51
|
Yoo NJ, Jeong EG, Kim MS, Ahn CH, Kim SS, Lee SH. Increased Expression of Endonuclease G in Gastric and Colorectal Carcinomas. TUMORI JOURNAL 2018; 94:351-5. [DOI: 10.1177/030089160809400311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aims Endonuclease G (EndoG) is a mitochondrial protein that plays a role in DNA fragmentation during apoptosis. In addition, EndoG plays a role in cell proliferation and survival. It may be important to identify EndoG protein expression to predict its function in human cancers. The aim of this study was to explore whether alteration of EndoG expression might be a characteristic of colorectal or gastric carcinoma. Methods We investigated EndoG protein expression in 103 colorectal and 60 gastric carcinoma tissues by immunohistochemistry using a tissue microarray approach. Results Expression of EndoG was detected in 72 (70%) of the colorectal carcinomas and 41 (68%) of the gastric carcinomas in cytoplasm. By contrast, normal mucosal cells of both stomach and colon tissues showed no or very weak expression of EndoG. There was no significant association of EndoG expression with clinocopathological characteristics, including invasion, metastasis and stage. Conclusion Our data indicate that EndoG inactivation by loss of expression may not occur in colorectal and gastric cancers. Rather, increased expression of EndoG in colorectal and gastric cancer cells compared to their normal mucosal epithelial counterparts suggests that neo-expression of EndoG may play a role in both colorectal and gastric tumorigenesis.
Collapse
Affiliation(s)
- Nam Jin Yoo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Goo Jeong
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Sung Kim
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Hyeok Ahn
- Departments of General Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Soo Kim
- Departments of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
52
|
Bemani P, Mohammadi M, Hakakian A. Anti-ROR1 scFv-EndoG as a Novel Anti-Cancer Therapeutic Drug. Asian Pac J Cancer Prev 2018; 19:97-102. [PMID: 29373898 PMCID: PMC5844643 DOI: 10.22034/apjcp.2018.19.1.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Immunotoxins are proteins that consist of an antibody fragment linked to a toxin, used as agents for targeted
therapy of cancers. Although the most potent immunotoxins are made from bacterial and plant toxins, obstacles which
contribute to poor responses are immunogenicity in patients and rapid development of neutralizing antibodies. In the
present study we proposed a new therapeutic immunotoxin for targeted cancer therapy of ROR1 expressing cancers:
an anti ROR1 single chain fragment variable antibody (scFv)-endonuclease G (anti ROR1 scFv-EndoG). Methods:
The three-dimensional structure of anti ROR1 scFv-EndoG protein was modeled and structure validation tools were
employed to confirm the accuracy and reliability of the developed model. In addition, stability and integrity of the
model were assessed by molecular dynamic (MD) simulation. Results: All results suggested the protein model to
be acceptable and of good quality. Conclusions: Anti-ROR1 scFv-EndoG would be expected to bind to the ROR1
extracellular domain by its scFv portion and selectively deliver non-immunogenic human endonuclease G enzyme as
an end-stage apoptosis molecule into ROR1-expressing cancer cells and lead rapidly to apoptosis. We believe that anti
ROR1 and other anti-tumor antigen scFv-EndoG forms may be helpful for cancer therapy.
Collapse
Affiliation(s)
- Peyman Bemani
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran. ,
| | | | | |
Collapse
|
53
|
Ding Y, Yang Z, Zhang W, Xu Y, Wang Y, Hu M, Ma F, Long H, Tao N, Qin Z. Eugenol triggers CD11b+Gr1+myeloid-derived suppressor cell apoptosisviaendogenous apoptosis pathway. RSC Adv 2018; 8:3833-3838. [PMID: 35542913 PMCID: PMC9077712 DOI: 10.1039/c7ra13499a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
To study the effect and underlying molecular mechanism of eugenol on CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs). The effect of eugenol on the inhibition of immortalized MDSC cell line MSC-2 and murine peritoneal macrophages was detected by MTT. Flow cytometry was used to detect the pro-apoptosis effect of eugenol on MDSCs. The expression levels of apoptosis-related proteins were detected by western blot. Eugenol has a selective inhibitory effect on MDSCs in a dose-dependent manner, which activates an endogenous apoptosis pathway, leading to apoptosis. Eugenol promotes the apoptosis of MDSCs via the intrinsic pathway. To study the effect and underlying molecular mechanism of eugenol on CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs).![]()
Collapse
Affiliation(s)
- Ying Ding
- School of Basic Medical Sciences of Southwest Medical University
- Luzhou
- China
| | - Zecheng Yang
- College of Life Science
- University of the Chinese Academy of Sciences
- Beijing
- China
| | - Wensheng Zhang
- Department of Microbiology and Immunology
- Shanxi Medical University
- Taiyuan
- China
| | - Yuwei Xu
- College of Life Science
- University of the Chinese Academy of Sciences
- Beijing
- China
| | - Yuanyuan Wang
- Infinitus Chinese Herbal Immunity Research Centre
- Infinitus China Company Ltd
- Guangzhou
- China
| | - Minghua Hu
- Infinitus Chinese Herbal Immunity Research Centre
- Infinitus China Company Ltd
- Guangzhou
- China
| | - Fangli Ma
- Infinitus Chinese Herbal Immunity Research Centre
- Infinitus China Company Ltd
- Guangzhou
- China
| | - Hanan Long
- Department of Pathology
- The Affiliated Hospital of Southwest Medical University
- Luzhou
- China
- Department of Science and Technology
| | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhihai Qin
- School of Basic Medical Sciences of Southwest Medical University
- Luzhou
- China
- Key Laboratory of Protein and Peptide Pharmaceuticals
- Institute of Biophysics
| |
Collapse
|
54
|
Alqudah MAY, Mansour HT, Mhaidat N. Simvastatin enhances irinotecan-induced apoptosis in prostate cancer via inhibition of MCL-1. Saudi Pharm J 2017; 26:191-197. [PMID: 30166915 PMCID: PMC6111232 DOI: 10.1016/j.jsps.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors around the world. Hyperlipidemia is considered as one of the most important risk factors for the development of prostate cancer. Simvastatin is widely used for the treatment of hyperlipidemia and was previously shown to induce apoptosis in several cancer types including lung, colon, pancreas, breast, and prostate cancer. In this study we aimed to explore the potential role of simvastatin in enhancing irinotecan-induced apoptosis in prostate cancer cells. In addition, the underlying molecular mechanisms driving this potential effect of simvastatin were also explored. PC3 cells were treated with simvastatin, irinotecan or combination. Cell viability was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay. Flow cytometry technique was used to analyze apoptosis and cell cycle progression. Western blot was used for detection of protein expression. Results showed that simvastatin has a significant anti-proliferative activity on PC3 cells. Combined treatment of simvastatin with irinotecan exhibited a significant inhibition of PC3 cell growth compared to each treatment alone. Flow cytometry analysis showed that PC3 cell treatment with simvastatin and irinotecan combination demonstrated a remarkable increase in the percentage of apoptotic cells and those accumulated at G0/G1 phase when compared to each treatment alone. Moreover, induction of apoptosis was caspase-independent. Western blot showed that apoptosis was accompanied by upregulation of GRP-78 level and downregulation of Mcl-1 levels in a time-dependent manner. The results of this study demonstrated that combined treatment of simvastatin with chemotherapeutic agents such as irinotecan resulted in enhancement of growth inhibition and induction of prostate cancer cell apoptosis.
Collapse
Affiliation(s)
- Mohammad A Y Alqudah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hebah T Mansour
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nizar Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
55
|
Springer JE, Visavadiya NP, Sullivan PG, Hall ED. Post-Injury Treatment with NIM811 Promotes Recovery of Function in Adult Female Rats after Spinal Cord Contusion: A Dose-Response Study. J Neurotrauma 2017; 35:492-499. [PMID: 28967329 DOI: 10.1089/neu.2017.5167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial homeostasis is essential for maintaining cellular function and survival in the central nervous system (CNS). Mitochondrial function is significantly compromised after spinal cord injury (SCI) and is associated with accumulation of high levels of calcium, increased production of free radicals, oxidative damage, and eventually mitochondrial permeability transition (mPT). The formation of the mPT pore (mPTP) and subsequent mPT state are considered to be end stage events in the decline of mitochondrial integrity, and strategies that inhibit mPT can limit mitochondrial demise. Cyclosporine A (CsA) is thought to inhibit mPT by binding to cyclophilin D and has been shown to be effective in models of CNS injury. CsA, however, also inhibits calcineurin, which is responsible for its immunosuppressive properties. In the present study, we conducted a dose-response examination of NIM811, a nonimmunosuppressive CsA analog, on recovery of function and tissue sparing in a rat model of moderate to severe SCI. The results of our experiments revealed that NIM811 (10 mg/kg) significantly improved open field locomotor performance, while the two higher doses tested (20 and 40 mg/kg) significantly improved return of reflexive bladder control and significantly decreased the rostral-caudal extent of the lesion. Taken together, these results demonstrate the ability of NIM811 to improve recovery of function in SCI and support the role of protecting mitochondrial function as a potential therapeutic target.
Collapse
Affiliation(s)
- Joe E Springer
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Nishant P Visavadiya
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| | - Edward D Hall
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center , Lexington, Kentucky
| |
Collapse
|
56
|
Le Y, Jia P, Jin Y, Liu W, Jia K, Yi M. The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. FISH & SHELLFISH IMMUNOLOGY 2017; 70:185-194. [PMID: 28860076 DOI: 10.1016/j.fsi.2017.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 05/07/2023]
Abstract
Heat shock protein 27 (HSP27), functioning as a stress induced protective protein, has been reported to participate in various biological processes, including apoptosis, thermal protection, and virus infection. In this study, a HSP27-like gene from the seawater fish sea perch, designated as LjHSP27, was characterized. The 1361 bp full-length cDNA of LjHSP27 encoded a 221 amino acid protein containing a conserved α-crystallin domain, two variable amino- and carboxy-terminal extensions, a WD/EPF motif, two serine phosphorylation sites, and two putative actin binding regions. Phylogenetic analysis showed that LjHSP27 shared the closest genetic relationship with HSP27 of the Asian seabass Lates calcarifer. LjHSP27 mRNA was ubiquitously expressed in all tissues examined, but significantly up-regulated in spleen and kidney and down-regulated in brain post red spotted grouper nervous necrosis virus (RGNNV) infection. In vitro, LjHSP27 transcript was remarkably reduced post RGNNV infection, but rapidly increased after polyinosinic-polycytidylic acid treatment. Up-regulation and down-regulation of LjHSP27 inhibited and promoted RGNNV replication in cultured LJB cells, respectively. Luciferase assay indicated that LjHSP27 could enhance the promoter activities of zebrafish interferon (IFN)1 and IFN3, suggesting its potential role in innate immune responses. Moreover, overexpression of LjHSP27 inhibited RGNNV-induced apoptosis, as indicated by the up-regulation of anti-apoptotic genes and down-regulation of pro-apoptotic genes, while KNK437 caused down-regulation of LjHSP27 dramatically led to opposite results, suggesting that LjHSP27 might exert its anti-RGNNV activities by regulating the apoptosis signaling pathway. Our results would provide a new insight into the underlying molecular mechanism of HSP and RGNNV interaction.
Collapse
Affiliation(s)
- Yao Le
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
57
|
Purohit MP, Verma NK, Kar AK, Singh A, Ghosh D, Patnaik S. Inhibition of Thioredoxin Reductase by Targeted Selenopolymeric Nanocarriers Synergizes the Therapeutic Efficacy of Doxorubicin in MCF7 Human Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36493-36512. [PMID: 28945070 DOI: 10.1021/acsami.7b07056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing evidence suggests selenium nanoparticles (Se NPs) as potential cancer therapeutic agents and emerging drug delivery carriers, yet, the molecular mechanism of their anticancer activity still remains unclear. Recent studies indicate thioredoxin reductase (TrxR), a selenoenzyme, as a promising target for anticancer therapy. The present study explored the TrxR inhibition efficacy of Se NPs as a plausible factor impeding tumor growth. Hyaluronic acid (HA)-functionalized selenopolymeric nanocarriers (Se@CMHA NPs) were designed wielding chemotherapeutic potential for target specific Doxorubicin (DOX) delivery. Se@CMHA nanocarriers are thoroughly characterized asserting their chemical and physical integrity and possess prolonged stability. DOX-loaded selenopolymeric nanocarriers (Se@CMHA-DOX NPs) exhibited enhanced cytotoxic potential toward human cancer cells compared to free DOX in an equivalent concentration eliciting its selectivity. In first-of-its-kind findings, selenium as Se NPs in these polymeric carriers progressively inhibit TrxR activity, further augmenting the anticancer efficacy of DOX through a synergistic interplay between DOX and Se NPs. Detailed molecular studies on MCF7 cells also established that upon exposure to Se@CMHA-DOX NPs, MCF7 cells endure G2/M cell cycle arrest and p53-mediated caspase-independent apoptosis. To gauge the relevance of the developed nanosystem in in vivo settings, three-dimensional tumor sphere model mimicking the overall tumor environment was also performed, and the results clearly depict the effectiveness of our nanocarriers in reducing tumor activity. These findings are reminiscent of the fact that our Se@CMHA-DOX NPs could be a viable modality for effective cancer chemotherapy.
Collapse
Affiliation(s)
- Mahaveer P Purohit
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| | - Neeraj K Verma
- BBD University, School of Dental Sciences , Faizabad Road, Lucknow 226028, Uttar Pradesh, India
| | - Aditya K Kar
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| | | | - Debabrata Ghosh
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus , Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
58
|
Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani. Sci Rep 2017; 7:10488. [PMID: 28874760 PMCID: PMC5585245 DOI: 10.1038/s41598-017-10041-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N’,N’-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.
Collapse
|
59
|
Won SJ, Yen CH, Hsieh HW, Chang SW, Lin CN, Huang CYF, Su CL. Using connectivity map to identify natural lignan justicidin A as a NF-κB suppressor. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
60
|
Finiuk N, Boiko N, Klyuchivska O, Коbylinska L, Kril I, Zimenkovsky B, Lesyk R, Stoika R. 4-Thiazolidinone derivative Les-3833 effectively inhibits viability of human melanoma cells through activating apoptotic mechanisms. Croat Med J 2017; 58:129-139. [PMID: 28409496 PMCID: PMC5410740 DOI: 10.3325/cmj.2017.58.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim To evaluate cytotoxic action of 4-thiazolidinone derivative Les-3833 and study the mechanisms of its pro-apoptotic action toward human melanoma cells and human tumor cell lines of other tissue origin. Methods The effect of Les-3833 or doxorubicin on the viability of 9 cell lines was studied using MTT assay, while human melanoma cells of WM793 line were additionally examined using light and fluorescent microscopies for evaluating cytomorphological changes. The Western-blot and flow cytometric analyses were carried out to study signaling pathways of melanoma cell cycling and death. Results Les-3833 was the most efficient against melanoma cells. Its half maximal inhibitory concentration (IC50) was 0.22 μg/mL for WM793 cells and 0.3 μg/mL for SK-Mel-28 melanoma cells. For human lung A549, breast MCF-7, colon HCT116, and ovarian SKOV3 carcinoma cell lines IC50 was in between 2.5 to >5.0 μg/mL. Les-3833 was relatively not toxic (IC50 ˃ 5 μg/mL) for human embryonic kidney HEK293 cells. Results of Annexin V/PI staining of melanoma cells and activation of caspase 3, PARP, MAPK, and EndoG protein suggest apoptosis in Les-3833-treated cells. Les-3833 also induced ROS production in melanoma cells and their arrest in G0/G1 phase of cell cycle. Conclusion Novel 4-thiazolidinone derivative Les-3833 is effective against human melanoma cells in vitro, and such effect is tumor specific since it is much less pronounced in human carcinoma and leukemia cells. In melanoma cells Les-3833 induces apoptosis (morphological changes and increased pro-apoptotic proteins), ROS production, and arrest in G0/G1 phase of cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rostyslav Stoika
- Rostyslav Stoika, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine,
| |
Collapse
|
61
|
Li Z, Fan EK, Liu J, Scott MJ, Li Y, Li S, Xie W, Billiar TR, Wilson MA, Jiang Y, Wang P, Fan J. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma. Cell Death Dis 2017; 8:e2775. [PMID: 28492546 PMCID: PMC5584526 DOI: 10.1038/cddis.2017.187] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mϕ) direct trauma-induced inflammation, and Mϕ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mϕ and the subsequent regulation of Mϕ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)–TLR4–MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mϕ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mϕ. However, autophagy activation also suppressed Mϕ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mϕ homeostasis in response to trauma.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Erica K Fan
- University of Pittsburgh School of Arts and Science, Pittsburgh, PA 15213, USA
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Song Li
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Mark A Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
62
|
Chen CH, Chen MF, Huang SJ, Huang CY, Wang HK, Hsieh WC, Huang CH, Liu LF, Shiu LY. Saikosaponin a Induces Apoptosis through Mitochondria-Dependent Pathway in Hepatic Stellate Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:351-368. [PMID: 28231747 DOI: 10.1142/s0192415x17500227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Saikosaponin a (SSa) is one of the main active components of Bupleurum falcatum. It is commonly used to treat liver injury and fibrosis in traditional Chinese medicine. Our previous study showed that SSa induces apoptosis and inhibits the proliferation of rat hepatic stellate cell (HSC) line HSC-T6. The aim of the present study was to elucidate the mechanism of SSa-mediated apoptosis. Rat HSC cell line HSC-T6 and human HSC cell line LX-2 were used in this study. SSa triggered cell death mainly by apoptosis, as indicated by the typical morphological changes, sub-G1 phase of cell cycle increase, and activation of the caspase-9/caspase-3 cascade. In addition, SSa-induced apoptosis was partially inhibited by the caspase-3 inhibitor Z-DEVD-FMK, suggesting an involvement of caspase-3 dependent and independent pathways. Moreover, SSa upregulated pro-apoptotic proteins [BAK, Bcl-2-associated death promoter (BAD), and p53 upregulated modulator of apoptosis (PUMA)] and downregulated anti-apoptotic proteins (Bcl-2). In the mitochondria, SSa triggered the translocation of BAX and BAK from the cytosol to the outer membrane, resulting in a reduction of mitochondrial functions and membrane potential and subsequent release of apoptotic factors. Therefore, this study demonstrates that SSa induces apoptosis through the intrinsic mitochondrial-dependent pathway in HSCs.
Collapse
Affiliation(s)
- Chang-Han Chen
- * Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- † Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- ‡ Department of Applied Chemistry and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan
| | - Ming-Feng Chen
- § Department of Gastroenterology and Hepatology, E-Da Hospital, Kaohsiung, Taiwan
- ¶ Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - S Joseph Huang
- ∥ Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- ¶¶ Department of Obstetrics and Gynecology, University of South Florida, College of Medicine, Tampa, Florida
| | - Chun-Yen Huang
- ∥ Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hao-Kuang Wang
- ** Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Chuan Hsieh
- †† Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hao Huang
- ∥∥ Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
- *** Laboratory of Animal Center, Department of Medical Research and Development, Show Chwan Health Care System, Changhua, Taiwan
| | - Li-Feng Liu
- ‡‡ School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- §§ Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- ††† Cell Therapy and Research Center, Department of Medical Research, E-Da Cancer Hospital, Kaohsiung, Taiwan
| |
Collapse
|
63
|
Reshi L, Wang HV, Hui CF, Su YC, Hong JR. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells. FISH & SHELLFISH IMMUNOLOGY 2017; 61:120-129. [PMID: 28025159 DOI: 10.1016/j.fsi.2016.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability.
Collapse
Affiliation(s)
- Latif Reshi
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC; Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Hua-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Cho-Fat Hui
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Yu-Chin Su
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Lab of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC; Department of Biotechnology and Bioindustry, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan, ROC.
| |
Collapse
|
64
|
Balandin SV, Emelianova AA, Kalashnikova MB, Kokryakov VN, Shamova OV, Ovchinnikova TV. Molecular mechanisms of antitumor effect of natural antimicrobial peptides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Non-Canonical Cell Death Induced by p53. Int J Mol Sci 2016; 17:ijms17122068. [PMID: 27941671 PMCID: PMC5187868 DOI: 10.3390/ijms17122068] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.
Collapse
|
66
|
Mazzolini G, Sowa JP, Canbay A. Cell death mechanisms in human chronic liver diseases: a far cry from clinical applicability. Clin Sci (Lond) 2016; 130:2121-2138. [DOI: 10.1042/cs20160035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The liver is constantly exposed to a host of injurious stimuli. This results in hepatocellular death mainly by apoptosis and necrosis, but also due to autophagy, necroptosis, pyroptosis and in some cases by an intricately balanced combination thereof. Overwhelming and continuous cell death in the liver leads to inflammation, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Although data from various disease models may suggest a specific (predominant) cell death mode for different aetiologies, the clinical reality is not as clear cut. Reliable and non-invasive cell death markers are not available in general practice and assessment of cell death mode to absolute certainty from liver biopsies does not seem feasible, yet. Various aetiologies probably induce different predominant cell death modes within the liver, although the death modes involved may change during disease progression. Moreover, current methods applicable in patients are limited to surrogate markers for apoptosis (M30), and possibly for pyroptosis (IL-1 family) and necro(pto)sis (HMGB1). Although markers for some death modes are not available at all (autophagy), others may not be specific for a cell death mode or might not always definitely indicate dying cells. Physicians need to take care in asserting the presence of cell death. Still the serum-derived markers are valuable tools to assess severity of chronic liver diseases. This review gives a short overview of known hepatocellular cell death modes in various aetiologies of chronic liver disease. Also the limitations of current knowledge in human settings and utilization of surrogate markers for disease assessment are summarized.
Collapse
Affiliation(s)
- Guillermo Mazzolini
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
- Gene Therapy Laboratory, Instituto de Investigaciones Medicas Aplicadas, Universidad Austral-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Pilar Centro, Buenos Aires, Argentina
| | - Jan-Peter Sowa
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Ali Canbay
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
67
|
Santos S, Silva AM, Matos M, Monteiro SM, Álvaro AR. Copper induced apoptosis in Caco-2 and Hep-G2 cells: Expression of caspases 3, 8 and 9, AIF and p53. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:138-146. [PMID: 27046389 DOI: 10.1016/j.cbpc.2016.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/13/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
Abstract
Copper (Cu) is an essential trace metal needed to ensure cell function. However, when present at high concentrations it becomes toxic to organisms. Cell death, induced by toxic levels of copper, was previously observed in in vitro studies. However, there is no consensus about the cell death pathway induced by Cu and it is still not known whether this occurs as a result of the direct action of the metal or by indirect effects. In the present work, we intend to identify the influence of different Cu concentrations in the induction of apoptosis and to explore the potential signaling pathways, using two different in vitro cell culture models (Caco-2 and Hep-G2). Cells were exposed, during 6, 12, 24 and 48h, to Cu concentrations corresponding to IC50 and 1/8 of IC50, according to the viability assays. Then, considering the different apoptosis pathways, the expression of caspases 3, 8 and 9, apoptosis inducing factor (AIF) and p53 genes was analyzed by quantitative real time PCR. The results suggested that different Cu concentrations could trigger different apoptotic pathways, at different times of exposure. In both cell lines, apoptosis seems to be initiated by caspase independent pathway and intrinsic pathway, followed by extrinsic pathway. In conclusion, this study demonstrates that Cu induces the activation of apoptosis through caspase dependent and independent pathways, also suggesting that apoptosis activation mechanism is dependent on the concentration, time of exposure to Cu and cell type.
Collapse
Affiliation(s)
- Stefanie Santos
- University of Trás-os-Montes and Alto Douro (UTAD), School of Life Sciences and Environment, Department of Biology and Enviroment, Quinta de Prados, 5001-801 Vila Real, Portugal.
| | - Amélia M Silva
- University of Trás-os-Montes and Alto Douro (UTAD), School of Life Sciences and Environment, Department of Biology and Enviroment, Quinta de Prados, 5001-801 Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Quinta de Prados, 5001-801 Vila Real, Portugal; Institute of Biotechnology and Bioengineering, Centre of Genomic and Biotechnology (IBB/CGB), Department of Genetic and Biotechnology (DGB), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Sandra M Monteiro
- University of Trás-os-Montes and Alto Douro (UTAD), School of Life Sciences and Environment, Department of Biology and Enviroment, Quinta de Prados, 5001-801 Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Quinta de Prados, 5001-801 Vila Real, Portugal.
| | - Ana R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504 Coimbra, Portugal.
| |
Collapse
|
68
|
Won SJ, Lin TY, Yen CH, Tzeng YH, Liu HS, Lin CN, Yu CH, Wu CS, Chen JT, Chen YT, Huang CYF, Su CL. A novel natural tautomeric pair of garcinielliptone FC suppressed nuclear factor κB and induced apoptosis in human colorectal cancer cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
69
|
Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B. Research Advances on Pathways of Nickel-Induced Apoptosis. Int J Mol Sci 2015; 17:E10. [PMID: 26703593 PMCID: PMC4730257 DOI: 10.3390/ijms17010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University Ya'an, Ya'an 625014, China.
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
70
|
Hugle M, Belz K, Fulda S. Identification of synthetic lethality of PLK1 inhibition and microtubule-destabilizing drugs. Cell Death Differ 2015; 22:1946-56. [PMID: 26024389 PMCID: PMC4816114 DOI: 10.1038/cdd.2015.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is frequently overexpressed in cancer, which correlates with poor prognosis. Therefore, we investigated PLK1 as therapeutic target using rhabdomyosarcoma (RMS) as a model. Here, we identify a novel synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drugs in preclinical RMS models and elucidate the underlying molecular mechanisms of this synergism. PLK1 inhibitors (i.e., BI 2536 and BI 6727) synergistically induce apoptosis together with microtubule-destabilizing drugs (i.e., vincristine (VCR), vinblastine (VBL) and vinorelbine (VNR)) in several RMS cell lines (combination index <0.9) including a patient-derived primary RMS culture. Importantly, PLK1 inhibitors and VCR cooperate to significantly suppress RMS growth in two in vivo models, including a mouse xenograft model, without causing additive toxicity. In addition, no toxicity was observed in non-malignant fibroblast or myoblast cultures. Mechanistically, BI 2536/VCR co-treatment triggers mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by BAX/BAK activation, production of reactive oxygen species (ROS) and activation of caspase-dependent or caspase-independent effector pathways. This conclusion is supported by data showing that BI 2536/VCR-induced apoptosis is significantly inhibited by preventing cells to enter mitosis, by overexpression of BCL-2 or a non-degradable MCL-1 mutant, by BAK knockdown, ROS scavengers, caspase inhibition or endonuclease G silencing. This identification of a novel synthetic lethality of PLK1 inhibitors and microtubule-destabilizing drugs has important implications for developing PLK1 inhibitor-based combination treatments.
Collapse
Affiliation(s)
- M Hugle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - K Belz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
71
|
Stehle A, Hugle M, Fulda S. Eribulin synergizes with Polo-like kinase 1 inhibitors to induce apoptosis in rhabdomyosarcoma. Cancer Lett 2015; 365:37-46. [PMID: 25917079 DOI: 10.1016/j.canlet.2015.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/29/2023]
Abstract
Eribulin, a novel microtubule-interfering drug, was recently shown to exhibit high antitumor activity in vivo against various pediatric cancers. Here, we identify a novel synthetic lethal interaction of Eribulin together with Polo-like kinase 1 (PLK1) inhibitors against rhabdomyosarcoma (RMS) in vitro and in vivo. Eribulin and the PLK1 inhibitor BI 2536 at subtoxic concentrations synergize to induce apoptosis in RMS cells as confirmed by calculation of combination index (CI). Also, Eribulin/BI 2536 co-treatment is significantly more effective than monotherapy to reduce cell viability and inhibit colony formation of RMS cells. Similarly, Eribulin and BI 2536 act in concert to trigger apoptosis in a primary, patient-derived ARMS culture, underscoring the clinical relevance of this combination. Importantly, Eribulin and BI 2536 cooperate to suppress tumor growth in an in vivo model of RMS. On molecular grounds, Eribulin/BI 2536 co-treatment causes profound mitotic arrest, which is critically required for synergism, since inhibition of mitotic arrest by CDK1 inhibitor RO-3306 abolishes Eribulin/BI 2536-mediated apoptosis. Eribulin and BI 2536 cooperate to activate caspase-9, -3 and -8, which is necessary for apoptosis induction, since the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) reduces Eribulin/BI 2536-induced apoptosis significantly, yet partially. Intriguingly, knockdown of endonuclease G (ENDOG) also significantly inhibits Eribulin/BI 2536-triggered apoptosis, demonstrating the involvement of both caspase-dependent and -independent effector pathways. Synergistic induction of apoptosis is similarly found for Eribulin/BI 2536 co-treatment in neuroblastoma cells and for the combination of vincristine (another antimicrotubule chemotherapeutic) with Poloxin (another PLK1 inhibitor), thus pointing to a broader significance of this concomitant microtubule- and PLK1-targeting strategy for pediatric oncology. In conclusion, the identification of a novel synthetic lethality by dual targeting of mitosis using microtubule-interfering and PLK1-targeted drugs, i.e. Eribulin and BI 2536, has important implications for the development of more effective treatment strategies for RMS.
Collapse
Affiliation(s)
- Angelika Stehle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany
| | - Manuela Hugle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
72
|
Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary. PLoS One 2015. [PMID: 26225758 PMCID: PMC4520666 DOI: 10.1371/journal.pone.0134694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a known regulator of morphogenetic events. In mammals, the critical role of oxidative stress-induced apoptosis has been well-studied; however, in insects the role of oxidative stress in apoptosis is not clear. In a previous study, we showed that apoptosis-related genes are present in the silkworm Bombyx mori, an important lepidopteran insect model. In this study, we evaluated the effect of H2O2-induced oxidative stress on apoptosis, reactive oxygen species (ROS) levels, mitochondrial response, cytochrome c release and apoptosis-related gene expression in the BmN-SWU1 cell line from B. mori ovaries. Our results showed that BmN-SWU1 cells exposed to H2O2 showed cell protuberances, cytoplasmic condensation, apoptotic bodies, DNA ladder formation and caspase activities indicating apoptosis. H2O2-induced apoptosis also increased intracellular ROS level, changed mitochondrial distribution, reduced mitochondrial membrane potential and increased the release of cytochrome c from mitochondria. Furthermore, western blot analysis revealed a significant increase in p53 and cytochrome c expression, and a decrease in Bcl-2 expression compared to the controls. Moreover, quantitative real-time PCR (qRT-PCR) showed an increase in the transcript levels of BmICE, Bmapaf-1 and BmEndoG by 439.5%, 423.9% and 42.2%, respectively, after treatment with 1 μM H2O2 for 24 h. However, the transcript levels of Bmbuffy declined by 41.4% after 24 h of exposure to 1 μM H2O2. These results show that H2O2 treatment induced apoptosis in BmN-SWU1 cells via the mitochondrial apoptotic pathway. Further, it appears that oxidative stress induced by H2O2 activates both caspase-dependent and caspase-independent mitochondrial apoptotic pathways in silkworm cells. Taken together, these findings improve our knowledge of apoptosis in silkworm and the apoptotic pathways in insects.
Collapse
|
73
|
Frión-Herrera Y, Díaz-García A, Ruiz-Fuentes J, Rodríguez-Sánchez H, Sforcin JM. Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway. ACTA ACUST UNITED AC 2015. [PMID: 26206395 DOI: 10.1111/jphp.12449] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. METHODS Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. KEY FINDINGS Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. CONCLUSIONS Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer.
Collapse
Affiliation(s)
- Yahima Frión-Herrera
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, São Paulo, Brazil
| | - Alexis Díaz-García
- Laboratories of Biofarmaceuticals and Chemistries Productions (LABIOFAM), Havana, Cuba
| | | | | | - José Maurício Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
74
|
Troadec S, Blairvacq M, Oumata N, Galons H, Meijer L, Berthou C. Antitumoral effects of cyclin-dependent kinases inhibitors CR8 and MR4 on chronic myeloid leukemia cell lines. J Biomed Sci 2015; 22:57. [PMID: 26184865 PMCID: PMC4504225 DOI: 10.1186/s12929-015-0163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022] Open
Abstract
Background Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving clinical response and overcoming resistance. Results In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent inducers of growth arrest and apoptosis of both Imatinib-sensitive and –resistant chronic myeloid leukemia cell lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10 and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin which are strongly implicated in survival of Bcr-Abl transformed cells. Conclusions These results suggest that CDK inhibitors may constitute a complementary approach to treat chronic myeloid leukemia. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0163-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel Troadec
- Laboratoire de Thérapie Cellulaire et Immunobiologie du Cancer, Université de Bretagne Occidentale, CHRU Morvan, 5 avenue Foch, 29609, Brest Cedex, France. .,Current address: Institut Universitaire Technologique, Département de Génie Biologique, Brest, France.
| | - Mélina Blairvacq
- "Protein Phosphorylation and Human Diseases" Group, CNRS, USR3151, Station Biologique, Roscoff, France.
| | - Nassima Oumata
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff, France.
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 Inserm, 4 avenue de l'Observatoire, Paris, France.
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff, France.
| | - Christian Berthou
- Laboratoire de Thérapie Cellulaire et Immunobiologie du Cancer, Université de Bretagne Occidentale, CHRU Morvan, 5 avenue Foch, 29609, Brest Cedex, France.
| |
Collapse
|
75
|
Zhdanov DD, Fahmi T, Wang X, Apostolov EO, Sokolov NN, Javadov S, Basnakian AG. Regulation of Apoptotic Endonucleases by EndoG. DNA Cell Biol 2015; 34:316-26. [PMID: 25849439 PMCID: PMC4426297 DOI: 10.1089/dna.2014.2772] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/12/2022] Open
Abstract
Cells contain several apoptotic endonucleases, which appear to act simultaneously before and after cell death by destroying the host cell DNA. It is largely unknown how the endonucleases are being induced and whether they can regulate each other. This study was performed to determine whether apoptotic mitochondrial endonuclease G (EndoG) can regulate expression of other apoptotic endonucleases. The study showed that overexpression of mature EndoG in kidney tubular epithelial NRK-52E cells can increase expression of caspase-activated DNase (CAD) and four endonucleases that belong to DNase I group including DNase I, DNase X, DNase IL2, and DNase γ, but not endonucleases of the DNase 2 group. The induction of DNase I-type endonucleases was associated with DNA degradation in promoter/exon 1 regions of the endonuclease genes. These results together with findings on colocalization of immunostained endonucleases and TUNEL suggest that DNA fragmentation after EndoG overexpression was caused by DNase I endonucleases and CAD in addition to EndoG itself. Overall, these data provide first evidence for the existence of the integral network of apoptotic endonucleases regulated by EndoG.
Collapse
Affiliation(s)
- Dmitry D. Zhdanov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tariq Fahmi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaoying Wang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eugene O. Apostolov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nikolai N. Sokolov
- Laboratory of Medical Biotechnology, V.N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Renal Medicine Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
76
|
Liese J, Abhari BA, Fulda S. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells. Cancer Lett 2015; 365:47-56. [PMID: 25917078 DOI: 10.1016/j.canlet.2015.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.
Collapse
Affiliation(s)
- Juliane Liese
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; General and Visceral Surgery, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
77
|
Licochalcone-A induces intrinsic and extrinsic apoptosis via ERK1/2 and p38 phosphorylation-mediated TRAIL expression in head and neck squamous carcinoma FaDu cells. Food Chem Toxicol 2015; 77:34-43. [PMID: 25572524 DOI: 10.1016/j.fct.2014.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023]
Abstract
We investigated Licochalcone-A (Lico-A)-induced apoptosis and the pathway underlying its activity in a pharyngeal squamous carcinoma FaDu cell line. Lico-A purified from root of Glycyrrhiza inflata had cytotoxic effects, significantly increasing cell death in FaDu cells. Using a cell viability assay, we determined that the IC50 value of Lico-A in FaDu cells was approximately 100 µM. Chromatin condensation was observed in FaDu cells treated with Lico-A for 24 h. Consistent with this finding, the number of apoptotic cells increased in a time-dependent manner when FaDu cells were treated with Lico-A. TRAIL was significantly up-regulated in Lico-A-treated FaDu cells in a dose-dependent manner. Apoptotic factors such as caspases and PARP were subsequently activated in a caspase-dependent manner. In addition, levels of pro-apoptotic factors increased significantly in response to Lico-A treatment, while levels of anti-apoptotic factors decreased. Lico-A-induced TRAIL expression was mediated in part by a MAPK signaling pathway involving ERK1/2 and p38. In xenograft mouse model, Lico-A treatment effectively suppressed the growth of FaDu cell xenografts by activating caspase-3, without affecting the body weight of mice. Taken together, these data suggest that Lico-A has potential chemopreventive effects and should therefore be developed as a chemotherapeutic agent for pharyngeal squamous carcinoma.
Collapse
|
78
|
Su CL, Wang YT, Chang MH, Fang K, Chen K. The novel heterocyclic trioxirane [(1,3,5-tris oxiran-2-yl)methyl)-1,3,5-triazinane-2,4,6-trione (TATT)] exhibits a better anticancer effect than platinum-based chemotherapy by induction of apoptosis and curcumin further enhances its chemosensitivity. Cell Biochem Biophys 2014; 68:597-609. [PMID: 24078402 DOI: 10.1007/s12013-013-9752-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heterocyclic trioxirane compound [1,3,5-tris((oxiran-2-yl)methyl)-1,3,5-triazinane-2,4,6-trione (TATT)] is a synthetic compound which has been used as an experimental anticancer agent in human clinical trials. Curcumin, an active natural compound in turmeric and curry, is an ingredient commonly used in the traditional diet of many Asian countries. In the present study, we observed that TATT exhibited a better anticancer effect on chemoresistant human colorectal cancer HT-29 cells and displayed less cytotoxicity on normal human umbilical vein endothelial cells, compared with FDA-approved anticancer drugs (cisplatin, carboplatin, or oxaliplatin) using MTT assay. TATT also induced a stronger apoptotic effect than that seen with the three studied anticancer drugs, as characterized by externalization of phosphatidylserine using flow cytometry. Administration of caspase 8-specific inhibitor (z-IETD-fmk) and mitochondrial permeability transition pore inhibitor (cyclosporin A) demonstrated that TATT-induced apoptosis proceeded via both extrinsic and intrinsic signaling pathways. It is noteworthy that coadministration of curcumin further significantly increased TATT-induced cytotoxicity, externalization of phosphatidylserine (representing early apoptosis), and the percentages of cells at the sub-G1 phase (representing late apoptosis), producing an additivity and/or synergistic effect, and vice versa. Suppression of nuclear NF-κB was involved in curcumin-enhanced chemosensitivity of TATT. Overall, our data indicate that TATT exerts a chemotherapeutic effect on colorectal cancer cells and coadministration of curcumin enhances the treatment effect of TATT.
Collapse
Affiliation(s)
- Chun-Li Su
- Department of Human Development and Family Studies, National Taiwan Normal University, No. 162, Sec. 1, He-ping East Road, Taipei, 106, Taiwan,
| | | | | | | | | |
Collapse
|
79
|
Allen TEH, Goodman JM, Gutsell S, Russell PJ. Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. Chem Res Toxicol 2014; 27:2100-12. [DOI: 10.1021/tx500345j] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Timothy E. H. Allen
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan M. Goodman
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Steve Gutsell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Paul J. Russell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| |
Collapse
|
80
|
Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:639856. [PMID: 25530785 PMCID: PMC4235187 DOI: 10.1155/2014/639856] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 01/24/2023]
Abstract
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Collapse
|
81
|
Robertson AB, Robertson J, Fusser M, Klungland A. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. Nucleic Acids Res 2014; 42:13280-93. [PMID: 25355512 PMCID: PMC4245937 DOI: 10.1093/nar/gku1032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG). We show that recombinant EndoG preferentially recognizes and cleaves a core sequence when one specific cytosine within that core sequence is hydroxymethylated. Additionally, we provide in vivo evidence that EndoG catalyzes the formation of double-stranded DNA breaks and that this cleavage is dependent upon the core sequence, EndoG and 5hmC. Finally, we demonstrate that the 5hmC modification can promote conservative recombination in an EndoG-dependent manner.
Collapse
Affiliation(s)
- Adam B Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Julia Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
82
|
Gupta S, Verma DK, Biswas J, Rama Raju KS, Joshi N, Wahajuddin, Singh S. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation. Free Radic Biol Med 2014; 73:278-90. [PMID: 24882422 DOI: 10.1016/j.freeradbiomed.2014.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/13/2014] [Accepted: 05/19/2014] [Indexed: 11/24/2022]
Abstract
This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms.
Collapse
Affiliation(s)
- Sonam Gupta
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Dinesh Kumar Verma
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Joyshree Biswas
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - K Siva Rama Raju
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Neeraj Joshi
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Wahajuddin
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sarika Singh
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
83
|
Shin DI, Oh YJ. Tumor Necrosis Factor-Associated Protein 1 (TRAP1) is Released from the Mitochondria Following 6-hydroxydopamine Treatment. Exp Neurobiol 2014; 23:65-76. [PMID: 24737941 PMCID: PMC3984958 DOI: 10.5607/en.2014.23.1.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Most cases are sporadic and its etiology is incompletely understood. However, increasing evidence suggests that oxidative stress and mitochondrial dysfunction may be involved in the pathogenesis of Parkinson's disease. The aim of this study was to investigate changes in mitochondrial protein profiles during dopaminergic neuronal cell death using two-dimensional gel electrophoresis in conjunction with mass spectrometry. Several protein spots were found to be significantly altered following treatment of MN9D dopaminergic neuronal cells with 6-hydroxydopamine (6-OHDA). Among several identified candidates, TNF receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone, was released from the mitochondria into the cytosol in MN9D cells as well as primary cultures of dopaminergic neurons following 6-OHDA treatment. This event was drug-specific in that such apoptotic inducers as staurosporine and etoposide did not cause translocation of TRAP1 into the cytosol. To our knowledge, the present study is the first to demonstrate the drug-induced subcellular translocation of TRAP1 during neurodegeneration. Further studies delineating cellular mechanism associated with this phenomenon and its functional consequence may provide better understanding of dopaminergic neurodegeneration that underlies PD pathogenesis.
Collapse
Affiliation(s)
- Dong-Ik Shin
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, Korea
| |
Collapse
|
84
|
Shimamoto N. [A pathophysiological role of cytochrome p450 involved in production of reactive oxygen species]. YAKUGAKU ZASSHI 2014; 133:435-50. [PMID: 23546588 DOI: 10.1248/yakushi.12-00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dysregulation of the production of reactive oxygen species (ROS) determines cellular function. Cytochrome P450s (CYPs) regulates ROS production and contributes to the process of cell death. This review summarizes our recent findings, focusing on the involvement of CYPs in pathophysiology induced by ROS. 1. Quinone toxicity in hepatocytes: CYPs require electrons supplied from NADPH-cytochrome P450 reductase (NPR) during the process of metabolism. NPR also provides electrons to quinone compounds, which compete with CYPs over electrons. Inhibition of CYPs shifts NPR's electron flow more to quinones, which accelerates the redox cycle to enhance ROS production and quinone toxicity. 2. Myocardial ischemia-reperfusion injury: Reperfusion of blood flow after coronary artery occlusion induces cell damage, as evident by the extension of myocardial infarct size and caspase-independent cell apoptosis. CYP2C6 appears to be a source for ROS production, since sulfaphenazole, a selective inhibitor of CYP2C6, reduces this damage. ROS produced by CYP2C6 during the reperfusion causes translational activation of Noxa and BimEL, as well as the suppression of caspase activation, resulting in caspase-independent apoptosis. 3. Primary hepatocyte apoptosis: Inhibition of catalase and glutathione peroxidase increases intracellular ROS and elicits caspase-independent hepatocyte apoptosis. SKF-525A, a pan-CYP inhibitor, suppresses these ROS increases and hepatocyte apoptosis. Increased ROS activates ERK and AP-1 by inhibition of tyrosine phosphatase, and inhibits BimEL degradation by proteasome. These results in the accumulation of mitochondrial BimEL, which then induces the release of cytochrome c and endonuclease G (EndoG). Increased ROS also keeps caspases inactivated. As a result, EndoG executes nucleosomal DNA fragmentation.
Collapse
Affiliation(s)
- Norio Shimamoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
85
|
Park SY, Lee JH, Kim HY, Yoon KH, Park SK, Chang MS. Differential expression of apoptosis-related factors induces the age-related apoptosis of the gracilis muscle in humans. Int J Mol Med 2014; 33:1110-6. [PMID: 24584667 PMCID: PMC4020492 DOI: 10.3892/ijmm.2014.1675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022] Open
Abstract
In the normal aging process, apoptosis has been implicated as a mechanism responsible for the loss of muscle cells and plays an important role in age-related muscle loss. Several signaling pathways involved in skeletal muscle apoptosis are currently under intense investigation, particularly the caspase-independent pathway. This study investigated the age-related apoptotic changes occurring in the gracilis muscle in humans between 10 and 50 years of age. For this purpose, muscle samples were divided into 5 groups (n=8). Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining and immunofluorescence detection were performed to determine the number of apoptotic muscle cells in each group. In addition, the expression levels of apoptosis-related factors, such as Bcl-2, Bax, apoptosis-inducing factor (AIF), caspase-3 and calpain-1 were determined by RT-PCR and western blot analysis. TUNEL assay revealed a significant increase in gracilis muscle apoptosis with aging. The activity of caspase-3 in the gracilis muscle tended to change with age, although the changes were not significant, while the increase in DNA nuclei in muscle from 50 years of age (5.419±0.97) was associated with an increase in the expression of AIF, as observed both at protein (10–30%) and mRNA level (10–60%) in gracilis tissues. Taken together, our results demonstrated that the relative Bcl-2 expression decreased with aging, while Bax expression was upregulated compared to 10 -year-olds. In addition, a double-labeling experiment with TUNEL staining and immunofluorescence revealed the co-localization of nuclear AIF-positive and TUNEL-labeled cells. This study suggests that apoptosis in gracilis skeletal muscle in the elderly is partly mediated through the expression of Bcl-2/Bax and the degradation of AIF.
Collapse
Affiliation(s)
- Soo Yeon Park
- Graduate School of Education, Yong In University, Seoul 130-701, Republic of Korea
| | - Jung Hwan Lee
- Department of Orthopaedic Surgery, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ha Young Kim
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Kyoung Ho Yoon
- Department of Orthopaedic Surgery, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Seong Kyu Park
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
86
|
Dos Santos Pereira RT, Porto CS, Abdalla FMF. Ovariectomy and 17β-estradiol replacement play a role on the expression of Endonuclease-G and phosphorylated cyclic AMP response element-binding (CREB) protein in hippocampus. Mol Cell Endocrinol 2014; 382:227-233. [PMID: 24121025 DOI: 10.1016/j.mce.2013.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the effects of different periods of ovariectomy and 17β-estradiol (E2) replacement on the expression of Cytochrome C, apoptosis inducing factor (AIF) and Endonuclease-G (Endo-G) in mitochondrial and cytosolic fractions obtained from hippocampus of the adult female rats. In addition, the expression of phosphorylated CREB (phospho-CREB) was also analyzed in hippocampus. Ovariectomy or E2 treatment did not change the expression of Cytochrome C and AIF. Ovariectomy (15, 21 and 36 days) decreased the expression of Endo-G in the mitochondrial fractions and increased it in the cytosolic fractions obtained from hippocampus. The treatment with E2 after 15 days of ovariectomy for 7 days or 21 days, and throughout the post-ovariectomy period prevented the effects of ovariectomy on Endo-G expression. Our results suggest that ovariectomy-induced apoptotic cell death in hippocampal tissue could be mediated by Endo-G, but not by AIF, via a caspase-independent apoptotic pathway. Furthermore, ovariectomy decreased the expression of phospho-CREB and the treatment with E2 prevented these effects. In conclusion, E2 may help maintain long-term neuronal viability by regulating the expression of members of the Bcl-2 family. Regulation of Endo-G released from mitochondria, but not of Cytochrome C and AIF, is also involved in the neuroprotective actions of E2. Furthermore, CREB may be involved in the expression of Bcl-2. These data provide new understanding into the mechanisms involved in the neuroprotective role of estrogen.
Collapse
Affiliation(s)
| | - Catarina Segreti Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
87
|
Ishak DHA, Ooi KK, Ang KP, Akim AM, Cheah YK, Nordin N, Halim SNBA, Seng HL, Tiekink ER. A bismuth diethyldithiocarbamate compound promotes apoptosis in HepG2 carcinoma, cell cycle arrest and inhibits cell invasion through modulation of the NF-κB activation pathway. J Inorg Biochem 2014; 130:38-51. [DOI: 10.1016/j.jinorgbio.2013.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/08/2023]
|
88
|
Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clin Chem Lab Med 2013; 51:579-90. [PMID: 23449525 DOI: 10.1515/cclm-2012-0605] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/31/2013] [Indexed: 01/08/2023]
Abstract
Bone remodeling is a very complex process. Homocysteine (Hcy) is known to modulate this process via several known mechanisms such as increase in osteoclast activity, decrease in osteoblast activity and direct action of Hcy on bone matrix. Evidence from previous studies further support a detrimental effect on bone via decrease in bone blood flow and an increase in matrix metalloproteinases (MMPs) that degrade extracellular bone matrix. Hcy binds directly to extracellular matrix and reduces bone strength. There are several bone markers that can be used as parameters to determine how high levels of plasma Hcy (hyperhomocysteinemia, HHcy) affect bone such as: hydroxyproline, N-terminal collagen 1 telopeptides. Mitochondrion serves an important role in generating reactive oxygen species (ROS). Mitochondrial abnormalities have been identified during HHcy. The mechanism of Hcy-induced bone remodeling via the mitochondrial pathway is largely unknown. Therefore, we propose a mitochondrial mechanism by which Hcy can contribute to alter bone properties. This may occur both through generations of ROS that activate MMPs and could be extruded into matrix to degrade bone matrix. However, there are contrasting reports on whether Hcy affects bone density, with some reports in favour and others not. Earlier studies also found an alteration in bone biomechanical properties with deficiencies of vitamin B12, folate and HHcy conditions. Moreover, existing data opens speculation that folate and vitamin therapy act not only via Hcy-dependent pathways but also via Hcy-independent pathways. However, more studies are needed to clarify the mechanistic role of Hcy during bone diseases.
Collapse
Affiliation(s)
- Thomas P Vacek
- Department of Physiology and Biophysics, University of Louisville School of Medicine Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
89
|
Jamaludin NS, Goh ZJ, Cheah YK, Ang KP, Sim JH, Khoo CH, Fairuz ZA, Halim SNBA, Ng SW, Seng HL, Tiekink ERT. Phosphanegold(I) dithiocarbamates, R3PAu[SC(=S)N((i)Pr)CH2CH2OH] for R = Ph, Cy and Et: role of phosphane-bound R substituents upon in vitro cytotoxicity against MCF-7R breast cancer cells and cell death pathways. Eur J Med Chem 2013; 67:127-41. [PMID: 23856069 DOI: 10.1016/j.ejmech.2013.06.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/23/2022]
Abstract
The synthesis and characterisation of R3PAu[S2CN((i)Pr)CH2CH2OH], for R = Ph (1), Cy (2) and Et (3)4, is reported. Compounds 1-3 are cytotoxic against the doxorubicin-resistant breast cancer cell line, MCF-7R, with 1 exhibiting greater potency and cytotoxicity than either of doxorubicin and cisplatin. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis by 1, and necrosis by 2 and 3, are demonstrated, by both extrinsic and intrinsic pathways. Compound 1 activates the p53 gene, 2 activates only the p73 gene, whereas 3 activates both the p53 and p73 genes. Compounds 1 and 3 activate NF-κB, and each inhibits topoisomerase I.
Collapse
|
90
|
The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh] (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J Inorg Biochem 2013; 127:24-38. [PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022]
Abstract
The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
Collapse
|
91
|
Nilotinib induces apoptosis and autophagic cell death of activated hepatic stellate cells via inhibition of histone deacetylases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1992-2003. [PMID: 23499874 DOI: 10.1016/j.bbamcr.2013.02.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022]
Abstract
Increasing hepatic stellate cell (HSC) death is a very attractive approach for limiting liver fibrosis. Tyrosine kinase inhibitors have been shown to have anti-fibrotic properties, but the mechanisms are poorly understood. Here, we identified the mechanism of action of the second-generation tyrosine kinase inhibitor nilotinib in inducing HSC death. Human HSC line (LX-2) and rat HSCs were treated with nilotinib and its predecessor, imatinib, in the absence or presence of various blockers, known to interfere with death signaling pathways. Nilotinib, but not imatinib, induced progressive cell death of activated, but not quiescent, HSCs in a dose-dependent manner. Activated HSCs died through apoptosis, as denoted by increased DNA fragmentation and caspase activation, and through autophagy, as indicated by the accumulation of autophagic markers, light chain (LC)3A-II and LC3B-II. Although inhibition of caspases with Z-VAD-FMK suppressed nilotinib-induced HSCs' apoptosis, there was no increase in HSCs' survival, because autophagy was exacerbated. However, blocking the mitochondrial permeability transition pore (mPTP) opening with cyclosporin A completely abolished both apoptosis and autophagy due to nilotinib. Moreover, nilotinib treatment decreased the protein expression of histone deacetylases 1, 2 and 4. Interestingly, pretreament with C646, a selective p300/CBP histone acetyl transferase inhibitor, resulted in diverting nilotinib-induced apoptosis and autophagy towards necrosis. In conclusion, the identification of mPTP as a target of nilotinib in activated HSCs suggests coordination with histone deacetylases inhibition to induce apoptosis and autophagy. Thus, our study provides novel insights into the anti-fibrotic effects of nilotinib.
Collapse
|
92
|
Pathak N, Mitra S, Khandelwal S. Cadmium induces thymocyte apoptosis via caspase-dependent and caspase-independent pathways. J Biochem Mol Toxicol 2013; 27:193-203. [PMID: 23315796 DOI: 10.1002/jbt.21468] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 11/08/2022]
Abstract
Based on our recent findings that 25 µM cadmium triggers oxidative stress-mediated caspase-dependent apoptosis in murine thymocytes, this study is designed to explore whether Cd also induces caspase-independent apoptosis. We found that pretreatment with caspase inhibitors fails to prevent Cd-induced apoptosis completely, suggesting the possibility of an additional pathway. Western blot and flow cytometry techniques indicated marked expression of apoptosis-inducing factor and endonuclease G in nuclear fraction, signifying their translocation from mitochondria to nucleus. Intracellular Ca²⁺ and reactive oxygen species (ROS) levels significantly raised by Cd were restored by ruthenium red, which had no influence on mitochondrial membrane depolarization and caspase activity and apoptosis. Using cyclosporin A, ROS formation and mitochondrial membrane depolarization were completely abolished, whereas apoptosis was partly attenuated. These results clearly demonstrate more than one apoptotic pathway in thymocytes and support the role of mitochondrial permeability transition pore in the regulation of caspase-independent cell death triggered by Cd.
Collapse
Affiliation(s)
- Neelima Pathak
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi, 635 215, India
| | | | | |
Collapse
|
93
|
Higgins GC, Devenish RJ, Beart PM, Nagley P. Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radic Biol Med 2012; 53:1960-7. [PMID: 22982049 DOI: 10.1016/j.freeradbiomed.2012.08.586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 01/08/2023]
Abstract
Neurons can undergo a diverse range of death responses under oxidative stress, encompassing apoptosis (caspase-dependent, programmed cell death) to various forms of caspase-independent death, including necrosis. We recently showed that primary murine cortical neurons exposed acutely to hydrogen peroxide undergo caspase-independent death, both autophagic cell death and programmed necrosis. To determine how oxidative stress induced by superoxide affects the route to cellular demise, we exposed primary cortical neurons to extended superoxide insult (provided by exogenous xanthine and xanthine oxidase in the presence of catalase). Under these conditions, over 24h, the nitroblue tetrazolium-reducing activity (indicative of superoxide) rose significantly during the first 4 to 8h and then declined to background levels. As with hydrogen peroxide, this superoxide insult failed to activate downstream caspases (-3, -7, and -9). Substantial depolarization of mitochondria occurred after 1h, and nuclear morphology changes characteristic of oxidative stress became maximal after 2h. However, death indicated by plasma membrane permeabilization (cellular uptake of propidium iodide) approached maximal levels only after 4h, at which time substantial redistribution to the cytosol of death-associated mitochondrial intermembrane space proteins, notably endonuclease G, had occurred. Applying established criteria for autophagic death (knockdown of Atg7) or programmed necrosis (knockdown of endonuclease G), cells treated with the relevant siRNA showed significant blockade of each type of cell death, 4h after onset of the superoxide flux. Yet at later times, siRNA-mediated knockdown failed to prevent death, monitored by cellular uptake of propidium iodide. We conclude that superoxide initially invokes a diverse programmed caspase-independent death response, involving transient manifestation in parallel of autophagic death and programmed necrosis. Ultimately most neurons become overwhelmed by the consequences of severe oxidative stress and die. This study reveals the multiple phases of neuronal cell death modalities under extended oxidative stress.
Collapse
Affiliation(s)
- Gavin C Higgins
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
94
|
Begnini KR, Rizzi C, Campos VF, Borsuk S, Schultze E, Yurgel VC, Nedel F, Dellagostin OA, Collares T, Seixas FK. Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro. Appl Microbiol Biotechnol 2012; 97:1543-52. [DOI: 10.1007/s00253-012-4416-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
|
95
|
Oh JM, Choi EK, Carp RI, Kim YS. Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells. Autophagy 2012; 8:1448-61. [PMID: 22889724 DOI: 10.4161/auto.21164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We previously reported that autophagy is upregulated in Prnp-deficient (Prnp ( 0/0) ) hippocampal neuronal cells in comparison to cellular prion protein (PrP (C) )-expressing (Prnp (+/+) ) control cells under conditions of serum deprivation. In this study, we determined whether a protective mechanism of PrP (C) is associated with autophagy using Prnp ( 0/0) hippocampal neuronal cells under hydrogen peroxide (H 2O 2)-induced oxidative stress. We found that Prnp ( 0/0) cells were more susceptible to oxidative stress than Prnp (+/+) cells in a dose- and time-dependent manner. In addition, we observed enhanced autophagy by immunoblotting, which detected the conversion of microtubule-associated protein 1 light chain 3 β (LC3B)-I to LC3B-II, and we observed increased punctate LC3B immunostaining in H 2O 2-treated Prnp ( 0/0) cells compared with H 2O 2-treated control cells. Interestingly, this enhanced autophagy was due to impaired autophagic flux in the H 2O 2-treated Prnp ( 0/0) cells, while the H 2O 2-treated Prnp (+/+) cells showed enhanced autophagic flux. Furthermore, caspase-dependent and independent apoptosis was observed when both cell lines were exposed to H 2O 2. Moreover, the inhibition of autophagosome formation by Atg7 siRNA revealed that increased autophagic flux in Prnp (+/+) cells contributes to the prosurvival effect of autophagy against H 2O 2 cytotoxicity. Taken together, our results provide the first experimental evidence that the deficiency of PrP (C) may impair autophagic flux via H 2O 2-induced oxidative stress.
Collapse
Affiliation(s)
- Jae-Min Oh
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | | | | | | |
Collapse
|
96
|
Affiliation(s)
- Heiko Bugger
- Division of Cardiology, University of Freiburg, Germany
| | | |
Collapse
|
97
|
Wu GS, Lu JJ, Guo JJ, Li YB, Tan W, Dang YY, Zhong ZF, Xu ZT, Chen XP, Wang YT. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 2012; 83:408-14. [DOI: 10.1016/j.fitote.2011.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/27/2011] [Accepted: 12/01/2011] [Indexed: 11/26/2022]
|
98
|
Abstract
High levels of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), are correlated with an increase in extracellular matrix remodelling (ECM) via the matrix metalloproteinases (MMPs) and plasminogen/plasmin system. This results in an increase deposition of collagen that leads to endothelial-myocyte (EM) and myocyte-myocyte (MM) uncoupling; the physiological consequences are a plethora of cardiovascular pathologies. Homocysteine-induced increase in intracellular and mitochondrial Ca(2+) plays an important role in increasing reactive oxygen species (ROS) within mitochondria and instigating mitophagy within the cell. This occurs via several Hcy-mitigated processes: agonizing N-methyl-d-aspartate receptor-1 (NMDA-R1), decreasing expression of peroxisome proliferator activator receptor (PPAR) [thereby increasing oxidation], impairing Ca(2+) handling via Na(+)/Ca(2+) exchanger (NCX1) and Sarco endoplasmic reticulum Ca(2+) ATPase (SERCA-2a). The end result is an increase in ROS that directly or indirectly lead to MMP activation within mitochondria or the cytoplasm. Hcy induces a mitochondrial permeability transition that allows MMPs to be released from mitochondria thereby metabolizing matrix and impairing cardiac function. Further work remains to be elucidated concerning the specific mitochondrial mitophagic mechanisms under which matrix metabolism and remodelling occurs. Moreover, the therapeutic implications of NMDA and PPAR ligands are some promise to patient.
Collapse
Affiliation(s)
- Thomas P Vacek
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
99
|
Shi R, Weng J, Szelemej P, Kong J. Caspase-Independent Stroke Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
100
|
Guerrero AD, Schmitz I, Chen M, Wang J. Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage. ACTA ACUST UNITED AC 2012; 3. [PMID: 23539542 DOI: 10.4172/2155-9899.1000126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial disruption during apoptosis results in the activation of caspase-9 and a downstream caspase cascade. Triggering this caspase cascade leads to the cleavage of anti-apoptotic Bcl-2 family proteins, resulting in feedback amplification of mitochondrial disruption. However, whether such a feedback loop plays an important role in the promotion of caspase activation and execution of apoptosis has not been well established. We observed that mutated Bcl-2 or Bcl-xL that are resistant to cleavage by caspases inhibited caspase-9-induced caspase activation in human H9 T cells. The release of Smac after the activation of caspase-9 was also inhibited by cleavage-resistant Bcl-2 or Bcl-xL. Consistently, caspase-9-deficient cells were defective in the release of Smac after induction of apoptosis. Moreover, addition of a Smac mimetic overcame the inhibitory effects of cleavage-resistant Bcl-2/Bcl-xL, and restored caspase-9-mediated cell death. Our data suggest that caspase-9-induced feedback disruption of mitochondria plays an important role in promoting the activation of caspases, while a defect in this process can be overcome by promoting Smac functions.
Collapse
Affiliation(s)
- Alan D Guerrero
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|