51
|
Watt J. Investigating and Controlling Material Interfaces using Cryo-FIB/SEM and In-Situ TEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:657. [PMID: 37613380 DOI: 10.1093/micmic/ozad067.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
52
|
Li Z, Li B, Yu C. Atomic Aerogel Materials (or Single-Atom Aerogels): An Interesting New Paradigm in Materials Science and Catalysis Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211221. [PMID: 36606466 DOI: 10.1002/adma.202211221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Indexed: 06/16/2023]
Abstract
The concept of "single-atom catalysis" is first proposed by Tao Zhang, Jun Li, and Jingyue Liu in 2011. Single-atom catalysts (SACs) have a very high catalytic activity and greatly improved atom utilization ratio. At present, SACs have become frontier materials in the field of catalysis. Aerogels are highly porous materials with extremely low density and extremely high porosity. These pores play a key role in determining their surface reactivity and mechanical stability. The alliance of SACs and aerogels can fully reflect their structural advantages and lead to new enhancement effects. Herein, a general concept of "atomic aerogel materials" (AAMs) (or single-atom aerogels (SAAs)) is proposed to describe this interesting new paradigm in both material and catalysis fields. Based on the basic units of "gel," the AAMs can be divided into two categories: carrier-level AAMs (with micro-, nano-, or sub-nanometer pore structures) and atomic-level AAMs (with atomic-defective or oxygen-bridged sub-nanopore structures). The basic unit of the former (i.e., single-atom-functionalized aerogels) is the carrier materials in nanostructures, and the latter (i.e., single-atom-built aerogels) is the single metal atoms in atomic structures. The atomic-defective or oxygen-bridged AAMs will be important development directions in versatile heterogeneous catalytic or noncatalytic fields. The design proposals, latent challenges, and coping strategies of this new "atomic nanosystem" in applications are pointed out as well.
Collapse
Affiliation(s)
- Zesheng Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Bolin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Changlin Yu
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| |
Collapse
|
53
|
Zhang Y, Li J, Wang C, Liu D, Yu R, Ye C, Du Y. Activable Ru-PdRu nanosheets with heterogeneous interface for High-efficiency alcohol oxidation reaction. J Colloid Interface Sci 2023:S0021-9797(23)00885-8. [PMID: 37230830 DOI: 10.1016/j.jcis.2023.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/30/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Fabricating 2D nanomaterials with heterogeneous structure is a feasible way to improve catalytic performance owing to its large surface area and tunable electron structure. However, such a category has not been widely reported in the field of alcohol oxidation reaction (AOR). In this work, we reported a new type of heterostructure nanosheet with Ru nanoparticles decorated around the edge of PdRu nanosheets (Ru-PdRu HNSs). Particularly, strong electronic interaction and sufficient active sites attributed to the construction of heterogeneous interface, is the key to the superior electrocatalytic behavior of Ru-PdRu HNSs towards methanol oxidation reaction (MOR), ethylene glycol oxidation reaction (EGOR), and glycerol oxidation reaction (GOR). Remarkably, owing to the enhanced electron transfer brought by the introduction of the Ru-PdRu heterogeneous interface, these novel nanosheets are highly durable. Apart from being able to maintain the highest current density after 4000 s chronoamperometry test, Ru-PdRu HNSs can be reactivated with negligible activity loss in MOR and GOR test after four consecutive i-t experiments. Impressively, in the EGOR test, after reactivation, the current density is step-wisely increased, making it one of the best AOR electrocatalysts.
Collapse
Affiliation(s)
- Yuefan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, PR China.
| |
Collapse
|
54
|
Guo M, Ma P, Wei L, Wang J, Wang Z, Zheng K, Cheng D, Liu Y, Dai H, Guo G, Duan E, Deng J. Highly Selective Activation of C-H Bond and Inhibition of C-C Bond Cleavage by Tuning Strong Oxidative Pd Sites. J Am Chem Soc 2023; 145:11110-11120. [PMID: 37191364 DOI: 10.1021/jacs.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Improving the product selectivity meanwhile restraining deep oxidation still remains a great challenge over the supported Pd-based catalysts. Herein, we demonstrate a universal strategy where the surface strong oxidative Pd sites are partially covered by the transition metal (e. g., Cu, Co, Ni, and Mn) oxide through thermal treatment of alloys. It could effectively inhibit the deep oxidation of isopropanol and achieve the ultrahigh selectivity (>98%) to the target product acetone in a wide temperature range of 50-200 °C, even at 150-200 °C with almost 100% isopropanol conversion over PdCu1.2/Al2O3, while an obvious decline in acetone selectivity is observed from 150 °C over Pd/Al2O3. Furthermore, it greatly improves the low-temperature catalytic activity (acetone formation rate at 110 °C over PdCu1.2/Al2O3, 34.1 times higher than that over Pd/Al2O3). The decrease of surface Pd site exposure weakens the cleavage for the C-C bond, while the introduction of proper CuO shifts the d-band center (εd) of Pd upward and strengthens the adsorption and activation of reactants, providing more reactive oxygen species, especially the key super oxygen species (O2-) for selective oxidation, and significantly reducing the barrier of O-H and β-C-H bond scission. The molecular-level understanding of the C-H and C-C bond scission mechanism will guide the regulation of strong oxidative noble metal sites with relatively inert metal oxide for the other selective catalytic oxidation reactions.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Peijie Ma
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxi Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
55
|
Gao RT, Zhang J, Nakajima T, He J, Liu X, Zhang X, Wang L, Wu L. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat Commun 2023; 14:2640. [PMID: 37156781 PMCID: PMC10167323 DOI: 10.1038/s41467-023-38343-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Although much effort has been devoted to improving photoelectrochemical water splitting of hematite (α-Fe2O3) due to its high theoretical solar-to-hydrogen conversion efficiency of 15.5%, the low applied bias photon-to-current efficiency remains a huge challenge for practical applications. Herein, we introduce single platinum atom sites coordination with oxygen atom (Pt-O/Pt-O-Fe) sites into single crystalline α-Fe2O3 nanoflakes photoanodes (SAs Pt:Fe2O3-Ov). The single-atom Pt doping of α-Fe2O3 can induce few electron trapping sites, enhance carrier separation capability, and boost charge transfer lifetime in the bulk structure as well as improve charge carrier injection efficiency at the semiconductor/electrolyte interface. Further introduction of surface oxygen vacancies can suppress charge carrier recombination and promote surface reaction kinetics, especially at low potential. Accordingly, the optimum SAs Pt:Fe2O3-Ov photoanode exhibits the photoelectrochemical performance of 3.65 and 5.30 mA cm-2 at 1.23 and 1.5 VRHE, respectively, with an applied bias photon-to-current efficiency of 0.68% for the hematite-based photoanodes. This study opens an avenue for designing highly efficient atomic-level engineering on single crystalline semiconductors for feasible photoelectrochemical applications.
Collapse
Affiliation(s)
- Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Jiangwei Zhang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Tomohiko Nakajima
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Xueyuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China.
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
56
|
Huang X, Song M, Zhang J, Shen T, Luo G, Wang D. Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. NANO-MICRO LETTERS 2023; 15:86. [PMID: 37029260 PMCID: PMC10082148 DOI: 10.1007/s40820-023-01044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical synthesis of H2O2 via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on electrocatalysts for H2O2 generation, including noble metal, transition metal-based, and carbon-based materials, is summarized. At first, the design strategies employed to obtain electrocatalysts with high electroactivity and high selectivity are highlighted. Then, the critical roles of the geometry of the electrodes and the type of reactor in striking a balance to boost the H2O2 selectivity and reaction rate are systematically discussed. After that, a potential strategy to combine the complementary properties of the catalysts and the reactor for optimal selectivity and overall yield is illustrated. Finally, the remaining challenges and promising opportunities for high-efficient H2O2 electrochemical production are highlighted for future studies.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People's Republic of China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Guanyu Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
57
|
Yang S, Si Z, Li G, Zhan P, Liu C, Lu L, Han B, Xie H, Qin P. Single Cobalt Atoms Immobilized on Palladium-Based Nanosheets as 2D Single-Atom Alloy for Efficient Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207651. [PMID: 36631281 DOI: 10.1002/smll.202207651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Single-atom alloys (SAAs) display excellent electrocatalytic performance by overcoming the scaling relationships in alloys. However, due to the lack of a unique structure engineering design, it is difficult to obtain SAAs with a high specific surface area to expose more active sites. Herein, single Co atoms are immobilized on Pd metallene (Pdm) support to obtain Co/Pdm through the design of the engineered morphology of Pd, realizing the preparation of ultra-thin 2D SAA. The unsaturated coordination environments combined with the unique geometric and electronic structures realize the modulation of the d-band center and the redistribution of charges, generating highly active electronic states on the surface of Co/Pdm. Benefiting from the synergistic interaction and spillover effect, the Co/Pdm electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in both acid and alkaline solutions, especially with a Tafel slope of 8.2 mV dec-1 and a low overpotential of 24.7 mV at 10 mA cm-2 in the acidic medium, which outperforms commercial Pt/C and Pd/C. This work highlights the successful preparation of 2D ultra-thin SAA, which provides a new strategy for the preparation of HER electrocatalyst with high efficiency, activity, and stability.
Collapse
Affiliation(s)
- Shuai Yang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Guozhen Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Chang Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., LTD, No. 712 Wen'er West Road, Hangzhou, 310003, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
- Paris Curie Engineer School, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| |
Collapse
|
58
|
Ren S, Cao X, Jiang Z, Yu Z, Zhang T, Wei S, Fan Q, Yang J, Mao J, Wang D. Single-atom catalysts for electrochemical applications. Chem Commun (Camb) 2023; 59:2560-2570. [PMID: 36748903 DOI: 10.1039/d3cc00005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The field of small molecule electro-activated conversion is becoming a new star in modern catalytic research toward the carbon-neutral future. The advent of single-atom catalysts (SACs) is expected to greatly accelerate the kinetics of electrocatalytic reactions such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), etc., owing to their maximum atomic efficiency, unique quantized energy level structure and strong interaction between well-defined active sites and supports. In this feature article, our group's proposed synthesis methodology applied in electrocatalysis is mainly summarized. Furthermore, we elaborate on how to achieve the stabilization of single metal atoms against migration and agglomeration during the preparation of SACs. Moreover, the electrochemical applications of SACs with a focus on the above heterogeneous reactions are presented. Finally, the prospects for the development and deficiencies of these SACs for electrocatalytic reactions are discussed.
Collapse
Affiliation(s)
- Shan Ren
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Xi Cao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Zinan Jiang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Zijuan Yu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Tingting Zhang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Shaohui Wei
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Qikui Fan
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Junjie Mao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
59
|
Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
60
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
61
|
Wang J, Zhang B, Guo W, Wang L, Chen J, Pan H, Sun W. Toward Electrocatalytic Methanol Oxidation Reaction: Longstanding Debates and Emerging Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211099. [PMID: 36706444 DOI: 10.1002/adma.202211099] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Indexed: 05/30/2023]
Abstract
The study of direct methanol fuel cells (DMFCs) has lasted around 70 years, since the first investigation in the early 1950s. Though enormous effort has been devoted in this field, it is still far from commercialization. The methanol oxidation reaction (MOR), as a semi-reaction of DMFCs, is the bottleneck reaction that restricts the overall performance of DMFCs. To date, there has been intense debate on the complex six-electron reaction, but barely any reviews have systematically discussed this topic. To this end, the controversies and progress regarding the electrocatalytic mechanisms, performance evaluations as well as the design science toward MOR electrocatalysts are summarized. This review also provides a comprehensive introduction on the recent development of emerging MOR electrocatalysts with a focus on the innovation of the alloy, core-shell structure, heterostructure, and single-atom catalysts. Finally, perspectives on the future outlook toward study of the mechanisms and design of electrocatalysts are provided.
Collapse
Affiliation(s)
- Jianmei Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
62
|
Gloag L, Poerwoprajitno AR, Cheong S, Ramadhan ZR, Adschiri T, Gooding JJ, Tilley RD. Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas. SCIENCE ADVANCES 2023; 9:eadf6075. [PMID: 36630515 PMCID: PMC9833653 DOI: 10.1126/sciadv.adf6075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal-structured cores with hexagonal crystal-structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.
Collapse
Affiliation(s)
- Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zeno R. Ramadhan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tadafumi Adschiri
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Advanced Institute of Materials Research, WPI-AIMR, Tohoku University, Sendai 980-8577, Japan
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
63
|
Shu J, Ma H, Tang G, Li R, Ma S, Meng J, Yang H, Li S. Ultrafine oxygenophilic nanoalloys induced by multifunctional interstitial boron for methanol oxidation reaction. J Colloid Interface Sci 2023; 629:482-491. [PMID: 36174291 DOI: 10.1016/j.jcis.2022.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Interface construction is one of the most feasible approaches to optimize the physical and chemical properties of noble metal-based catalysts and consequently improve their catalytic performance. Herein, the design of effective reaction interfaces by bimetallic, trimetallic or polymetallic alloying has been extensively explored. In this research, metalloid boron (B) was alloyed within palladium-iridium (Pd-Ir) nanoalloy supported on nitrogen-doped graphene (NG) to promote the methanol oxidation reaction (MOR) in alkaline media. Being benefited from this, the optimum Pd7IrBx/NG catalyst exhibited enhanced EOR activity mass activity (1141.7 mA mg-1) and long-term stability (58.2 % current density retention rate after 500 cycles of cyclic voltammetry). The mechanism was further studied by electrochemical experiments and characterization, which highlighted that the multifunctional effect of electronic effect and strain effect and kinetic optimization induced by boron doping played a very positive role on MOR.
Collapse
Affiliation(s)
- Junhao Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan' an University, Yan' an, Shaanxi 716000, PR China
| | - Gangjun Tang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ruxia Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Sizhuo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jianqi Meng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
64
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
65
|
Cheng H, Xia J, Wang M, Wang C, Gui R, Cao X, Zhou T, Zheng X, Chu W, Wu H, Xie Y, Wu C. Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance. J Am Chem Soc 2022; 144:22018-22025. [DOI: 10.1021/jacs.2c09147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Han Cheng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Minghao Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chun Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Renjie Gui
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuemin Cao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tianpei Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yi Xie
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
66
|
Chen H, Liu J, Wu X, Ye C, Zhang J, Luo JL, Fu XZ. Pt-Co Electrocatalysts: Syntheses, Morphologies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204100. [PMID: 35996763 DOI: 10.1002/smll.202204100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pt-Co electrocatalysts have attracted significant attention because of their excellent performance in many electrochemical reactions. This review focuses on Pt-Co electrocatalysts designed and prepared for electrocatalytic applications. First, the various synthetic methods and synthesis mechanisms are systematically summarized; typical examples and core synthesis parameters are discussed for regulating the morphology and structure. Then, starting with the design and structure-activity relationship of catalysts, the research progress of the morphologies and structures of Pt-Co electrocatalysts obtained based on various strategies, the structure-activity relationship between them, and their properties are summarized. In addition, the important electrocatalytic applications and mechanisms of Pt-Co catalysts, including electrocatalytic oxidation/reduction and bifunctional catalytic reactions, are described and summarized, and their high catalytic activities are discussed on the basis of their mechanism and active sites. Moreover, the advanced electrochemical in situ characterization techniques are summarized, and the challenges and direction concerning the development of high-performance Pt-Co catalysts in electrocatalysis are discussed.
Collapse
Affiliation(s)
- Hao Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuexian Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chunyi Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiujun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
67
|
Pt Atoms/Clusters on Ni‐phytate‐sensitized Carbon Nitride for Enhanced NIR‐light‐driven Overall Water Splitting beyond 800 nm. Angew Chem Int Ed Engl 2022; 61:e202212234. [DOI: 10.1002/anie.202212234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/07/2022]
|
68
|
Wang G, Ke X, Sui M. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
69
|
Huang Y, Li D, Feng S, Jia Y, Guo S, Wu X, Chen M, Shi W. Pt Atoms/Clusters on Ni‐phytate‐sensitized Carbon Nitride for Enhanced NIR‐light‐driven Overall Water Splitting beyond 800 nm. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyong Huang
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Di Li
- Jiangsu University Institute for Energy Research XueFu Road 301 212013 Zhenjiang CHINA
| | - Shuo Feng
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Yujing Jia
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Shuhui Guo
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Xiaojie Wu
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Min Chen
- Jiangsu University School of Chemistry and Chemical Engineering XueFu Road 301 212013 Zhenjiang CHINA
| | - Weidong Shi
- Jiangsu University School of Chemistry and Chemical Engineering Xuefu Road 301 212013 Zhenjiang CHINA
| |
Collapse
|
70
|
Luo JY, Hu FC, Xi BJ, Han QW, Wu XQ, Wu YP, Zhang Q, Chi R, Li DS. Fabricating of Ni-BTC/NiS2 heterostructure via self-assembly strategy for electrocatalytic methanol oxidation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
71
|
Veerakumar P, Hung ST, Hung PQ, Lin KC. Review of the Design of Ruthenium-Based Nanomaterials and Their Sensing Applications in Electrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8523-8550. [PMID: 35793416 DOI: 10.1021/acs.jafc.2c01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, ruthenium nanoparticles (Ru NPs)-based functional nanomaterials have attractive electrocatalytic characteristics and they offer considerable potential in a number of fields. Ru-based binary or multimetallic NPs are widely utilized for electrode modification because of their unique electrocatalytic properties, enhanced surface-area-to-volume ratio, and synergistic effect between two metals provides as an effective improved electrode sensor. This perspective review suggests the current research and development of Ru-based nanomaterials as a platform for electrochemical (EC) sensing of harmful substances, biomolecules, insecticides, pharmaceuticals, and environmental pollutants. The advantages and limitations of mono-, bi-, and multimetallic Ru-based nanocomposites for EC sensors are discussed. Besides, the relevant EC properties and analyte sensing approaches are also presented. On the basis of these insights, we highlighted recent results for synthesizing techniques and EC environmental pollutant sensors from the perspectives of diverse supports, including graphene, carbon nanotubes, silica, semiconductors, metal sulfides, and polymers. Finally, this work overviews the modern improvements in the utilization of Ru-based nanocomposites on the basis for electroanalytical sensors as well as suggestions for the field's future development.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Tung Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Pei-Qi Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
72
|
Ramadhan ZR, Poerwoprajitno AR, Cheong S, Webster RF, Kumar PV, Cychy S, Gloag L, Benedetti TM, Marjo CE, Muhler M, Wang DW, Gooding JJ, Schuhmann W, Tilley RD. Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. J Am Chem Soc 2022; 144:11094-11098. [PMID: 35713612 DOI: 10.1021/jacs.2c04911] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Creating high surface area nanocatalysts that contain stacking faults is a promising strategy to improve catalytic activity. Stacking faults can tune the reactivity of the active sites, leading to improved catalytic performance. The formation of branched metal nanoparticles with control of the stacking fault density is synthetically challenging. In this work, we demonstrate that varying the branch width by altering the size of the seed that the branch grows off is an effective method to precisely tune the stacking fault density in branched Ni nanoparticles. A high density of stacking faults across the Ni branches was found to lower the energy barrier for Ni2+/Ni3+ oxidation and result in enhanced activity for electrocatalytic oxidation of 5-hydroxylmethylfurfural. These results show the ability to synthetically control the stacking fault density in branched nanoparticles as a basis for enhanced catalytic activity.
Collapse
Affiliation(s)
- Zeno R Ramadhan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard F Webster
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Steffen Cychy
- Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tania M Benedetti
- School of Environment and Science and Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4222, Australia
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Martin Muhler
- Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
73
|
Chen L, Liang X, Wang D, Yang Z, He CT, Zhao W, Pei J, Xue Y. Platinum-Ruthenium Single Atom Alloy as a Bifunctional Electrocatalyst toward Methanol and Hydrogen Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27814-27822. [PMID: 35694972 DOI: 10.1021/acsami.2c02905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise regulation for the structural properties of nanomaterials at the atomic scale is an effective strategy to develop high-performance catalysts. Herein, a facile dual-regulation approach was developed to successfully synthesize Ru1Ptn single atom alloy (SAA) with atomic Ru dispersed in Pt nanocrystals. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure demonstrated that Ru atoms were dispersed in Pt nanocrystals as single atoms. Impressively, the Ru1Ptn-SAA exhibited an ultrahigh specific activity (23.59 mA cm-2) and mass activity (2.805 mA/μg-PtRu) for methanol oxidation reaction (MOR) and exhibited excellent exchange current density activity (1.992 mA cm-2) and mass activity (4.71 mA/μg-PtRu) for hydrogen oxidation reaction (HOR). Density functional theory calculations revealed that the introduction of Ru atoms greatly reduced the reaction free energy for the decomposition of water molecules, which promoted the removal of CO* in the MOR process and adjusted the Gibbs free energy of hydrogen and hydroxyl adsorption to promote the HOR. Our work provided an effective idea for the development of high performance electrocatalysts.
Collapse
Affiliation(s)
- Ligang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102209, China
| | - Xin Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuobo Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Qingdao Chuangqi Xinneng Catalytic Technology Ltd. Co., Qingdao 266041, China
| | - Chun-Ting He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102209, China
| | - Jiajing Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanrong Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
74
|
Zhao L, Wen M, Fang H, Meng K, Qiu X, Wu Q, Fu Y. NiCoPd Inlaid NiCo-Bimetallene for Efficient Electrocatalytic Methanol Oxidation. Inorg Chem 2022; 61:10211-10219. [PMID: 35723430 DOI: 10.1021/acs.inorgchem.2c01534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-based metallenes have attracted great attention recently as newly burgeoning two-dimensional (2D) materials, attributed to their significantly increased active surface areas and intrinsic electrocatalytic activities. Therefore, they could be used as a potential candidate as the high-performance electrocatalyst for methanol oxidation reactions (MORs) in the direct methanol fuel cell. Herein, a new strategy is proposed to fabricate NiCoPd inlaid NiCo-bimetallene (NiCoPd/NiCo-bimetallene) by the structure directing effect of 18-crown-6 ether under an ultrasonic-pulse interface together with the HCHO reduction and atom-diffusion-aging process. NiCoPd ternary-alloys with uniformly dispersed Pd active sites are decorated onto NiCo-bimetallenes, achieving remarkably enhancing the effective utilization of Pd atoms. What is more, the intrinsic activity is enhanced by the "bifunctional mechanism" of NiCo-bimetallene adsorption of intermediate species and increased Pd-active sites. Moreover, the anti-CO poisoning ability is optimized through the "alloying ligand effect" of NiCoPd. Therefore, the NiCoPd/NiCo-bimetallene exhibits excellent mass activity for MOR, which is higher than commercial Pd/C. This work suggests a new way of the Pd-based metallenes catalyst approach to the efficient electrocatalytic MOR.
Collapse
Affiliation(s)
- Long Zhao
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Ming Wen
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Hao Fang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China.,School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Kexin Meng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Xiaoyu Qiu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| |
Collapse
|
75
|
Liu X, Liu Y, Yang W, Feng X, Wang B. Controlled Modification of Axial Coordination for Transition-Metal Single-Atom Electrocatalyst. Chemistry 2022; 28:e202201471. [PMID: 35707987 DOI: 10.1002/chem.202201471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 12/16/2022]
Abstract
Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.
Collapse
Affiliation(s)
- Xiangjian Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Yarong Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
76
|
Zhao Z, Wang H, Tan H, Wu X, Kang Y, Dong Y, Li X, Jin S, Chang X. Deciphering the active origin for urea oxidation reaction over nitrogen penetrated nickel nanoparticles embedded in carbon nanotubes. J Colloid Interface Sci 2022; 626:740-751. [DOI: 10.1016/j.jcis.2022.06.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
77
|
Poerwoprajitno AR, Cheong S, Gloag L, Gooding JJ, Tilley RD. Synthetic Strategies to Enhance the Electrocatalytic Properties of Branched Metal Nanoparticles. Acc Chem Res 2022; 55:1693-1702. [PMID: 35616935 DOI: 10.1021/acs.accounts.2c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusBranched metal nanoparticles have unique catalytic properties because of their high surface area with multiple branches arranged in an open 3D structure that can interact with reacting species and tailorable branch surfaces that can maximize the exposure of desired catalytically active crystal facets. These exceptional properties have led to the exploration of the roles of branch structural features ranging from the number and dimensions of branches at the larger scales to the atomic-scale arrangement of atoms on precise crystal facets. The fundamental significance of how larger-scale branch structural features and atomic-scale surface faceting influence and control the catalytic properties has been at the forefront of the design of branched nanoparticles for catalysis. Current synthetic advances have enabled the formation of branched nanoparticles with an unprecedented degree of control over structural features down to the atomic scale, which have unlocked opportunities to make improved nanoparticle catalysts. These catalysts have high surface areas with controlled size and surface facets for achieving exceedingly high activity and stability. The synthetic advancement has recently led to the use of branched nanoparticles as ideal substrates that can be decorated with a second active metal in the form of islands and single atoms. These decorated branched nanoparticles have new and highly effective catalytic active sites where both branch metal and decorating metal play essential roles during catalysis.In the opening half of this Account, we critically assess the important structural features of branched nanoparticles that control catalytic properties. We first discuss the role of branch dimensions and the number of branches that can improve the surface area but can also trap gas bubbles. We then investigate the atomic-scale structural features of exposed surface facets, which are critical for enhancing catalytic activity and stability. Well-defined branched nanoparticles have led to a fundamental understanding of how the branch structural features influence the catalytic activity and stability, which we highlight for the oxygen evolution reaction (OER) and biomass oxidation. In discussing recent breakthroughs for branched nanoparticles, we explore the opportunities created by decorated branched nanoparticles and the unique bifunctional active sites that are exposed on the branched nanoparticle surfaces. This class of catalysts is of rapidly growing importance for reactions including the hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR), where two exposed metals are required for efficient catalysis. In the second half of this Account, we explore recent advances in the synthesis of branched nanoparticles and highlight the cubic-core hexagonal-branch growth mechanism that has achieved excellent control of all of the important structural features, including branch dimensions, number of branches, and surface facets. We discuss the slow precursor reduction as an effective strategy for decorating metal islands with controlled loadings on the branched nanoparticle surfaces and the spread of these metal islands to form single-atom active sites. We envisage that the key synthetic and structural advances identified in this Account will guide the development of the next-generation electrocatalysts.
Collapse
Affiliation(s)
| | | | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
78
|
Yang A, Huang Q, Wei Z, Yu Z, Cui M, Lei W, Tang Y, Qiu X. l-Lysine derived fabrication of Cu@Ni core–satellite nanoassemblies as efficient non-Pt catalysts for the methanol oxidation reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With assistance of l-lysine, Cu@Ni core–satellite nanoassemblies were fabricated, which could serve as efficient non-Pt electrocatalysts for the methanol oxidation reaction due to both the component effects and structural features.
Collapse
Affiliation(s)
- Anzhou Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiuzi Huang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ziqi Wei
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zehan Yu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Meifeng Cui
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|