51
|
The Potential of Immune Checkpoint Blockade in Cervical Cancer: Can Combinatorial Regimens Maximize Response? A Review of the Literature. Curr Treat Options Oncol 2020; 21:95. [PMID: 33025260 DOI: 10.1007/s11864-020-00790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT Cervical cancer (CC) is most often caused by the human papillomavirus (HPV). In principle, these ties to the virus should make HPV tumors a relatively easy target for clearance by the immune system. However, these HPV-associated tumors have evolved strategies to escape immune attack. Checkpoint inhibition immunotherapy, which has had remarkable success in cancer treatment, has the potential to overcome the immune escape in CC by harnessing the patient's own immune system and priming it to recognize and kill tumors. Recent work involving PD-1/PD-L1 inhibitors in CC lends credence to this belief, as pembrolizumab has shown evidence of clinical efficacy and consequently been granted accelerated approval by the FDA. That being said, the oncologic outcomes following monotherapy with these biologics have mostly been modest and variable, and this can be attributed to alternative resistance mechanisms to tumor response. The use of therapies that stimulate immune responses via checkpoint-independent activation will therefore augment release of T cell inhibition by checkpoint inhibitors for stronger and more sustained clinical responses. Such a combinatorial approach holds promise for weak- or non-responders to checkpoint therapies as supported by evidence from various, recent pre-clinical, and preliminary clinical studies.
Collapse
|
52
|
Nahand JS, Vandchali NR, Darabi H, Doroudian M, Banafshe HR, Moghoofei M, Babaei F, Salmaninejad A, Mirzaei H. Exosomal microRNAs: novel players in cervical cancer. Epigenomics 2020; 12:1651-1660. [PMID: 32957811 DOI: 10.2217/epi-2020-0026] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer ranks fourth for both mortality and morbidity in women globally. Exosomes are considered as extracellular vesicles, secreted continuously by many cells with a size range from 30 to 150 nm. Exosomes can encapsulate microRNAs (miRNAs) and release them for cellular communications. This exosome-induced miRNA transfer is a novel strategy for genetic exchange among cells. This trafficking modality affects many pathological as well as physiological conditions. Moreover, exosomes can protect the miRNAs against harsh environments and keep them very stable. Given that a variety of exosomal miRNAs derived from cervical cancer cells can be targeted to recipient cells and contribute to tumorgenesis, it has been documented that exosomal miRNAs could be applied as diagnostic and therapeutic biomarkers in the treatment of cervical cancer. Herein, we summarize the pathologic and diagnostic roles of exosomal miRNAs in the cervical cancer. Moreover, we highlight the roles of exosomal miRNAs in other cancers.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Noushin Rezaei Vandchali
- Department of Biochemistry & Genetic, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hassan Darabi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doroudian
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
53
|
Jee B, Yadav R, Pankaj S, Shahi SK. Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol 2020; 40:359-378. [PMID: 32853049 DOI: 10.1080/08830185.2020.1811859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human papilloma virus (HPV) has emerged as a primary cause of cervical cancer worldwide. HPV is a relatively small (55 nm in diameter) and non-enveloped virus containing approximately 8 kb long double stranded circular DNA genome. To date, 228 genotypes of HPV have been identified. Although all HPV infections do not lead to the development of malignancy of cervix, only persistent infection of high-risk types of HPV (mainly with HPV16 and HPV18) results in the disease. In addition, the immunity of the patients also acts as a key determinant in the carcinogenesis. Since, no HPV type specific medication is available for the patient suffering with cervical cancer, hence, a deep understanding of the disease etiology may be vital for developing an effective strategy for its prevention and management. From the immunological perspectives, the entire mechanisms of disease progression still remain unclear despite continuous efforts. In the present review, the recent developments in immunology of HPV-mediated cervix carcinoma were discussed. At the end, the prevention of disease using HPV type specific recombinant vaccines was also highlighted.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Renu Yadav
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Sangeeta Pankaj
- Department of Gynecological Oncology, Regional Cancer Centre, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Shivendra Kumar Shahi
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
54
|
Hull R, Mbele M, Makhafola T, Hicks C, Wang SM, Reis RM, Mehrotra R, Mkhize-Kwitshana Z, Kibiki G, Bates DO, Dlamini Z. Cervical cancer in low and middle-income countries. Oncol Lett 2020; 20:2058-2074. [PMID: 32782524 PMCID: PMC7400218 DOI: 10.3892/ol.2020.11754] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is a malignant tumour that occurs in the cervix and is classified into two histological types, adenocarcinoma and squamous cell carcinoma (SCC); SCC is more common and accounts for 70% of all cases. In 2018 there were ~569,000 new cases of cervical cancer diagnosed worldwide and ~311,000 deaths were attributed to cervical cancer. Of these, between 84 and 90% occurred in low- and middle-income countries (LMICs) such as South Africa, India, China and Brazil. The most common cause of cervical cancer is persistent infection caused by the sexually transmitted human papilloma virus. Other factors that contribute to the incidence of cervical cancer include geography, traditional practices and beliefs, the screening levels, socioeconomic status, healthcare access, public awareness, use of oral contraceptives, smoking and co-infection with HIV. An estimated 11 million women from LMICs will be diagnosed with cervical cancer in the next 10-20 years. The aim of this review was to explore various types of genetic and epigenetic factors that influence the development, progression or suppression of cervical cancer.
Collapse
Affiliation(s)
- Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Mzwandile Mbele
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Tshepiso Makhafola
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Chindo Hicks
- Bioinformatics and Genomics Centre, School of Medicine, Department of Genetics, Louisiana State University, New Orleans, LA 70112, USA
| | - Shao-Ming Wang
- National Cancer Centre, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Rui Manuel Reis
- Molecular Oncology Research Centre, Barretos Cancer Hospital, Sao Paulo 14784-400, Brazil
| | - Ravi Mehrotra
- Indian Council of Medical Research, New Delhi, Delhi 110029, India
| | | | - Gibson Kibiki
- East African Health Research Commission, East African Community, Bujumbura, Bujumbura Mairie 350, Burundi
| | - David O Bates
- Queen's Medical Centre, University of Nottingham, Nottingham, Nottinghamshire NG7 2UH, UK
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
55
|
Park Y, Pang K, Park J, Hong E, Lee J, Ooshima A, Kim HS, Cho JH, Han Y, Lee C, Song YS, Park KS, Yang KM, Kim SJ. Destablilization of TRAF6 by DRAK1 Suppresses Tumor Growth and Metastasis in Cervical Cancer Cells. Cancer Res 2020; 80:2537-2549. [PMID: 32265222 DOI: 10.1158/0008-5472.can-19-3428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
The adaptor protein TNF receptor-associated factor 6 (TRAF6) is a key mediator in inflammation. However, the molecular mechanisms controlling its activity and stability in cancer progression remain unclear. Here we show that death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) inhibits the proinflammatory signaling pathway by targeting TRAF6 for degradation, thereby suppressing inflammatory signaling-mediated tumor growth and metastasis in advanced cervical cancer cells. DRAK1 bound directly to the TRAF domain of TRAF6, preventing its autoubiquitination by interfering with homo-oligomerization, eventually leading to autophagy-mediated degradation of TRAF6. Depletion of DRAK1 in cervical cancer cells resulted in markedly increased levels of TRAF6 protein, promoting activation of the IL1β signaling-associated pathway and proinflammatory cytokine production. DRAK1 was specifically underexpressed in metastatic cervical cancers and inversely correlated with TRAF6 expression in mouse xenograft model tumor tissues and human cervical tumor tissues. Collectively, our findings highlight DRAK1 as a novel antagonist of inflammation targeting TRAF6 for degradation that limits inflammatory signaling-mediated progression of advanced cervical cancer. SIGNIFICANCE: Serine/threonine kinase DRAK1 serves a unique role as a novel negative regulator of the inflammatory signaling mediator TRAF6 in cervical cancer progression.
Collapse
Affiliation(s)
- Yuna Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Suk Kim
- TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea
| | - Jae Hyun Cho
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea. .,TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
56
|
Yi Y, Fang Y, Wu K, Liu Y, Zhang W. Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett 2020; 19:3316-3332. [PMID: 32256826 PMCID: PMC7074609 DOI: 10.3892/ol.2020.11439] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical Cancer is one of the leading causes of cancer-associated mortality in women. The present study aimed to identify key genes and pathways involved in cervical cancer (CC) progression, via a comprehensive bioinformatics analysis. The GSE63514 dataset from the Gene Expression Omnibus database was analyzed for hub genes and cancer progression was divided into four phases (phases I-IV). Pathway enrichment, protein-protein interaction (PPI) and pathway crosstalk analyses were performed, to identify key genes and pathways using a criterion nodal degree ≥5. Gene pathway analysis was determined by mapping the key genes into the key pathways. Co-expression between key genes and their effect on overall survival (OS) time was assessed using The Cancer Genome Atlas database. A total of 3,446 differentially expressed genes with 107 hub genes were identified within the four phases. A total of 14 key genes with 11 key pathways were obtained, following extraction of ≥5 degree nodes from the PPI and pathway crosstalk networks. Gene pathway analysis revealed that CDK1 and CCNB1 regulated the cell cycle and were activated in phase I. Notably, the following terms, 'pathways in cancer', 'focal adhesion' and the 'PI3K-Akt signaling pathway' ranked the highest in phases II-IV. Furthermore, FN1, ITGB1 and MMP9 may be associated with metastasis of tumor cells. STAT1 was indicated to predominantly function at the phase IV via cancer-associated signaling pathways, including 'pathways in cancer' and 'Toll-like receptor signaling pathway'. Survival analysis revealed that high ITGB1 and FN1 expression levels resulted in significantly worse OS. CDK1 and CCNB1 were revealed to regulate proliferation and differentiation through the cell cycle and viral tumorigenesis, while FN1 and ITGB1, which may be developed as novel prognostic factors, were co-expressed to induce metastasis via cancer-associated signaling pathways, including PI3K-Art signaling pathway, and focal adhesion in CC; however, the underlying molecular mechanisms require further research.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Fang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Correspondence to: Professor Wei Zhang, Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, P.R. China, E-mail:
| |
Collapse
|
57
|
Tantawy EA, El-Beyali AA, Gohar MK, Ibrahim ZS, Nasr M, Marei A. Association of TLR2 and TLR4 gene polymorphism with susceptibility to wart infections and their response to candida antigen immunotherapy. J DERMATOL TREAT 2020; 33:166-172. [DOI: 10.1080/09546634.2020.1732285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Enas A. Tantawy
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abdallah A. El-Beyali
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha K. Gohar
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Zynab S. Ibrahim
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Nasr
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman Marei
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
58
|
Chen D, Zhao Y, Feng Y, Jin C, Yang Q, Qiu H, Xie H, Xie S, Zhou Y, Huang J. Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice. Innate Immun 2020; 25:224-234. [PMID: 31018808 PMCID: PMC6830883 DOI: 10.1177/1753425919840424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the paramount role of TLRs in the induction of innate immune and
inflammatory responses, there is a paucity of studies on the role of TLRs in
Schistosoma japonicum infection. Here, we observed obvious
infiltration of inflammatory cells in S. japonicum-infected
C57BL/6 mouse lungs. Expression and release of IFN-γ, IL-4, and IL-17 were
significantly higher in pulmonary lymphocytes from infected mice compared with
control mice in response to anti-CD3 plus anti-CD28 mAbs. Higher percentages of
TLR2, TLR3, TLR4, and TLR7 were expressed on such lymphocytes, and the TLR
agonists PGN, Poly I:C, LPS, and R848 induced a higher level of IFN-γ. However,
a higher level of IL-4 was found in the supernatant of pulmonary lymphocytes
from infected mice stimulated by these TLR agonists plus CD3 Ab. Only R848 plus
anti-CD3 mAb could induce a higher level of IFN-γ in such lymphocytes. TLR
expressions were then compared on different pulmonary lymphocytes after
infection, including T cells, B cells, NK cells, NKT cells, and γδT cells. The
expression levels of TLR3 on T cells, B cells, NK cells, and γδT cells were
increased in the lungs after infection. NK cells also expressed higher levels of
TLR4 after infection of control mice. Collectively, these findings highlight the
potential role of TLR expression in the context of S. japonicum
infection.
Collapse
Affiliation(s)
- Dianhui Chen
- 1 The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, China
| | - Yi Zhao
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yuanfa Feng
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Chenxi Jin
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Quan Yang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Huaina Qiu
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Hongyan Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Sihao Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yi Zhou
- 3 College of Pharmacy, Guangzhou Medical University, China
| | - Jun Huang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| |
Collapse
|
59
|
Different types of adjuvants in prophylactic and therapeutic human papillomavirus vaccines in laboratory animals: a systematic review. Arch Virol 2019; 165:263-284. [PMID: 31802228 DOI: 10.1007/s00705-019-04479-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
Human papillomavirus (HPV) causes cervical carcinoma, which and is the third most common cancer, accounting for 275,000 deaths annually worldwide. Adjuvants have a key role in promotion of vaccine efficacy; therefore, using prophylactic and therapeutic vaccines combined with adjuvant could be of great benefit in prevention and treatment of cervical cancer. There are different types of adjuvants, including MF59TM adjuvants, RNA-based, JY (interleukin2/chitosan), cholera toxin (CT), heat-labile enterotoxin (LT), Freund's adjuvant, alum, SA-4-1BBL, λ-carrageenan (λ-CGN), heat shock proteins (HSPs), juzen-taiho-to (JTT) and hochu-ekki-to (HET), ISCOM and ISCOMATRIX™, very small size proteoliposomes (VSSPs), granulocyte macrophage colony-stimulating factor (GM-CSF), and Toll-like receptors (TLRs). Adjuvants have various functions, especially in therapeutic vaccines, and they lead to an increase in cytotoxic T lymphocytes (CTLs), so they are important in the design of vaccines. Here, we review the currently used adjuvants and their combinations with HPV protein vaccines in order to introduce an appropriate adjuvant for HPV vaccines.
Collapse
|
60
|
Zhao L, Wang L, Zhang C, Liu Z, Piao Y, Yan J, Xiang R, Yao Y, Shi Y. E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway. Signal Transduct Target Ther 2019; 4:32. [PMID: 31637011 PMCID: PMC6799841 DOI: 10.1038/s41392-019-0060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
mRNA translation reprogramming occurs frequently in many pathologies, including cancer and viral infection. It remains largely unknown whether viral-induced alterations in mRNA translation contribute to carcinogenesis. Most cervical cancer is caused by high-risk human papillomavirus infection, resulting in the malignant transformation of normal epithelial cells mainly via viral E6 and E7 oncoproteins. Here, we utilized polysome profiling and deep RNA sequencing to systematically evaluate E6-regulated mRNA translation in HPV18-infected cervical cancer cells. We found that silencing E6 can cause over a two-fold change in the translation efficiency of ~653 mRNAs, most likely in an eIF4E- and eIF2α-independent manner. In addition, we identified that E6 can selectively upregulate the translation of WNT4, JIP1, and JIP2, resulting in the activation of the noncanonical WNT/PCP/JNK pathway to promote cell proliferation in vitro and tumor growth in vivo. Ectopic expression of WNT4/JIP2 can effectively rescue the decreased cell proliferation caused by E6 silencing, strongly suggesting that the WNT4/JIP2 pathway mediates the role of E6 in promoting cell proliferation. Thus, our results revealed a novel oncogenic mechanism of E6 via regulating the translation of mRNAs.
Collapse
Affiliation(s)
- Lin Zhao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, 28 Fuxing Road, 100853 Beijing, China
| | - Longlong Wang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Chenglan Zhang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Ze Liu
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jie Yan
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Yuanqing Yao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, 28 Fuxing Road, 100853 Beijing, China
| | - Yi Shi
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| |
Collapse
|
61
|
Pandey NO, Chauhan AV, Raithatha NS, Patel PK, Khandelwal R, Desai AN, Choxi Y, Kapadia RS, Jain ND. Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Sci Rep 2019; 9:9729. [PMID: 31278284 PMCID: PMC6611874 DOI: 10.1038/s41598-019-46077-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in TLR genes may serve as a crucial marker for early susceptibility of various cancers including cervical cancer. The present study was therefore designed to ascertain the role of TLR4 and TLR9 SNPs and haplotypes to hrHPV infection and cervical cancer susceptibility. The study included 110 cervical cancer biopsies and 141 cervical smears from age-matched healthy controls of Gujarati ethnicity of Western India. hrHPV 16 and 18 were detected using Real-time PCR. Eight SNPs, four each in TLR4 and TLR9 were analyzed using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism and Allele-Specific PCR. HPV 16 and 18 were detected in 68% cervical cancer cases. TLR4 rs4986790, rs1927911 and TLR9 rs187084 showed association with HPV 16/18 infection. CC and CT genotypes of TLR4 rs11536889 and rs1927911 respectively, and TC, CC genotypes of TLR9 rs187084, as well as minor alleles of TLR4 rs4986790 and TLR9 rs187084, were associated with the increased risk of cervical cancer. Stage-wise analysis revealed TLR9 rs187084 and rs352140 to be associated with early-stage cancer. TLR4 haplotype GTAC and TLR9 haplotype GATC were associated with the increased risk of cervical cancer while TLR4 haplotype GCAG was associated with the decreased risk. TLR4 haplotype GCAG and TLR9 haplotype GATC showed association with increased susceptibility to hrHPV infection. In conclusion, the present study revealed association of TLR4 and TLR9 polymorphisms and haplotypes with hrHPV infection and cervical cancer risk. Further evaluation of a larger sample size covering diverse ethnic populations globally is warranted.
Collapse
Affiliation(s)
- Nilesh O Pandey
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, India
| | - Alex V Chauhan
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, India
| | - Nitin S Raithatha
- Department of Obstetrics and Gynaecology, Pramukh Swami Medical College, Shree Krishna Hospital, Karamsad, Anand, India
| | - Purvi K Patel
- Department of Obstetrics and Gynaecology, Sir Sayajirao General Hospital and Medical College, Vadodara, India
| | - Ronak Khandelwal
- Department of Obstetrics and Gynaecology, Sir Sayajirao General Hospital and Medical College, Vadodara, India
| | - Ajesh N Desai
- Department of Obstetrics & Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Yesha Choxi
- Department of Obstetrics & Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Rutul S Kapadia
- Department of Obstetrics & Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Neeraj D Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, India.
| |
Collapse
|
62
|
Abstract
Papillomaviruses are one of the oldest viruses known, dating back 330 million years. During this long evolution, human papillomaviruses (HPV) have developed into hijackers of human cellular and immune systems in which they replicate and remain silent. Systematic studies on oral HPV infections and their outcomes are still scarce. Oral HPV infections have been linked to sexual behaviour, but recent evidence supports their horizontal, mouth‐to‐mouth, transmission. Most HPV infections in infants are acquired vertically from the mother during the intrauterine period, during delivery, or later via saliva. The best‐known benign clinical manifestations of HPV infection are oral papilloma/condyloma and focal epithelial hyperplasia. Evidence is emerging which suggests that some oral HPV infections might persist. Persistent HPV infection is mandatory for HPV‐associated malignant transformation. However, progression of HPV‐induced lesions to malignancy requires additional cofactors. In the early 1980s, we provided the first evidence that a subset of oral cancers and other head and neck cancers might be causally linked to HPV infection. This review summarizes current knowledge on the virus itself, its transmission modes, as well as the full spectrum of oral HPV infections – from asymptomatic infections to benign, potentially malignant oral lesions, and squamous cell carcinoma.
Collapse
Affiliation(s)
- Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
63
|
Moradi-Marjaneh R, Hassanian SM, Hasanzadeh M, Rezayi M, Maftouh M, Mehramiz M, Ferns GA, Khazaei M, Avan A. Therapeutic potential of toll-like receptors in treatment of gynecological cancers. IUBMB Life 2019; 71:549-564. [PMID: 30729633 DOI: 10.1002/iub.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
Toll-like receptors (TLRs) play an important role in the innate and adaptive immune system. They are expressed in various regions of the female reproductive tract, and their regulation may be involved in the pathogenesis of gynecological lesions. There is growing evidence that ligands for several TLRs are potentially anticancer agents, some of which have already been approved by the FDA, and these compounds are now undergoing clinical evaluation. There is a rationale for using these ligands as adjuvants in the treatment or prevention of gynecological cancer. Some TLR agonists that are of potential interest in the treatment of gynecological lesions include imiquimod, motolimod, cervarix, and CpG-oligodeoxynucleotides (ODNs). In this review, we outline the different functions of TLRs in gynecological cancer with particular emphasis on the value of TLR agonists as a potential therapeutic target in the treatment of gynecological cancer. © 2019 IUBMB Life, 71(5):549-564, 2019.
Collapse
Affiliation(s)
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
64
|
Halec G, Scott ME, Farhat S, Darragh TM, Moscicki AB. Toll-like receptors: Important immune checkpoints in the regression of cervical intra-epithelial neoplasia 2. Int J Cancer 2018; 143:2884-2891. [PMID: 30121951 DOI: 10.1002/ijc.31814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are innate immune defenders thought to be critical for the clearance of human papillomavirus (HPV) infections hence preventing the development of HPV-associated high-grade cervical intra-epithelial neoplasia (CIN2 or 3), a potential cervical cancer precursor. However, the role of TLRs in the regression of established cervical lesions, such as CIN2, is hindered by a lack of prospective design studies. Using SYBR green real-time PCR assays, we have examined the gene expression of TLR2, TLR3, TLR7, TLR8 and TLR9, in cytobrush collected endocervical cells of 63 women diagnosed with CIN2 at study entry (baseline) and followed over a 3-year period. Wilcoxon rank-sum test was used to examine the association between TLR expression levels, measured at baseline, and CIN2 outcome (regression vs. persistence/progression) over time. HPV genotyping was performed using Roche Linear Array Assay detecting 37 HPV types. Women with CIN2 regression showed significantly higher baseline levels of TLR2 (p = 0.006) and TLR7 (p = 0.007), as well as a non-significant trend for a higher TLR8 expression (p = 0.053) compared to women with CIN2 persistence/progression. Six women with CIN2 regression, who presented with an HR-HPV DNA-negative CIN2 lesion at study entry, had significantly higher baseline levels of TLR2 (p = 0.005), TLR7 (p = 0.013) and TLR8 (p = 0.012), compared to women with CIN2 persistence/progression, suggesting their role in clearance of HPV prior to clearance of the lesion. Our results confirm a key role of TLRs in regression of CIN2 and support the potential use of TLR-agonists for treatment of these lesions.
Collapse
Affiliation(s)
- Gordana Halec
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, CA
| | - Mark E Scott
- Department of Pediatrics, University of California, San Francisco, CA
| | - Sepideh Farhat
- Department of Pediatrics, University of California, San Francisco, CA
| | - Teresa M Darragh
- Department of Pathology, University of California, San Francisco, CA
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, CA
| |
Collapse
|
65
|
The special stemness functions of Tbx3 in stem cells and cancer development. Semin Cancer Biol 2018; 57:105-110. [PMID: 30268432 DOI: 10.1016/j.semcancer.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
The T-box factors belong to an ancient protein family, which comprises a cluster of evolutionarily-conserved transcription factors that regulate gene expression and that are crucial to embryonic development. T-box transcription factor 3 (Tbx3) is a member of this family, is expressed in some tissues, and is a key regulator in many critical organs, including the heart, mammary gland, and limbs. Overexpression of Tbx3 is associated with a number of cancers, including head and neck squamous cell carcinoma, gastric, breast, ovary, cervical, pancreatic, bladder and liver cancers, as well as melanoma. Tbx3 promotes tumor development by modulating cell proliferation, tumor formation, metastasis, cell survival and drug resistance. Moreover, there is strong evidence that Tbx3 regulates stem cell maintenance by controlling stem cell self-renewal and differentiation. Verification of the upstream regulatory factors and potential molecular mechanism of Tbx3, being able to explain the function of Tbx3 in carcinogenic effects and stem cell maintenance, will make a valuable contribution to stem cell and cancer research. This review provides an insight into the current research on Tbx3 and explores the significance of Tbx3 in stem cells and tumorigenesis.
Collapse
|