd G, Marchesi A, Flynn H, Ghirardello M, Tastan OY, Roustan C, Choi J, Galan MC, Schumann B, Malaker SA. Benefits of Chemical Sugar Modifications Introduced by Click Chemistry for Glycoproteomic Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2366-2375. [PMID: 33871988 PMCID: PMC7611619 DOI: 10.1021/jasms.1c00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.
Collapse
Affiliation(s)
- Beatriz Calle
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Andrea Marchesi
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Omur Y. Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - M. Carmen Galan
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT 06511, United States
| |
Collapse
|
80
|
Oliveira T, Thaysen-Andersen M, Packer NH, Kolarich D. The Hitchhiker's guide to glycoproteomics. Biochem Soc Trans 2021; 49:1643-1662. [PMID: 34282822 PMCID: PMC8421054 DOI: 10.1042/bst20200879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is one of the most common post-translational modifications that are essential for cell function across all domains of life. Changes in glycosylation are considered a hallmark of many diseases, thus making glycoproteins important diagnostic and prognostic biomarker candidates and therapeutic targets. Glycoproteomics, the study of glycans and their carrier proteins in a system-wide context, is becoming a powerful tool in glycobiology that enables the functional analysis of protein glycosylation. This 'Hitchhiker's guide to glycoproteomics' is intended as a starting point for anyone who wants to explore the emerging world of glycoproteomics. The review moves from the techniques that have been developed for the characterisation of single glycoproteins to technologies that may be used for a successful complex glycoproteome characterisation. Examples of the variety of approaches, methodologies, and technologies currently used in the field are given. This review introduces the common strategies to capture glycoprotein-specific and system-wide glycoproteome data from tissues, body fluids, or cells, and a perspective on how integration into a multi-omics workflow enables a deep identification and characterisation of glycoproteins - a class of biomolecules essential in regulating cell function.
Collapse
Affiliation(s)
- Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | | | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| |
Collapse
|
81
|
StrucGP: de novo structural sequencing of site-specific N-glycan on glycoproteins using a modularization strategy. Nat Methods 2021; 18:921-929. [PMID: 34341581 DOI: 10.1038/s41592-021-01209-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Precision mapping of glycans at structural and site-specific level is still one of the most challenging tasks in the glycobiology field. Here, we describe a modularization strategy for de novo interpretation of N-glycan structures on intact glycopeptides using tandem mass spectrometry. An algorithm named StrucGP is also developed to automate the interpretation process for large-scale analysis. By dividing an N-glycan into three modules and identifying each module using distinct patterns of Y ions or a combination of distinguishable B/Y ions, the method enables determination of detailed glycan structures on thousands of glycosites in mouse brain, which comprise four types of core structure and 17 branch structures with three glycan subtypes. Owing to the database-independent glycan mapping strategy, StrucGP also facilitates the identification of rare/new glycan structures. The approach will be greatly beneficial for in-depth structural and functional study of glycoproteins in the biomedical research.
Collapse
|
82
|
Fostering "Education": Do Extracellular Vesicles Exploit Their Own Delivery Code? Cells 2021; 10:cells10071741. [PMID: 34359911 PMCID: PMC8305232 DOI: 10.3390/cells10071741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV “delivery code” and on the combinations of the hypothesized EV surface membrane “sender” and “recipient” molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.
Collapse
|
83
|
Shi J, Ku X, Zou X, Hou J, Yan W, Zhang Y. Comprehensive analysis of O-glycosylation of amyloid precursor protein (APP) using targeted and multi-fragmentation MS strategy. Biochim Biophys Acta Gen Subj 2021; 1865:129954. [PMID: 34229070 DOI: 10.1016/j.bbagen.2021.129954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aberrant proteolytic processing of amyloid precursor protein (APP) into amyloid β peptide (Aβ) in brain is a critical step in the pathogenesis of Alzheimer's disease (AD). As an O-glycosylated protein, O-glycosylation of APP is considered to be related to Aβ generation. Therefore, comprehensive analysis of APP O-glycosylation is important for understanding its functions. METHODS We developed a Targeted MS approach with Multi-Fragmentation techniques (TMMF strategy), and successfully characterized O-glycosylation profiling of APP695 expressed in HEK-293 T cells. We calculated relative abundance of glycopeptides with various O-glycosites and O-glycans, and further investigated the alteration of APP O-glycosylation upon TNF-α treatment. RESULTS A total of 14 O-glycosites were identified on three glycopeptides of APP, and at least four O-glycans including GalNAc (Tn antigen), core 1, and mono-/di-sialylated core 1 glycans were determinant at the residues of Thr576 and Thr577. We found a dense cluster of truncated O-glycans on the region nearby beginning of E2 domain and high abundance of sialylated O-glycans on the region close to β-cleavage site. Moreover, we also observed that TNF-α could upregulate the expression of APP and the truncated O-glycans on APP in HEK-293 T cell. CONCLUSION Our study established an intact O-glycopeptide MS analysis strategy for APP O-glycopeptide identification with enhanced fragmentation efficiency and detection sensitivity. These results provide a comprehensive O-glycosylation map of APP expressed in HEK-293 T cell. GENERAL SIGNIFICANCE The accurate O-glycosites and O-glycan structures on APP may lead to a better understanding of the roles O-glycosylation plays in the processing and functions of APP.
Collapse
Affiliation(s)
- Jingjing Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingli Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
84
|
Oxonium Ion Guided Analysis of Quantitative Proteomics Data Reveals Site-Specific O-Glycosylation of Anterior Gradient Protein 2 (AGR2). Int J Mol Sci 2021; 22:ijms22105369. [PMID: 34065225 PMCID: PMC8160981 DOI: 10.3390/ijms22105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between O-GalNAc and O-GlcNAc. Here, we thought to investigate how such information can be used to examine quantitative proteomics data. For this purpose, we used tandem mass tag (TMT)-labeled samples from total cell lysates and secreted proteins from three different colorectal cancer cell lines. Following automated glycopeptide assignment (Byonic) and evaluation of the presence and relative intensity of oxonium ions, we observed that, in particular, the ratio of the ions at m/z 144.066 and 138.055, respectively, could be used to discriminate between O-GlcNAcylated and O-GalNAcylated peptides, with concomitant relative quantification between the different cell lines. Among the O-GalNAcylated proteins, we also observed anterior gradient protein 2 (AGR2), a protein which glycosylation site and status was hitherto not well documented. Using a combination of multiple fragmentation methods, we then not only assigned the site of modification, but also showed different glycosylation between intracellular (ER-resident) and secreted AGR2. Overall, our study shows the potential of broad application of the use of the relative intensities of oxonium ions for the confident assignment of glycopeptides, even in complex proteomics datasets.
Collapse
|
85
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
86
|
Paulo JA, Schweppe DK. Advances in quantitative high-throughput phosphoproteomics with sample multiplexing. Proteomics 2021; 21:e2000140. [PMID: 33455035 DOI: 10.1002/pmic.202000140] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic protein phosphorylation modulates nearly every major biological process. Phosphorylation regulates protein activity, mediates cellular signal transduction, and manipulates cellular structure. Consequently, the dysregulation of kinase and phosphatase pathways has been linked to a multitude of diseases. Mass spectrometry-based proteomic techniques are increasingly used for the global interrogation of perturbations in phosphorylation-based cellular signaling. Strategies for studying phosphoproteomes require high-specificity enrichment, sensitive detection, and accurate localization of phosphorylation sites with advanced LC-MS/MS techniques and downstream informatics. Sample multiplexing with isobaric tags has also been integral to recent advancements in throughput and sensitivity for phosphoproteomic studies. Each of these facets of phosphoproteomics analysis present distinct challenges and thus opportunities for improvement and innovation. Here, we review current methodologies, explore persistent challenges, and discuss the outlook for isobaric tag-based quantitative phosphoproteomic analysis.
Collapse
Affiliation(s)
- Joao A Paulo
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
87
|
Shortreed MR, Millikin RJ, Liu L, Rolfs Z, Miller RM, Schaffer LV, Frey BL, Smith LM. Binary Classifier for Computing Posterior Error Probabilities in MetaMorpheus. J Proteome Res 2021; 20:1997-2004. [PMID: 33683901 DOI: 10.1021/acs.jproteome.0c00838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MetaMorpheus is a free, open-source software program for the identification of peptides and proteoforms from data-dependent acquisition tandem MS experiments. There is inherent uncertainty in these assignments for several reasons, including the limited overlap between experimental and theoretical peaks, the m/z uncertainty, and noise peaks or peaks from coisolated peptides that produce false matches. False discovery rates provide only a set-wise approximation for incorrect spectrum matches. Here we implemented a binary decision tree calculation within MetaMorpheus to compute a posterior error probability, which provides a measure of uncertainty for each peptide-spectrum match. We demonstrate its utility for increasing identifications and resolving ambiguities in bottom-up, top-down, proteogenomic, and nonspecific digestion searches.
Collapse
Affiliation(s)
- Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
88
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021; 60:66-78. [PMID: 33125942 PMCID: PMC7955280 DOI: 10.1016/j.cbpa.2020.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
89
|
Schulze S, Igiraneza AB, Kösters M, Leufken J, Leidel SA, Garcia BA, Fufezan C, Pohlschroder M. Enhancing Open Modification Searches via a Combined Approach Facilitated by Ursgal. J Proteome Res 2021; 20:1986-1996. [PMID: 33514075 DOI: 10.1021/acs.jproteome.0c00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.
Collapse
Affiliation(s)
- Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aime Bienfait Igiraneza
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Kösters
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Johannes Leufken
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Sebastian A Leidel
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christian Fufezan
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mechthild Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
90
|
Towards structure-focused glycoproteomics. Biochem Soc Trans 2021; 49:161-186. [PMID: 33439247 PMCID: PMC7925015 DOI: 10.1042/bst20200222] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018–2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.
Collapse
|
91
|
Abstract
Glycoproteomics is unquestionably on the rise and its current development benefits from past experience in proteomics, in particular when attending to bioinformatics needs. An extensive range of software solutions is available, but the reproducibility of mass spectrometry data processing remains challenging. One of the key issues in running automated glycopeptide identification software is the selection of a reference glycan composition file. The default choices are often too broad, and a fastidious literature search to properly target this selection can be avoided. This chapter suggests the use of GlyConnect Compozitor to collect relevant information on glycosylation in a given tissue or cell line and shape an appropriate glycan composition set that can be input in the majority of search engines accommodating user-defined compositions.
Collapse
|
92
|
Zeng WF, Cao WQ, Liu MQ, He SM, Yang PY. Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat Methods 2021; 18:1515-1523. [PMID: 34824474 PMCID: PMC8648562 DOI: 10.1038/s41592-021-01306-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Great advances have been made in mass spectrometric data interpretation for intact glycopeptide analysis. However, accurate identification of intact glycopeptides and modified saccharide units at the site-specific level and with fast speed remains challenging. Here, we present a glycan-first glycopeptide search engine, pGlyco3, to comprehensively analyze intact N- and O-glycopeptides, including glycopeptides with modified saccharide units. A glycan ion-indexing algorithm developed for glycan-first search makes pGlyco3 5-40 times faster than other glycoproteomic search engines without decreasing accuracy or sensitivity. By combining electron-based dissociation spectra, pGlyco3 integrates a dynamic programming-based algorithm termed pGlycoSite for site-specific glycan localization. Our evaluation shows that the site-specific glycan localization probabilities estimated by pGlycoSite are suitable to localize site-specific glycans. With pGlyco3, we confidently identified N-glycopeptides and O-mannose glycopeptides that were extensively modified by ammonia adducts in yeast samples. The freely available pGlyco3 is an accurate and flexible tool that can be used to identify glycopeptides and modified saccharide units.
Collapse
Affiliation(s)
- Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Wei-Qian Cao
- grid.8547.e0000 0001 0125 2443Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- grid.8547.e0000 0001 0125 2443Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Si-Min He
- grid.424936.e0000 0001 2221 3902Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Yuan Yang
- grid.8547.e0000 0001 0125 2443Shanghai Fifth People’s Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 PMCID: PMC8566223 DOI: 10.1038/s41592-021-01309-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
|
94
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
95
|
Riley NM, Malaker SA, Bertozzi CR. Electron-Based Dissociation Is Needed for O-Glycopeptides Derived from OpeRATOR Proteolysis. Anal Chem 2020; 92:14878-14884. [PMID: 33125225 PMCID: PMC8329938 DOI: 10.1021/acs.analchem.0c02950] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recently described O-glycoprotease OpeRATOR presents exciting opportunities for O-glycoproteomics. This bacterial enzyme purified from Akkermansia muciniphila cleaves N-terminally to serine and threonine residues that are modified with (preferably asialylated) O-glycans. This provides orthogonal cleavage relative to canonical proteases (e.g., trypsin) for improved O-glycopeptide characterization with tandem mass spectrometry (MS/MS). O-glycopeptides with a modified N-terminal residue, such as those generated by OpeRATOR, present several potential benefits, perhaps the most notable being de facto O-glycosite localization without the need of glycan-retaining fragments in MS/MS spectra. Indeed, O-glycopeptides modified exclusively at the N-terminus would enable O-glycoproteomic methods to rely solely on collision-based fragmentation rather than electron-driven dissociation because glycan-retaining peptide fragments would not be required for localization. The caveat is that modified peptides would need to reliably contain only a single O-glycosite. Here, we use methods that combine collision- and electron-based fragmentation to characterize the number of O-glycosites that are present in O-glycopeptides derived from the OpeRATOR digestion of four known O-glycoproteins. Our data show that over 50% of O-glycopeptides in our sample generated from combined digestion using OpeRATOR and trypsin contain multiple O-glycosites, indicating that collision-based fragmentation alone is not sufficient. Electron-based dissociation methods are necessary to capture the O-glycopeptide diversity present in OpeRATOR digestions.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, California, United States
| | - Stacy A Malaker
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, California, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, California, United States
- Howard Hughes Medical Institute, Stanford, California, United States
| |
Collapse
|
96
|
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|