51
|
Perez DC, Dworetsky A, Braga RM, Beeman M, Gratton C. Hemispheric Asymmetries of Individual Differences in Functional Connectivity. J Cogn Neurosci 2023; 35:200-225. [PMID: 36378901 PMCID: PMC10029817 DOI: 10.1162/jocn_a_01945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.
Collapse
Affiliation(s)
| | | | | | | | - Caterina Gratton
- Northwestern University, Evanston, IL
- Florida State University, Tallahassee
| |
Collapse
|
52
|
Silva AB, Liu JR, Zhao L, Levy DF, Scott TL, Chang EF. A Neurosurgical Functional Dissection of the Middle Precentral Gyrus during Speech Production. J Neurosci 2022; 42:8416-8426. [PMID: 36351829 PMCID: PMC9665919 DOI: 10.1523/jneurosci.1614-22.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Classical models have traditionally focused on the left posterior inferior frontal gyrus (Broca's area) as a key region for motor planning of speech production. However, converging evidence suggests that it is not critical for either speech motor planning or execution. Alternative cortical areas supporting high-level speech motor planning have yet to be defined. In this review, we focus on the precentral gyrus, whose role in speech production is often thought to be limited to lower-level articulatory muscle control. In particular, we highlight neurosurgical investigations that have shed light on a cortical region anatomically located near the midpoint of the precentral gyrus, hence called the middle precentral gyrus (midPrCG). The midPrCG is functionally located between dorsal hand and ventral orofacial cortical representations and exhibits unique sensorimotor and multisensory functions relevant for speech processing. This includes motor control of the larynx, auditory processing, as well as a role in reading and writing. Furthermore, direct electrical stimulation of midPrCG can evoke complex movements, such as vocalization, and selective injury can cause deficits in verbal fluency, such as pure apraxia of speech. Based on these findings, we propose that midPrCG is essential to phonological-motoric aspects of speech production, especially syllabic-level speech sequencing, a role traditionally ascribed to Broca's area. The midPrCG is a cortical brain area that should be included in contemporary models of speech production with a unique role in speech motor planning and execution.
Collapse
Affiliation(s)
- Alexander B Silva
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Medical Scientist Training Program, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| | - Jessie R Liu
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| | - Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Deborah F Levy
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Terri L Scott
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, 94158
- Weill Institute for Neurosciences, University of California, San Francisco, California, 94158
- Graduate Program in Bioengineering, University of California, Berkeley, California 94720, & University of California, San Francisco, California, 94158
| |
Collapse
|