51
|
Keddy KH, Saha S, Okeke IN, Kalule JB, Qamar FN, Kariuki S. Combating Childhood Infections in LMICs: evaluating the contribution of Big Data Big data, biomarkers and proteomics: informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021; 73:103668. [PMID: 34742129 PMCID: PMC8579132 DOI: 10.1016/j.ebiom.2021.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023] Open
Abstract
Despite efforts to reduce the global burden of childhood diarrhoea, 50% of all cases globally occur in children under five years in Low–Income and Middle- Income Countries (LMICs) and knowledge gaps remain regarding the aetiological diagnosis, introduction of diarrhoeal vaccines, and the role of environmental enteric dysfunction and severe acute malnutrition. Biomarkers may assist in understanding disease processes, from diagnostics, to management of childhood diarrhoea and the sequelae to vaccine development. Proteomics has the potential to assist in the identification of new biomarkers to understand the processes in the development of childhood diarrhoea and to aid in developing new vaccines. Centralised repositories that enable mining of large data sets to better characterise risk factors, the proteome of both the patient and the different diarrhoeal pathogens, and the environment, could inform patient management and vaccine development, providing a systems biological approach to address the burden of childhood diarrhoea in LMICs.
Collapse
Affiliation(s)
- Karen H Keddy
- Tuberculosis Platform, South African Medical Research Council, 1 Soutpansberg Rd, Pretoria, 0001, South Africa.
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 Khilji Road, Mohammadpur, Dhaka 1207, Bangladesh
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - John Bosco Kalule
- Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Uganda
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health. Aga Khan University, Stadoum road Karachi, Pakistan 74800
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, Nairobi, Kenya
| |
Collapse
|
52
|
Rahman S, Das AK. Integrated Multi-omics, Virtual Screening and Molecular Docking Analysis of Methicillin-Resistant Staphylococcus aureus USA300 for the Identification of Potential Therapeutic Targets: An In-Silico Approach. Int J Pept Res Ther 2021; 27:2735-2755. [PMID: 34548853 PMCID: PMC8446483 DOI: 10.1007/s10989-021-10287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is a leading cause of mortality and morbidity in community, hospital and live-stock sectors, especially with the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. To identify new drug molecules to treat MRSA patients, we have undertaken to search essential proteins that are indispensable for their survival but non-homologous to human host proteins. The current study utilizes a subtractive genome and proteome approach to screen the possible therapeutic targets against S. aureus USA300. Bacterial essential genes are obtained from the DEG database and are compared to avoid cross-reactivity with human host genes. In silico analysis shows 198 proteins that may be considered as therapeutic candidates. Depending on their sub-cellular localization, proteins are grouped as either vaccine or drug targets or both. Extracellular proteins such as cell division proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins (Q2FZ94, Q2FYI0) of the bacterial cell wall, phosphoglucomutase (Q2FE11) and lipoteichoic acid synthase (Q2FIS2) are considered as vaccine targets, and their epitopes have been mapped. Altogether, 53 drug targets are identified, which have shown similarity with the drug targets available in the DrugBank database. Predicted drug targets belong to the common metabolic pathways of MRSA, such as fatty acid biosynthesis, folate biosynthesis, peptidoglycan biosynthesis, ribosome, etc. Protein-protein interaction analysis emphasizing peptidoglycan biosynthesis reveals the connection between penicillin-binding proteins, mur-family proteins and FemXAB proteins. In this study, staphylococcal FemA protein (P0A0A5) is subjected to structure-based virtual screening for the drug repurposing approach. There are 20 residues missing in the crystal structure of FemA, and 12 of these residues are located at the catalytic site. The missing residues are modelled, and stereochemistry is checked. FDA approved drugs available in the DrugBank database have been used in virtual screening with FemA in search of potential repurposed molecules. This approach provides us with 10 drugs that may be used in the treatment of methicillin-resistant staphylococcal mediated diseases. AutoDock 4.2 is used for in silico screening and shows a comparable inhibition constant (Ki) for all 10 FDA-approved drugs towards FemA. Most of these drugs are used in the treatment of various cancers, migraines and leukaemia. Protein-drug interaction analysis shows that the drugs mostly interact with hydrophobic residues of FemA. Moreover, Tyr328 and Lys383 contribute largely to hydrogen bondings during interactions. All interacting amino acids that bind to the drugs are part of the active site cavity of FemA. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-021-10287-9.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
53
|
Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ, Bottazzi ME. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci Rep 2021; 11:17626. [PMID: 34475453 PMCID: PMC8413327 DOI: 10.1038/s41598-021-96863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | - Robin Sinha
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Bilal Ahmed Abbasi
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Amit Chaudhary
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - P Preeti
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Devansh Saraf
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shachee Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kartik Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Pranjay Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Astha Mishra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Srijanee Gupta
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Prashant Singh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Shriya Sood
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Subramani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aman Kumar Dubey
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
54
|
Chand Y, Singh S. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Microb Pathog 2021; 159:105150. [PMID: 34425197 DOI: 10.1016/j.micpath.2021.105150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi), a causative agent of typhoid fever, is a Gram-negative, human-restricted pathogen that causes significant morbidity and mortality, particularly in developing countries. The currently available typhoid vaccines are not recommended to children below six years of age and have poor long-term efficacy. Due to these limitations and the emerging threat of multidrug-resistance (MDR) strains, the development of a new vaccine is urgently needed. The present study aims to design a multiepitope-based subunit vaccine (MESV) against MDR S. Typhi str. CT18 using a computational-based approach comprising subtractive proteomics and immunoinformatics. Firstly, we investigated the proteome of S. Typhi str. CT18 using subtractive proteomics and identified twelve essential, virulent, host non-homologous, and antigenic outer membrane proteins (OMPs) as potential vaccine candidates with low transmembrane helices (≤1) and molecular weight (≤110 kDa). The OMPs were mapped for cytotoxic T lymphocyte(CTL) epitopes, helper T lymphocyte (HTL) epitopes, and linear B lymphocyte (LBL) epitopes using various immunoinformatics tools and servers. A total of 6, 12, and 11 CTL, HTL, and LBL epitopes were shortlisted, respectively, based on their immunogenicity, antigenicity, allergenicity, toxicity, and hydropathicity potential. Four MESV constructs (MESVCs), MESVC-1, MESVC-2, MESVC-3, and MESVC-4, were designed by linking the CTL, HTL, and LBL epitopes with immune-modulating adjuvants, linkers, and PADRE (Pan HLA DR-binding epitope) sequences. The MESVCs were evaluated for their physicochemical properties, allergenicity, antigenicity, toxicity, and solubility potential to ensure their safety and immunogenic behavior. Secondary and tertiary structures of shortlisted MESVCs (MESVC-1, MESVC-3, and MESVC-4) were predicted, modeled, refined, validated, and then docked with various MHC I, MHC II, and TLR4/MD2 complex. Molecular dynamics (MD) simulation of the final selected MESVC-4 with TLR4/MD2 complex confirms its binding affinity and stability. Codon optimization and in silico cloning verified the translation efficiency and successful expression of MESVC-4 in E. coli str. K12. Finally, the efficiency of MESVC-4 to trigger an effective immune response was assessed by an in silico immune simulation. In conclusion, our findings show that the designed MESVC-4 can elicit humoral and cellular immune responses, implying that it may be used for prophylactic or therapeutic purposes. Therefore, it should be subjected to further experimental validations.
Collapse
Affiliation(s)
- Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India; Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India.
| |
Collapse
|
55
|
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep 2021; 11:15431. [PMID: 34326355 PMCID: PMC8322212 DOI: 10.1038/s41598-021-92176-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Faculty of Medicine, WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh.
| |
Collapse
|
56
|
Sharma D, Sharma A, Singh B, Verma SK. Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathog 2021; 158:105103. [PMID: 34298125 DOI: 10.1016/j.micpath.2021.105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
With the occurrence and evolution of antibiotic and multidrug resistance in bacteria most of the existing remedies are becoming ineffective. The pan-proteome exploration of the bacterial pathogens helps to identify the wide spectrum therapeutic targets which will be effective against all strains in a species. The current study is focused on the pan-proteome profiling of zoonotic pathogen Orientia tsutsugamushi (Ott) for the identification of potential therapeutic targets. The pan-proteome of Ott is estimated to be extensive in nature that has 1429 protein clusters, out of which 694 were core, 391 were accessory, and 344 were unique. It was revealed that 622 proteins were essential, 222 proteins were virulent factors, and 42 proteins were involved in antibiotic resistance. The potential therapeutic targets were further classified into eleven broad classes among which gene expression and regulation, transport, and metabolism were dominant. The biological interactome analysis of therapeutic targets revealed that an ample amount of interactions were present among the proteins involved in DNA replication, ribosome assembly, cellwall metabolism, cell division, and antimicrobial resistance. The predicted therapeutic targets from the pan-proteome of Ott are involved in various biological processes, virulence, and antibiotic resistance; hence envisioned as potential candidates for drug discovery to combat scrub typhus.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, 176061, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
57
|
Cuspoca AF, Díaz LL, Acosta AF, Peñaloza MK, Méndez YR, Clavijo DC, Yosa Reyes J. An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed towards the World's Population. Vaccines (Basel) 2021; 9:vaccines9060581. [PMID: 34205992 PMCID: PMC8228945 DOI: 10.3390/vaccines9060581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic is a major public health crisis affecting global health systems with dire socioeconomic consequences, especially in vulnerable regions such as Latin America (LATAM). There is an urgent need for a vaccine to help control contagion, reduce mortality and alleviate social costs. In this study, we propose a rational multi-epitope candidate vaccine against SARS-CoV-2. Using bioinformatics, we constructed a library of potential vaccine peptides, based on the affinity of the most common major human histocompatibility complex (HLA) I and II molecules in the LATAM population to predict immunological complexes among antigenic, non-toxic and non-allergenic peptides extracted from the conserved regions of 92 proteomes. Although HLA-C, had the greatest antigenic peptide capacity from SARS-CoV-2, HLA-B and HLA-A, could be more relevant based on COVID-19 risk of infection in LATAM countries. We also used three-dimensional structures of SARS-CoV-2 proteins to identify potential regions for antibody production. The best HLA-I and II predictions (with increased coverage in common alleles and regions evoking B lymphocyte responses) were grouped into an optimized final multi-epitope construct containing the adjuvants Beta defensin-3, TpD, and PADRE, which are recognized for invoking a safe and specific immune response. Finally, we used Molecular Dynamics to identify the multi-epitope construct which may be a stable target for TLR-4/MD-2. This would prove to be safe and provide the physicochemical requirements for conducting experimental tests around the world.
Collapse
Affiliation(s)
- Andrés Felipe Cuspoca
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Laura Lorena Díaz
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Alvaro Fernando Acosta
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Marcela Katherine Peñaloza
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Yardany Rafael Méndez
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Diana Carolina Clavijo
- Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana Cali, Santiago de Cali 760031, Colombia;
| | - Juvenal Yosa Reyes
- Laboratorio de Simulación Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
58
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
59
|
Yaeger LN, Coles VE, Chan DCK, Burrows LL. How to kill Pseudomonas-emerging therapies for a challenging pathogen. Ann N Y Acad Sci 2021; 1496:59-81. [PMID: 33830543 DOI: 10.1111/nyas.14596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
As the number of effective antibiotics dwindled, antibiotic resistance (AR) became a pressing concern. Some Pseudomonas aeruginosa isolates are resistant to all available antibiotics. In this review, we identify the mechanisms that P. aeruginosa uses to evade antibiotics, including intrinsic, acquired, and adaptive resistance. Our review summarizes many different approaches to overcome resistance. Antimicrobial peptides have potential as therapeutics with low levels of resistance evolution. Rationally designed bacteriophage therapy can circumvent and direct evolution of AR and virulence. Vaccines and monoclonal antibodies are highlighted as immune-based treatments targeting specific P. aeruginosa antigens. This review also identifies promising drug combinations, antivirulence therapies, and considerations for new antipseudomonal discovery. Finally, we provide an update on the clinical pipeline for antipseudomonal therapies and recommend future avenues for research.
Collapse
Affiliation(s)
- Luke N Yaeger
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Victoria E Coles
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Derek C K Chan
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
60
|
Sanches RCO, Tiwari S, Ferreira LCG, Oliveira FM, Lopes MD, Passos MJF, Maia EHB, Taranto AG, Kato R, Azevedo VAC, Lopes DO. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against Schistosoma mansoni Using Transmembrane Proteins as a Target. Front Immunol 2021; 12:621706. [PMID: 33737928 PMCID: PMC7961083 DOI: 10.3389/fimmu.2021.621706] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis remains a serious health issue nowadays for an estimated one billion people in 79 countries around the world. Great efforts have been made to identify good vaccine candidates during the last decades, but only three molecules reached clinical trials so far. The reverse vaccinology approach has become an attractive option for vaccine design, especially regarding parasites like Schistosoma spp. that present limitations for culture maintenance. This strategy also has prompted the construction of multi-epitope based vaccines, with great immunological foreseen properties as well as being less prone to contamination, autoimmunity, and allergenic responses. Therefore, in this study we applied a robust immunoinformatics approach, targeting S. mansoni transmembrane proteins, in order to construct a chimeric antigen. Initially, the search for all hypothetical transmembrane proteins in GeneDB provided a total of 584 sequences. Using the PSORT II and CCTOP servers we reduced this to 37 plasma membrane proteins, from which extracellular domains were used for epitope prediction. Nineteen common MHC-I and MHC-II binding epitopes, from eight proteins, comprised the final multi-epitope construct, along with suitable adjuvants. The final chimeric multi-epitope vaccine was predicted as prone to induce B-cell and IFN-γ based immunity, as well as presented itself as stable and non-allergenic molecule. Finally, molecular docking and molecular dynamics foresee stable interactions between the putative antigen and the immune receptor TLR 4. Our results indicate that the multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against schistosomiasis.
Collapse
Affiliation(s)
- Rodrigo C. O. Sanches
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Sandeep Tiwari
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laís C. G. Ferreira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Maria J. F. Passos
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Eduardo H. B. Maia
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Divinópolis, Brazil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Rodrigo Kato
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco A. C. Azevedo
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Debora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| |
Collapse
|
61
|
Saha R, Ghosh P, Burra VLSP. Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech 2021; 11:47. [PMID: 33457172 PMCID: PMC7799423 DOI: 10.1007/s13205-020-02574-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 was declared a global pandemic by WHO (World Health Organization) in March, 2020. Within 6 months, nearly 750,000 deaths are claimed by COVID-19 across the globe. This called for immediate social, scientific, technological, public and community interventions. Considering the severity of infection and the associated mortalities, global efforts are underway to develop preventive measures against SARS-CoV-2. Among the SARS-CoV-2 target proteins, Spike (S) glycoprotein (a.k.a S Protein) is the most studied target known to trigger strong host immune response. A detailed analysis of S protein-based epitopes enabled us to design a novel B-cell-derived T-cell Multi-epitope-based peptide (MEBP) vaccine candidate. This involved a systematic and comprehensive computational protocol consisting of prediction of dual-purpose epitopes and designing an MEBP vaccine construct. This was followed by 3D structure validation, MEBP complex interaction studies, in silico cloning and vaccine dose-based immune response simulation to evaluate the immunogenic potency of the vaccine construct. The dual-purpose epitope prediction protocol was designed such that the same epitope elicits both humoral and cellular immune response unlike the earlier designs. Further, the epitopes predicted were screened against stringent criteria to ensure selection of a potent candidate with maximum antigen coverage and best immune response. The vaccine dose-based immune response simulation studies revealed a rapid antigen clearance through antibody generation and elevated levels of cell-mediated immunity during repeated exposure of the vaccine. The favourable results of the analysis strongly indicate that the vaccine construct is indeed a potent vaccine candidate and ready to proceed to the next steps of experimental validation and efficacy studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02574-x.
Collapse
Affiliation(s)
- Ratnadeep Saha
- Department of Fisheries, Government of Tripura, Agartala, Tripura 799 006 India
| | - Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721 102 India
| | - V. L. S. Prasad Burra
- Department of Biotechnology, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh 522 502 India
| |
Collapse
|
62
|
Designing a conserved peptide-based subunit vaccine against SARS-CoV-2 using immunoinformatics approach. In Silico Pharmacol 2021; 9:8. [PMID: 33425647 PMCID: PMC7785481 DOI: 10.1007/s40203-020-00062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
The widespread of coronavirus (COVID-19) is a new global health crisis that poses a threat to the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in bats and was discovered first in Wuhan, Hubei province, China in December 2019. Immunoinformatics and bioinformatics tools were employed for the construction of a multi-epitope subunit vaccine to prevent the diseases. The antigenicity, toxicity and allergenicity of all epitopes used in the construction of the vaccine were predicted and then conjugated with adjuvants and linkers. Vaccine Toll-Like Receptors (2, 3, 4, 8 and 9) complex was also evaluated. The vaccine construct was antigenic, non-toxic and non-allergic, which indicates the vaccines ability to induce antibodies in the host, making it an effective vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-020-00062-x.
Collapse
|
63
|
Kaur H, Kalia M, Singh V, Modgil V, Mohan B, Taneja N. In silico identification and characterization of promising drug targets in highly virulent uropathogenic Escherichia coli strain CFT073 by protein-protein interaction network analysis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
64
|
Sharma S, Tiwari M, Tiwari V. Therapeutic strategies against autophagic escape by pathogenic bacteria. Drug Discov Today 2020; 26:704-712. [PMID: 33301978 DOI: 10.1016/j.drudis.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
Growing multidrug-resistant (MDR) strains of various infectious bacterial species are hindering research aiming to eliminate such infections. During a bacterial infection, the host response eliminates the pathogen via fusion of the endocytic vesicles with lysosomes, called xenophagy. However, MDR bacteria have evolved strategies to escape xenophagy. In this review, we propose novel therapeutics for overcoming such escape, including chimeric antibiotics, nanoformulations for the induction of autophagy in infected cells, and small interfering (si)RNA-mediated silencing of genes to inhibit the host-pathogen interaction. We also discuss the role of combinations of antibiotics showing synergy, the administrative routes of differentially capped nanoparticles (NPs), and the use of different types of nanoformulations for eliminating pathogenic bacteria from the host.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
65
|
Jyotisha, Singh S, Qureshi IA. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 2020; 40:2917-2933. [PMID: 33164664 PMCID: PMC7682209 DOI: 10.1080/07391102.2020.1844060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
COVID-19, caused by SARS-CoV-2, is severe respiratory illnesses leading to millions of deaths worldwide in very short span. The high case fatality rate and the lack of medical counter measures emphasize for an urgent quest to develop safe and effective vaccine. Receptor-binding domain (RBD) of spike protein of SARS-CoV-2 binds to the ACE2 receptor on human host cell for the viral attachment and entry, hence considered as a key target to develop vaccines, antibodies and therapeutics. In this study, immunoinformatics approach was employed to design a novel multi-epitope vaccine using RBD of SARS-CoV-2 spike protein. The potential B- and T-cell epitopes were selected from RBD sequence using various bioinformatics tools to design the vaccine construct. The in silico designed multi-epitope vaccine encompasses 146 amino acids with an adjuvant (human beta-defensin-2), which was further computationally evaluated for several parameters including antigenicity, allergenicity and stability. Subsequently, three-dimensional structure of vaccine construct was modelled and then docked with various toll-like receptors. Molecular dynamics (MD) study of docked TLR3-vaccine complex delineated it to be highly stable during simulation time and the stabilization of interaction was majorly contributed by electrostatic energy. The docked complex also showed low deformation and increased rigidity in motion of residues during dynamics. Furthermore, in silico cloning of the multi-epitope vaccine was carried out to generate the plasmid construct for expression in a bacterial system. Altogether, our study suggests that the designed vaccine candidate containing RBD region could provide the specific humoral and cell-mediated immune responses against SARS-CoV-2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Samayaditya Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
66
|
The Landscape of Pseudomonas aeruginosa Membrane-Associated Proteins. Cells 2020; 9:cells9112421. [PMID: 33167383 PMCID: PMC7694347 DOI: 10.3390/cells9112421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and be involved in the interaction with host cells. Thus, studies contributing to elucidating these key molecular elements are of great importance to find alternative therapeutics. Methods: Proteins and peptides were extracted by different methods and analyzed by Multidimensional Protein Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1 software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of experimental identified peptides and proteins. Results: The combination of 29 MudPIT runs allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application of extraction methods enriching specific protein domains, about 15% of total identified peptides were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus, they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells were predicted. Conclusion: The present study represents one of the widest characterizations of the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates the investigation of other bacterial species whose envelope exposed protein domains are still unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in vaccine development.
Collapse
|
67
|
Ismail S, Ahmad S, Azam SS. Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. J Mol Liq 2020; 314:113612. [PMID: 32834259 PMCID: PMC7297697 DOI: 10.1016/j.molliq.2020.113612] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/14/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a public health emergency of international concern and thus calling for the development of effective and safe therapeutics and prophylactics particularly a vaccine to protect against the infection. SARS-CoV-2 spike glycoprotein is an attractive candidate for a vaccine, antibodies, and inhibitors development because of the many roles it plays in attachment, fusion and entry into the host cell. In the present investigation, we characterized the SARS-CoV-2 spike glycoprotein by immunoinformatics techniques to put forward potential B and T cell epitopes, followed by the use of epitopes in construction of a multi-epitope peptide vaccine construct (MEPVC). The MEPVC revealed robust host immune system simulation with high production of immunoglobulins, cytokines and interleukins. Stable conformation of the MEPVC with a representative innate immune TLR3 receptor was observed involving strong hydrophobic and hydrophilic chemical interactions, along with enhanced contribution from salt-bridges towards inter-molecular stability. Molecular dynamics simulation in aqueous milieu aided further in interpreting strong affinity of the MEPVC for TLR3. This stability is the attribute of several vital residues from both TLR3 and MEPVC as shown by radial distribution function (RDF) and a novel axial frequency distribution (AFD) analytical tool. Comprehensive binding free energies estimation was provided at the end that concluded major domination by electrostatic and minor from van der Waals. Summing all, the designed MEPVC has tremendous potential of providing protective immunity against COVID-19 and thus could be considered in experimental studies.
Collapse
Affiliation(s)
- Saba Ismail
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
68
|
Khoobbakht D, Zare Karizi S, Motamedi MJ, Kazemi R, Roghanian P, Amani J. Immunogenicity Evaluation of Chimeric Subunit Vaccine Comprising Adhesion Coli Surface Antigens from Enterotoxigenic Escherichia coli. J Mol Microbiol Biotechnol 2020; 29:91-100. [PMID: 32645695 DOI: 10.1159/000509708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing cooD and cotD genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of E. coli in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in E. coliBL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.
Collapse
Affiliation(s)
- Dorna Khoobbakht
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva, Branch of Islamic Azad University, Varamin, Iran
| | | | | | - Pooneh Roghanian
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
69
|
In silico designing of peptide based vaccine for Hepatitis viruses using reverse vaccinology approach. INFECTION GENETICS AND EVOLUTION 2020; 84:104388. [PMID: 32485330 DOI: 10.1016/j.meegid.2020.104388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
Five different Hepatitis virus from different viral species cause viral-hepatitis, which is a life threatening disease leading to a high number of loss of lives every year. The mode of infection and transmission is different for each species and mostly spreads by direct contact and body fluids (for HBV and HCV). No such vaccine is available that can cure all types of Hepatitis with cross-protection. Thus our study involves a peptide based vaccine design with the help of Immunoinformatics approach. We focused only on the secretory and extracellular proteins of each types and identified their epitopes. Epitopes were examined for antigenicity, allergenicity, toxicity, anti-inflammatory property and IFN-γ induction. The short-listed peptides were stitched using linkers and TLR4 adjuvant. This final vaccine was proven to have good physico-chemical and structural properties. Simulation study to determine structural stability of the vaccine showed good result. Docking structure of vaccine with TLR4 has high affinity binding. Immune-simulation reveals favourable induction of immune response with high level of interleukins production important for immunity. Periplasmic expression in E.coli K12 strain was quite satisfactory. This study of designing recombinant chimeric vaccine using reverse vaccinology method provides some idea about the vaccine production against Hepatitis virus.
Collapse
|
70
|
Jakhar R, Kaushik S, Gakhar SK. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics. J Med Virol 2020; 92:2114-2123. [PMID: 32379348 DOI: 10.1002/jmv.25993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
The present study provides the first multiepitope vaccine construct using the 3CL hydrolase protein of SARS-CoV-2. The coronavirus 3CL hydrolase (Mpro) enzyme is essential for proteolytic maturation of the virus. This study was based on immunoinformatics and structural vaccinology strategies. The design of the multiepitope vaccine was built using helper T-cell and cytotoxic T-cell epitopes from the 3CL hydrolase protein along with an adjuvant to enhance immune response; these are joined to each other by short peptide linkers. The vaccine also carries potential B-cell linear epitope regions, B-cell discontinuous epitopes, and interferon-γ-inducing epitopes. Epitopes of the constructed multiepitope vaccine were found to be antigenic, nonallergic, nontoxic, and covering large human populations worldwide. The vaccine construct was modeled, validated, and refined by different programs to achieve a high-quality three-dimensional structure. The resulting high-quality model was applied for conformational B-cell epitope selection and docking analyses with toll-like receptor-3 for understanding the capability of the vaccine to elicit an immune response. In silico cloning and codon adaptation were also performed with the pET-19b plasmid vector. The designed multiepitope peptide vaccine may prompt the development of a vaccine to control SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Renu Jakhar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Surendra K Gakhar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
71
|
Pritam M, Singh G, Swaroop S, Singh AK, Pandey B, Singh SP. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. Int J Biol Macromol 2020; 158:159-179. [PMID: 32360460 PMCID: PMC7189201 DOI: 10.1016/j.ijbiomac.2020.04.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, India
| | - Suchit Swaroop
- Experimental & Public Health Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Bihar 845401, India
| | | |
Collapse
|
72
|
Sah PP, Bhattacharya S, Banerjee A, Ray S. Identification of novel therapeutic target and epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: An In silico approach towards antivirulence therapy and vaccine development. INFECTION GENETICS AND EVOLUTION 2020; 83:104315. [PMID: 32276082 DOI: 10.1016/j.meegid.2020.104315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Salmonella strains are responsible for a huge mortality rate through foodborne ailment in the world that necessitated the discovery of novel drugs and vaccines. Essential hypothetical proteins (EHPs), whose structures and functions were previously unknown, could serve as potential therapeutic and vaccine targets. Antivirulence therapy shall emerge as a superior therapeutic approach that uses virulence factors as drug targets. This study annotated the biological functions of 96 out of total 106 essential hypothetical proteins in five strains of Salmonella and classified into nine important protein categories. 34 virulence factors were predicted among the EHPs, out of which, 11 were identified to be pathogen specific potential drug targets for antivirulence therapy. These targets were non-homologous to both human and gut microbiota proteome to avoid cross-reactivity with them. Seven identified targets had druggable property, while the rest four targets were novel targets. Four identified targets (DEG10320148, DEG10110027, DEG10110040 and DEG10110142) had antigenic properties and were further classified as: two membrane-bound Lipid-binding transmembrane proteins, a Zinc-binding membrane protein and an extracellular glycosylase. These targets could be potentially used for the development of subunit vaccines. The study further identified 11 highly conserved and exposed epitope sequences from these 4 vaccine targets. The three-dimensional structures of the vaccine targets were also elucidated along with highlighting the conformation of the epitopes. This study identified potential therapeutic targets for antivirulence therapy against Salmonella. It would therefore instigate in novel drug designing as well as provide important leads to new Salmonella vaccine development.
Collapse
Affiliation(s)
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
73
|
Nwadiugwu MC. Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH. Bioinform Biol Insights 2020; 14:1177932220909851. [PMID: 32284672 PMCID: PMC7133071 DOI: 10.1177/1177932220909851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 11/17/2022] Open
Abstract
The current study seeks to compare 3 clustering algorithms that can be used in gene-based bioinformatics research to understand disease networks, protein-protein interaction networks, and gene expression data. Denclue, Fuzzy-C, and Balanced Iterative and Clustering using Hierarchies (BIRCH) were the 3 gene-based clustering algorithms selected. These algorithms were explored in relation to the subfield of bioinformatics that analyzes omics data, which include but are not limited to genomics, proteomics, metagenomics, transcriptomics, and metabolomics data. The objective was to compare the efficacy of the 3 algorithms and determine their strength and drawbacks. Result of the review showed that unlike Denclue and Fuzzy-C which are more efficient in handling noisy data, BIRCH can handle data set with outliers and have a better time complexity.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Department of Biomedical Informatics, University of Nebraska Omaha, Omaha, NE, USA
| |
Collapse
|
74
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|