51
|
Sun Y, Shi J, Wang Z, Wang H, Zhang S, Wu Y, Wang H, Li S, Jiang Z. Thylakoid Membrane-Inspired Capsules with Fortified Cofactor Shuttling for Enzyme-Photocoupled Catalysis. J Am Chem Soc 2022; 144:4168-4177. [PMID: 35107007 DOI: 10.1021/jacs.1c12790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzyme-photocoupled catalytic systems (EPCSs), combining the natural enzyme with a library of semiconductor photocatalysts, may break the constraint of natural evolution, realizing sustainable solar-to-chemical conversion and non-natural reactivity of the enzyme. The overall efficiency of EPCSs strongly relies on the shuttling of energy-carrying molecules, e.g., NAD+/NADH cofactor, between active centers of enzyme and photocatalyst. However, few efforts have been devoted to NAD+/NADH shuttling. Herein, we propose a strategy of constructing a thylakoid membrane-inspired capsule (TMC) with fortified and tunable NAD+/NADH shuttling to boost the enzyme-photocoupled catalytic process. The apparent shuttling number (ASN) of NAD+/NADH for TMC could reach 17.1, ∼8 times as high as that of non-integrated EPCS. Accordingly, our TMC exhibits a turnover frequency (TOF) of 38 000 ± 365 h-1 with a solar-to-chemical efficiency (STC) of 0.69 ± 0.12%, ∼6 times higher than that of non-integrated EPCS.
Collapse
Affiliation(s)
- Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Yizhou Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shihao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
52
|
Nandal N, Prajapati PK, Abraham BM, Jain SL. CO2 to ethanol: A selective photoelectrochemical conversion using a ternary composite consisting of graphene oxide/copper oxide and a copper-based metal-organic framework. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Nandal N, Jain SL. A review on progress and perspective of molecular catalysis in photoelectrochemical reduction of CO2. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214271] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci Bull (Beijing) 2022; 67:1137-1144. [DOI: 10.1016/j.scib.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
|
55
|
Verma P, Singh A, Rahimi FA, Sarkar P, Nath S, Pati SK, Maji TK. Charge-transfer regulated visible light driven photocatalytic H 2 production and CO 2 reduction in tetrathiafulvalene based coordination polymer gel. Nat Commun 2021; 12:7313. [PMID: 34916503 PMCID: PMC8677803 DOI: 10.1038/s41467-021-27457-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
The much-needed renewable alternatives to fossil fuel can be achieved efficiently and sustainably by converting solar energy to fuels via hydrogen generation from water or CO2 reduction. Herein, a soft processable metal-organic hybrid material is developed and studied for photocatalytic activity towards H2 production and CO2 reduction to CO and CH4 under visible light as well as direct sunlight irradiation. A tetrapodal low molecular weight gelator (LMWG) is synthesized by integrating tetrathiafulvalene (TTF) and terpyridine (TPY) derivatives through amide linkages and results in TPY-TTF LMWG. The TPY-TTF LMWG acts as a linker, and self-assembly of this gelator molecules with ZnII ions results in a coordination polymer gel (CPG); Zn-TPY-TTF. The Zn-TPY-TTF CPG shows high photocatalytic activity towards H2 production (530 μmol g-1h-1) and CO2 reduction to CO (438 μmol g-1h-1, selectivity > 99%) regulated by charge-transfer interactions. Furthermore, in situ stabilization of Pt nanoparticles on CPG (Pt@Zn-TPY-TTF) enhances H2 evolution (14727 μmol g-1h-1). Importantly, Pt@Zn-TPY-TTF CPG produces CH4 (292 μmol g-1h-1, selectivity > 97%) as CO2 reduction product instead of CO. The real-time CO2 reduction reaction is monitored by in situ DRIFT study, and the plausible mechanism is derived computationally.
Collapse
Affiliation(s)
- Parul Verma
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Ashish Singh
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Faruk Ahamed Rahimi
- grid.419636.f0000 0004 0501 0005Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Pallavi Sarkar
- grid.419636.f0000 0004 0501 0005Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Sukhendu Nath
- grid.418304.a0000 0001 0674 4228Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Swapan Kumar Pati
- grid.419636.f0000 0004 0501 0005Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560 064, India.
| |
Collapse
|
56
|
Wang XZ, Meng SL, Chen JY, Wang HX, Wang Y, Zhou S, Li XB, Liao RZ, Tung CH, Wu LZ. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine-Bipyridine Skeleton for Selective CO 2 Photoreduction. Angew Chem Int Ed Engl 2021; 60:26072-26079. [PMID: 34545677 DOI: 10.1002/anie.202107386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Indexed: 12/29/2022]
Abstract
A bis(pyridyl)amine-bipyridine-iron(II) framework (Fe(BPAbipy)) of complexes 1-3 is reported to shed light on the multistep nature of CO2 reduction. Herein, photocatalytic conversion of CO2 to CO even at low CO2 concentration (1 %), together with detailed mechanistic study and DFT calculations, reveal that 1 first undergoes two sequential one-electron transfer affording an intermediate with electron density on both Fe and ligand for CO2 binding over proton. The following 2 H+ -assisted Fe-CO formation is rate-determining for selective CO2 -to-CO reduction. A pendant, proton-shuttling α-OH group (2) initiates PCET for predominant H2 evolution, while an α-OMe group (3) cancels the selectivity control for either CO or H2 . The near-unity selectivity of 1 and 2 enables self-sorting syngas production at flexible CO/H2 ratios. The unprecedented results from one kind of molecular catalyst skeleton encourage insight into the beauty of advanced multi-electron and multi-proton transfer processes for robust CO2 RR by photocatalysis.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong, University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hai-Xu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong, University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
57
|
Wang X, Meng S, Chen J, Wang H, Wang Y, Zhou S, Li X, Liao R, Tung C, Wu L. Mechanistic Insights Into Iron(II) Bis(pyridyl)amine‐Bipyridine Skeleton for Selective CO
2
Photoreduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Yi Chen
- School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology Wuhan 430074 P. R. China
| | - Hai‐Xu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuai Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong‐Zhen Liao
- School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology Wuhan 430074 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
58
|
Lam E, Reisner E. A TiO 2 -Co(terpyridine) 2 Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO 2 to Syngas. Angew Chem Int Ed Engl 2021; 60:23306-23312. [PMID: 34464003 DOI: 10.1002/anie.202108492] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/12/2022]
Abstract
Immobilization of a phosphonated cobalt bis(terpyridine) catalyst on TiO2 nanoparticles generates a photocatalyst that allows coupling aqueous CO2 -to-syngas (CO and H2 ) reduction to selective oxidation of biomass-derived oxygenates or cellulose to formate. An enzymatic saccharification pre-treatment process is employed that enables the use of insoluble cellulose as an electron-donating substrate under benign aqueous conditions suitable for photocatalytic CO2 conversion. The hybrid photocatalyst consists of solely earth-abundant components, and its heterogeneous nature allows for reuse and operation in aqueous solution for several days at 25 °C, reaching a cellulose-to-formate conversion yield of 17 %. Thus, the proof-of-concept for valorizing two waste streams (CO2 and biomass) simultaneously into value-added chemicals through solar-driven catalysis is demonstrated.
Collapse
Affiliation(s)
- Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
59
|
A TiO
2
‐Co(terpyridine)
2
Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO
2
to Syngas. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
60
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
61
|
Perazio A, Lowe G, Gobetto R, Bonin J, Robert M. Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
62
|
Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat Catal 2021. [DOI: 10.1038/s41929-021-00665-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
63
|
Laurans M, Wells JAL, Ott S. Immobilising molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO 2 reduction. Dalton Trans 2021; 50:10482-10492. [PMID: 34259300 DOI: 10.1039/d1dt01331a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoelectrochemical CO2 reduction is a promising approach for renewable fuel generation and to reduce greenhouse gas emissions. Owing to their synthetic tunability, molecular catalysts for the CO2 reduction reaction can give rise to high product selectivity. In this context, a RuII complex [Ru(HO-tpy)(6-mbpy)(NCCH3)]2+ (HO-tpy = 4'-hydroxy-2,2':6',2''-terpyridine; 6-mbpy = 6-methyl-2,2'-bipyridine) was immobilised on a thin SiOx layer of a p-Si electrode that was decorated with a bromide-terminated molecular layer. Following the characterisation of the assembled photocathodes by X-ray photoelectron spectroscopy and ellipsometry, PEC experiments demonstrate electron transfer from the p-Si to the Ru complex through the native oxide layer under illumination and a cathodic bias. A state-of-the-art photovoltage of 570 mV was determined by comparison with an analogous n-type Si assembly. While the photovoltage of the modified photocathode is promising for future photoelectrochemical CO2 reduction and the p-Si/SiOx junction seems to be unchanged during the PEC experiments, a fast desorption of the molecular Ru complex was observed. An in-depth investigation of the cathode degradation by comparison with reference materials highlights the role of the hydroxyl functionality of the Ru complex to ensure its grafting on the substrate. In contrast, no essential role for the bromide function on the Si substrate designed to engage with the hydroxyl group of the Ru complex in an SN2-type reaction could be established.
Collapse
Affiliation(s)
- Maxime Laurans
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Jordann A L Wells
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
64
|
Dong WJ, Navid IA, Xiao Y, Lim JW, Lee JL, Mi Z. CuS-Decorated GaN Nanowires on Silicon Photocathodes for Converting CO 2 Mixture Gas to HCOOH. J Am Chem Soc 2021; 143:10099-10107. [PMID: 34210119 DOI: 10.1021/jacs.1c02139] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hybrid materials consisting of semiconductors and cocatalysts have been widely used for photoelectrochemical (PEC) conversion of CO2 gas to value-added chemicals such as formic acid (HCOOH). To date, however, the rational design of catalytic architecture enabling the reduction of real CO2 gas to chemical has remained a grand challenge. Here, we report a unique photocathode consisting of CuS-decorated GaN nanowires (NWs) integrated on planar silicon (Si) for the conversion of H2S-containing CO2 mixture gas to HCOOH. It was discovered that H2S impurity in the modeled industrial CO2 gas could lead to the spontaneous transformation of Cu to CuS NPs, which resulted in significantly increased faradaic efficiency of HCOOH generation. The CuS/GaN/Si photocathode exhibited superior faradaic efficiency of HCOOH = 70.2% and partial current density = 7.07 mA/cm2 at -1.0 VRHE under AM1.5G 1 sun illumination. To our knowledge, this is the first demonstration that impurity mixed in the CO2 gas can enhance, rather than degrade, the performance of the PEC CO2 reduction reaction.
Collapse
Affiliation(s)
- Wan Jae Dong
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Jin Wook Lim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | - Jong-Lam Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
65
|
Garcia Osorio DA, Neri G, Cowan AJ. Hybrid Photocathodes for Carbon Dioxide Reduction: Interfaces for Charge Separation and Selective Catalysis. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dora Alicia Garcia Osorio
- Department of Chemistry and Stephenson Institute for Renewable Energy University of Liverpool Liverpool L69 7ZF UK
| | - Gaia Neri
- Department of Chemistry and Stephenson Institute for Renewable Energy University of Liverpool Liverpool L69 7ZF UK
| | - Alexander J. Cowan
- Department of Chemistry and Stephenson Institute for Renewable Energy University of Liverpool Liverpool L69 7ZF UK
| |
Collapse
|
66
|
Wang Y, Chen L, Liu T, Chao D. Coordination-driven discrete metallo-supramolecular assembly for rapid and selective photochemical CO 2 reduction in aqueous solution. Dalton Trans 2021; 50:6273-6280. [PMID: 33876807 DOI: 10.1039/d1dt00692d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A discrete metallo-supramolecular assembly composed of six iron(ii) cations and twelve redox-active terpyridine fragments has been developed for the highly efficient visible-light-driven reduction of CO2 to CO with a TON of 14 956 and 99.6% selectivity in the presence of an organic thermally activated delayed fluorescence (TADF) photosensitizer 4CzIPN in aqueous solution. The photochemical system proceeds rapidly with a turnover frequency (TOF) of 276 min-1. It is demonstrated that the redox-active terpyridine fragments in the assembly are reduced by the photosensitizer which could further act as an electron reservoir for CO2 reduction, resulting in the highly efficient reduction of CO2. This work shows that discrete metallo-supramolecular assemblies could be used for robust photochemical CO2 reduction.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
67
|
Wang Y, Liu T, Chen L, Chao D. Water-Assisted Highly Efficient Photocatalytic Reduction of CO 2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer. Inorg Chem 2021; 60:5590-5597. [PMID: 33615787 DOI: 10.1021/acs.inorgchem.0c03503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photocatalytic CO2 reduction reaction is believed to be a promising approach for CO2 utilization. In this work, a noble metal-free photocatalytic system, composed of bis(terpyridine)iron(II) complexes and an organic thermally activated delayed fluorescence compound, has been developed for selective reduction of CO2 to CO with a maximum turnover number up to 6320, 99.4% selectivity, and turnover frequency of 127 min-1 under visible-light irradiation in dimethylformamide/H2O solution. More than 0.3 mmol CO was generated using 0.05 μmol catalyst after 2 h of light irradiation. The apparent quantum yield was found to be 9.5% at 440 nm (180 mW cm-2). Control experiments and UV-vis-NIR spectroscopy studies further demonstrated that water strongly promoted the photocatalytic cycle and terpyridine ligands rather than Fe(II) were initially reduced during the photocatalytic process.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
68
|
Wright D, Lin Q, Berta D, Földes T, Wagner A, Griffiths J, Readman C, Rosta E, Reisner E, Baumberg JJ. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat Catal 2021. [DOI: 10.1038/s41929-020-00566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
69
|
Selective photocatalytic reduction of CO2 to CO mediated by a [FeFe]-hydrogenase model with a 1,2-phenylene S-to-S bridge. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63644-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
70
|
Roy S, Miller M, Warnan J, Leung JJ, Sahm CD, Reisner E. Electrocatalytic and Solar-Driven Reduction of Aqueous CO2 with Molecular Cobalt Phthalocyanine–Metal Oxide Hybrid Materials. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Souvik Roy
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, U.K
| | - Melanie Miller
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Julien Warnan
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jane J. Leung
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Constantin D. Sahm
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
71
|
Ruan G, Engelberg L, Ghosh P, Maayan G. A unique Co(iii)-peptoid as a fast electrocatalyst for homogeneous water oxidation with low overpotential. Chem Commun (Camb) 2021; 57:939-942. [DOI: 10.1039/d0cc06912d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptoid trimer incorporating terpyridine and ethanol forms an intermolecular cobalt(iii) complex, which performs as a soluble electrocatalyst for water oxidation with a minimal overpotential of 350 mV and a high turnover frequency of 108 s−1.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Lee Engelberg
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Pritam Ghosh
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
72
|
Ly KH, Weidinger IM. Understanding active sites in molecular (photo)electrocatalysis through complementary vibrational spectroelectrochemistry. Chem Commun (Camb) 2021; 57:2328-2342. [DOI: 10.1039/d0cc07376h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highlighting vibrational spectroelectrochemistry for the investigation of synthetic molecular (photo) electrocatalysts for key energy conversion reactions.
Collapse
Affiliation(s)
- Khoa H. Ly
- Lehrstuhl für Elektrochemie
- Fakultät für Chemie und Lebensmittelchemie
- Technische Universität Dresden
- Andreas-Schubert-Bau
- Zellescher Weg 19
| | - Inez M. Weidinger
- Lehrstuhl für Elektrochemie
- Fakultät für Chemie und Lebensmittelchemie
- Technische Universität Dresden
- Andreas-Schubert-Bau
- Zellescher Weg 19
| |
Collapse
|
73
|
Wang D, Huang Q, Shi W, You W, Meyer TJ. Application of Atomic Layer Deposition in Dye-Sensitized Photoelectrosynthesis Cells. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
74
|
Batrice RJ, Gordon JC. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO 2 reduction. RSC Adv 2020; 11:87-113. [PMID: 35423038 PMCID: PMC8691073 DOI: 10.1039/d0ra07790a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Solar energy has been used for decades for the direct production of electricity in various industries and devices; however, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuel combustion. The common feedstocks for producing such solar fuels are carbon dioxide and water, yet only the photoconversion of carbon dioxide presents the opportunity to generate liquid fuels capable of integrating into our existing infrastructure, while simultaneously removing atmospheric greenhouse gas pollution. This review presents recent advances in photochemical solar fuel production technology. Although efforts in this field have created an incredible number of methods to convert carbon dioxide into gaseous and liquid fuels, these can generally be classified under one of four categories based on how incident sunlight is utilised: solar concentration for thermoconversion (Category 1), transformation toward electroconversion (Category 2), natural photosynthesis for bioconversion (Category 3), and artificial photosynthesis for direct photoconversion (Category 4). Select examples of developments within each of these categories is presented, showing the state-of-the-art in the use of carbon dioxide as a suitable feedstock for solar fuel production. Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.![]()
Collapse
Affiliation(s)
- Rami J Batrice
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - John C Gordon
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
75
|
Bozal-Ginesta C, Mesa CA, Eisenschmidt A, Francàs L, Shankar RB, Antón-García D, Warnan J, Willkomm J, Reynal A, Reisner E, Durrant JR. Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO 2. Chem Sci 2020; 12:946-959. [PMID: 34163861 PMCID: PMC8178996 DOI: 10.1039/d0sc04344c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/07/2020] [Indexed: 11/29/2022] Open
Abstract
Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO2 reduction attached onto mesoporous TiO2 electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO2 to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO2 to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO2 is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity.
Collapse
Affiliation(s)
- Carlota Bozal-Ginesta
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Camilo A Mesa
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Annika Eisenschmidt
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Laia Francàs
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Ravi B Shankar
- Department of Chemical Engineering, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Daniel Antón-García
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Julien Warnan
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Janina Willkomm
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Anna Reynal
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - James R Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
76
|
Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal 2020. [DOI: 10.1038/s41929-020-00512-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
77
|
Antón-García D, Warnan J, Reisner E. A diketopyrrolopyrrole dye-based dyad on a porous TiO 2 photoanode for solar-driven water oxidation. Chem Sci 2020; 11:12769-12776. [PMID: 34094472 PMCID: PMC8163027 DOI: 10.1039/d0sc04509h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022] Open
Abstract
Dye-sensitised photoanodes modified with a water oxidation catalyst allow for solar-driven O2 evolution in photoelectrochemical cells. However, organic chromophores are generally considered unsuitable to drive the thermodynamically demanding water oxidation reaction, mainly due to their lack of stability upon photoexcitation. Here, the synthesis of a dyad photocatalyst (DPP-Ru) consisting of a diketopyrrolopyrrole chromophore (DPPdye) and ruthenium-based water oxidation catalyst (RuWOC) is described. The DPP-Ru dyad features a cyanoacrylic acid anchoring group for immobilisation on metal oxides, strong absorption in the visible region of the electromagnetic spectrum, and photoinduced hole transfer from the dye to the catalyst unit. Immobilisation of the dyad on a mesoporous TiO2 scaffold was optimised, including the use of a TiCl4 pretreatment method as well as employing chenodeoxycholic acid as a co-adsorbent, and the assembled dyad-sensitised photoanode achieved O2 evolution using visible light (100 mW cm-2, AM 1.5G, λ > 420 nm). An initial photocurrent of 140 μA cm-2 was generated in aqueous electrolyte solution (pH 5.6) under an applied potential of +0.2 V vs. NHE. The production of O2 has been confirmed by controlled potential electrolysis with a faradaic efficiency of 44%. This study demonstrates that metal-free dyes are suitable light absorbers in dyadic systems for the assembly of water oxidising photoanodes.
Collapse
Affiliation(s)
- Daniel Antón-García
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Julien Warnan
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
78
|
Research Progress in Conversion of CO 2 to Valuable Fuels. Molecules 2020; 25:molecules25163653. [PMID: 32796612 PMCID: PMC7465062 DOI: 10.3390/molecules25163653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Rapid growth in the world's economy depends on a significant increase in energy consumption. As is known, most of the present energy supply comes from coal, oil, and natural gas. The overreliance on fossil energy brings serious environmental problems in addition to the scarcity of energy. One of the most concerning environmental problems is the large contribution to global warming because of the massive discharge of CO2 in the burning of fossil fuels. Therefore, many efforts have been made to resolve such issues. Among them, the preparation of valuable fuels or chemicals from greenhouse gas (CO2) has attracted great attention because it has made a promising step toward simultaneously resolving the environment and energy problems. This article reviews the current progress in CO2 conversion via different strategies, including thermal catalysis, electrocatalysis, photocatalysis, and photoelectrocatalysis. Inspired by natural photosynthesis, light-capturing agents including macrocycles with conjugated structures similar to chlorophyll have attracted increasing attention. Using such macrocycles as photosensitizers, photocatalysis, photoelectrocatalysis, or coupling with enzymatic reactions were conducted to fulfill the conversion of CO2 with high efficiency and specificity. Recent progress in enzyme coupled to photocatalysis and enzyme coupled to photoelectrocatalysis were specially reviewed in this review. Additionally, the characteristics, advantages, and disadvantages of different conversion methods were also presented. We wish to provide certain constructive ideas for new investigators and deep insights into the research of CO2 conversion.
Collapse
|
79
|
Boutin E, Merakeb L, Ma B, Boudy B, Wang M, Bonin J, Anxolabéhère-Mallart E, Robert M. Molecular catalysis of CO 2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem Soc Rev 2020; 49:5772-5809. [PMID: 32697210 DOI: 10.1039/d0cs00218f] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Earth-abundant Fe, Ni, and Co aza macrocyclic and polypyridine complexes have been thoroughly investigated for CO2 electrochemical and visible-light-driven reduction. Since the first reports in the 1970s, an enormous body of work has been accumulated regarding the two-electron two-proton reduction of the gas, along with mechanistic and spectroscopic efforts to rationalize the reactivity and establish guidelines for structure-reactivity relationships. The ability to fine tune the ligand structure and the almost unlimited possibilities of designing new complexes have led to highly selective and efficient catalysts. Recent efforts toward developing hybrid systems upon combining molecular catalysts with conductive or semi-conductive materials have converged to high catalytic performances in water solutions, to the inclusion of these catalysts into CO2 electrolyzers and photo-electrochemical devices, and to the discovery of catalytic pathways beyond two electrons. Combined with the continuous mechanistic efforts and new developments for in situ and in operando spectroscopic studies, molecular catalysis of CO2 reduction remains a highly creative approach.
Collapse
Affiliation(s)
- E Boutin
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - L Merakeb
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - B Ma
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - B Boudy
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - M Wang
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - J Bonin
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - E Anxolabéhère-Mallart
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France.
| | - M Robert
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France. and Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
80
|
Pati PB, Wang R, Boutin E, Diring S, Jobic S, Barreau N, Odobel F, Robert M. Photocathode functionalized with a molecular cobalt catalyst for selective carbon dioxide reduction in water. Nat Commun 2020; 11:3499. [PMID: 32661340 PMCID: PMC7358214 DOI: 10.1038/s41467-020-17125-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 01/30/2023] Open
Abstract
Artificial photosynthesis is a vibrant field of research aiming at converting abundant, low energy molecules such as water, nitrogen or carbon dioxide into fuels or useful chemicals by means of solar energy input. Photo-electrochemical reduction of carbon dioxide is an appealing strategy, aiming at reducing the greenhouse gas into valuable products such as carbon monoxide at low or without bias voltage. Yet, in such configuration, there is no catalytic system able to produce carbon monoxide selectively in aqueous media with high activity, and using earth-abundant molecular catalyst. Upon associating a p-type Cu(In,Ga)Se2 semi-conductor with cobalt quaterpyridine complex, we herein report a photocathode complying with the aforementioned requirements. Pure carbon dioxide dissolved in aqueous solution (pH 6.8) is converted to carbon monoxide under visible light illumination with partial current density above 3 mA cm-2 and 97% selectivity, showing good stability over time.
Collapse
Affiliation(s)
- Palas Baran Pati
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Ruwen Wang
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Etienne Boutin
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Stéphane Diring
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Stéphane Jobic
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000, Nantes, France
| | - Nicolas Barreau
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000, Nantes, France.
| | - Fabrice Odobel
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000, Nantes, France.
| | - Marc Robert
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France.
- Institut Universitaire de France (IUF), F-75005, Paris, France.
| |
Collapse
|
81
|
Hasan MM, Islam T, Akter SS, Alharthi NH, Karim MR, Aziz MA, Awal A, Hossain MD, Ahammad AJS. Computational Approach to Understanding the Electrocatalytic Reaction Mechanism for the Process of Electrochemical Oxidation of Nitrite at a Ni-Co-Based Heterometallo-Supramolecular Polymer. ACS OMEGA 2020; 5:12882-12891. [PMID: 32548472 PMCID: PMC7288591 DOI: 10.1021/acsomega.0c00658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Here, we report a semiempirical quantum chemistry computational approach to understanding the electrocatalytic reaction mechanism (ERM) of a metallic supramolecular polymer (SMP) with nitrite through UV/vis spectral simulations of SMP with different metal oxidation states before and after interactions with nitrite. In one of our recent works, by analyzing the electrochemical experimental data, we showed that computational cyclic voltammetry simulation (CCVS) can be used to predict the possible ERM of heterometallo-SMP (HMSMP) during electrochemical oxidation of nitrite (Islam T.ACS Appl. Polym. Mater.2020, 2( (2), ), 273-284). However, CCVS cannot predict how the ERM happens at the molecular level. Thus, in this work, we simulated the interactions between the repeating unit (RU) of the HMSMP polyNiCo and nitrite to understand how the oxidation process took place at the molecular level. The RU for studying the ERM was confirmed through comparing the simulated UV/vis and IR spectra with the experimental spectra. Then, the simulations between the RU of the polyNiCo and various species of nitrite were done for gaining insights into the ERM. The simulations revealed that the first electron transfer (ET) occurred through coordination of NO2 - with either of the metal centers during the two-electron-transfer oxidation of nitrite, while the second ET followed a ligand-ligand charge transfer (LLCT) and metal-ligand charge transfer (MLCT) pathway between the NO2 species and the RU. This ET pathway has been proposed by analyzing the transition states (TSs), simulated UV/vis spectra, energy of the optimized systems, and highest occupied molecular orbital-lowest occupied molecular orbital (HOMO-LUMO) interactions from the simulations between the RU and nitrite species.
Collapse
Affiliation(s)
- Md. Mahedi Hasan
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Sayeda Sima Akter
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Nabeel H. Alharthi
- Mechanical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad R. Karim
- Center
of Excellence for Research in Engineering Materials, King Saud University, Riyadh 11421, Saudi Arabia
- K.A.CARE
Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Md. Abdul Aziz
- Center
of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | |
Collapse
|
82
|
Wang S, Hai X, Ding X, Jin S, Xiang Y, Wang P, Jiang B, Ichihara F, Oshikiri M, Meng X, Li Y, Matsuda W, Ma J, Seki S, Wang X, Huang H, Wada Y, Chen H, Ye J. Intermolecular cascaded π-conjugation channels for electron delivery powering CO 2 photoreduction. Nat Commun 2020; 11:1149. [PMID: 32123173 PMCID: PMC7051963 DOI: 10.1038/s41467-020-14851-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/06/2020] [Indexed: 12/20/2022] Open
Abstract
Photoreduction of CO2 to fuels offers a promising strategy for managing the global carbon balance using renewable solar energy. But the decisive process of oriented photogenerated electron delivery presents a considerable challenge. Here, we report the construction of intermolecular cascaded π-conjugation channels for powering CO2 photoreduction by modifying both intramolecular and intermolecular conjugation of conjugated polymers (CPs). This coordination of dual conjugation is firstly proved by theoretical calculations and transient spectroscopies, showcasing alkynyl-removed CPs blocking the delocalization of electrons and in turn delivering the localized electrons through the intermolecular cascaded channels to active sites. Therefore, the optimized CPs (N-CP-D) exhibiting CO evolution activity of 2247 μmol g−1 h−1 and revealing a remarkable enhancement of 138-times compared to unmodified CPs (N-CP-A). While conversion of CO2 to fuels may offer a bio-inspired means to renewably utilize fossil fuel emission, most materials demonstrate poor activities for CO2 reduction. Here, authors construct conjugated polymers that modulate photo-induced electron transfer to CO2 reduction catalysts.
Collapse
Affiliation(s)
- Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Xiao Hai
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Xing Ding
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Fumihiko Ichihara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Mitsutake Oshikiri
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,International Center for Material Nanoarchitectnoics (WPI-MANA), National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan
| | - Xianguang Meng
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yunxiang Li
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Jun Ma
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Xuepeng Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hao Huang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yoshiki Wada
- Electroceramics Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. .,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan. .,TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
83
|
Wang Y, Gao XW, Li J, Chao D. Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction. Chem Commun (Camb) 2020; 56:12170-12173. [DOI: 10.1039/d0cc05047d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An efficient earth-abundant photocatalytic system composed of an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex was developed for CO2 reduction.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Junli Li
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
84
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
85
|
Yang Y, Tang Y, Jiang H, Chen Y, Wan P, Fan M, Zhang R, Ullah S, Pan L, Zou JJ, Lao M, Sun W, Yang C, Zheng G, Peng Q, Wang T, Luo Y, Sun X, Konev AS, Levin OV, Lianos P, Zhuofeng H, Shen Z, Zhao Q, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang H, Zhang L, Sun S, Wang W, Ma J. 2020 Roadmap on gas-involved photo- and electro- catalysis. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.10.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
86
|
Beranek R. Selectivity of Chemical Conversions: Do Light‐Driven Photoelectrocatalytic Processes Hold Special Promise? Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Radim Beranek
- Institute of ElectrochemistryUlm University Albert-Einstein-Allee 47 89081 Ulm Germany
| |
Collapse
|
87
|
Beranek R. Selectivity of Chemical Conversions: Do Light‐Driven Photoelectrocatalytic Processes Hold Special Promise? Angew Chem Int Ed Engl 2019; 58:16724-16729. [DOI: 10.1002/anie.201908654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Radim Beranek
- Institute of ElectrochemistryUlm University Albert-Einstein-Allee 47 89081 Ulm Germany
| |
Collapse
|
88
|
Meng N, Zhou W, Yu Y, Liu Y, Zhang B. Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2 Electroreduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03895] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nannan Meng
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Yang Liu
- Analysis and Testing Center, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
89
|
Wadsworth BL, Beiler AM, Khusnutdinova D, Reyes Cruz EA, Moore GF. Interplay between Light Flux, Quantum Efficiency, and Turnover Frequency in Molecular-Modified Photoelectrosynthetic Assemblies. J Am Chem Soc 2019; 141:15932-15941. [PMID: 31461276 DOI: 10.1021/jacs.9b07295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report on the interplay between light absorption, charge transfer, and catalytic activity at molecular-catalyst-modified semiconductor liquid junctions. Factors limiting the overall photoelectrosynthetic transformations are presented in terms of distinct regions of experimental polarization curves, where each region is related to the fraction of surface-immobilized catalysts present in their activated form under varying intensities of simulated solar illumination. The kinetics associated with these regions are described using steady-state or pre-equilibrium approximations yielding rate laws similar in form to those applied in studies involving classic enzymatic reactions and Michaelis-Menten-type kinetic analysis. However, in the case of photoelectrosynthetic constructs, both photons and electrons serve as reagents for producing activated catalysts. This work forges a link between kinetic models describing biological assemblies and emerging molecular-based technologies for solar energy conversion, providing a conceptual framework for extracting kinetic benchmarking parameters currently not possible to establish.
Collapse
Affiliation(s)
- Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| | - Gary F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD) , Arizona State University , Tempe , Arizona 85287-1604 , United States
| |
Collapse
|
90
|
Ahmed G, Raziq F, Hanif M, Khan J, Munawar KS, Wu M, Cao X, Liu Z. Oxygen-Cluster-Modified Anatase with Graphene Leads to Efficient and Recyclable Photo-Catalytic Conversion of CO 2 to CH 4 Supported by the Positron Annihilation Study. Sci Rep 2019; 9:13103. [PMID: 31511596 PMCID: PMC6739302 DOI: 10.1038/s41598-019-49694-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023] Open
Abstract
Anatase TiO2 hollow nanoboxes were synthesized and combined with the graphene oxide to get nanocomposite of TiO2/rGO (TG). Graphene oxide was used to modify the Oxygen-Clusters and bulk to surface defects. Anatase and TG composite were characterized with the positron annihilation, XPS, EPR, EIS and photocurrent response analysis. The relative affects of defects on the photocatalytic reduction (CO2 to CH4) were studied. The TG composites showed highest photo-catalytic activity after GO coupling (49 µmol g-1 h-1), 28.6 times higher photocurrent yields much higher quantum efficiency (3.17%@400 nm) when compared to the TiO2 nanoboxes. The mechanism of enhanced photo-catalytic CO2 conversion to CH4 elucidated through electrochemical and photo-catalytic experiments with traceable isotope containing carbon dioxide (13CO2). For the first time we discovered that diminishing the comparative concentration ratio of anatase from the bulk to surface defects could significantly increase the conversion of CO2 to CH4.
Collapse
Affiliation(s)
- Gulzar Ahmed
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China.
- University of Sargodha Sub Campus Mianwali, 42200, Punjab, Pakistan.
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Muddasir Hanif
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China.
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China.
| | - Javid Khan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | | | - Mingmei Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhongwu Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China.
| |
Collapse
|
91
|
Leung JJ, Vigil JA, Warnan J, Edwardes Moore E, Reisner E. Rational Design of Polymers for Selective CO
2
Reduction Catalysis. Angew Chem Int Ed Engl 2019; 58:7697-7701. [DOI: 10.1002/anie.201902218] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Jane J. Leung
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Julian A. Vigil
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Julien Warnan
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Esther Edwardes Moore
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
92
|
Leung JJ, Vigil JA, Warnan J, Edwardes Moore E, Reisner E. Rational Design of Polymers for Selective CO
2
Reduction Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jane J. Leung
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Julian A. Vigil
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Julien Warnan
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Esther Edwardes Moore
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|