51
|
Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. THE NEW PHYTOLOGIST 2017; 213:1961-1973. [PMID: 27864969 DOI: 10.1111/nph.14297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| |
Collapse
|
52
|
Weyda I, Yang L, Vang J, Ahring BK, Lübeck M, Lübeck PS. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods 2017; 135:26-34. [PMID: 28159628 DOI: 10.1016/j.mimet.2017.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 12/01/2022]
Abstract
In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements.
Collapse
Affiliation(s)
- István Weyda
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University Tri-Cities, 2710 Crimson Way, Richland, WA 99354, USA
| | - Lei Yang
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark
| | - Jesper Vang
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark
| | - Birgitte K Ahring
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University Tri-Cities, 2710 Crimson Way, Richland, WA 99354, USA
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark
| | - Peter S Lübeck
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark.
| |
Collapse
|
53
|
Castanera R, Borgognone A, Pisabarro AG, Ramírez L. Biology, dynamics, and applications of transposable elements in basidiomycete fungi. Appl Microbiol Biotechnol 2017; 101:1337-1350. [PMID: 28074220 DOI: 10.1007/s00253-017-8097-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 11/25/2022]
Abstract
The phylum Basidiomycota includes filamentous fungi and yeast species with different ecological and genomic characteristics. Transposable elements (TEs) are abundant components of most eukaryotic genomes, and their transition from being genomic parasites to key drivers of genomic architecture, functionality, and evolution is a subject receiving much attention. In light of the abundant genomic information released during the last decade, the aims of this mini-review are to discuss the dynamics and impact of TEs in basidiomycete fungi. To do this, we surveyed and explored data from 75 genomes, which encompass the phylogenetic diversity of the phylum Basidiomycota. We describe annotation approaches and analyze TE distribution in the context of species phylogeny and genome size. Further, we review the most relevant literature about the role of TEs in species lifestyle, their impact on genome architecture and functionality, and the defense mechanisms evolved to control their proliferation. Finally, we discuss potential applications of TEs that can drive future innovations in fungal research.
Collapse
Affiliation(s)
- Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Alessandra Borgognone
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain.
| |
Collapse
|
54
|
Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:1. [PMID: 28053662 PMCID: PMC5209885 DOI: 10.1186/s13068-016-0693-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/20/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Over the past 3 years, the CRISPR/Cas9 system has revolutionized the field of genome engineering. However, its application has not yet been validated in thermophilic fungi. Myceliophthora thermophila, an important thermophilic biomass-degrading fungus, has attracted industrial interest for the production of efficient thermostable enzymes. Genetic manipulation of Myceliophthora is crucial for metabolic engineering and to unravel the mechanism of lignocellulose deconstruction. The lack of a powerful, versatile genome-editing tool has impeded the broader exploitation of M. thermophila in biotechnology. RESULTS In this study, a CRISPR/Cas9 system for efficient multiplexed genome engineering was successfully developed in the thermophilic species M. thermophila and M. heterothallica. This CRISPR/Cas9 system could efficiently mutate the imported amdS gene in the genome via NHEJ-mediated events. As a proof of principle, the genes of the cellulase production pathway, including cre-1, res-1, gh1-1, and alp-1, were chosen as editing targets. Simultaneous multigene disruptions of up to four of these different loci were accomplished with neomycin selection marker integration via a single transformation using the CRISPR/Cas9 system. Using this genome-engineering tool, multiple strains exhibiting pronounced hyper-cellulase production were generated, in which the extracellular secreted protein and lignocellulase activities were significantly increased (up to 5- and 13-fold, respectively) compared with the parental strain. CONCLUSIONS A genome-wide engineering system for thermophilic fungi was established based on CRISPR/Cas9. Successful expansion of this system without modification to M. heterothallica indicates it has wide adaptability and flexibility for use in other Myceliophthora species. This system could greatly accelerate strain engineering of thermophilic fungi for production of industrial enzymes, such as cellulases as shown in this study and possibly bio-based fuels and chemicals in the future.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Ranran Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Junqi Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
55
|
Alberti F, Foster GD, Bailey AM. Natural products from filamentous fungi and production by heterologous expression. Appl Microbiol Biotechnol 2017; 101:493-500. [PMID: 27966047 PMCID: PMC5219032 DOI: 10.1007/s00253-016-8034-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
Abstract
Filamentous fungi represent an incredibly rich and rather overlooked reservoir of natural products, which often show potent bioactivity and find applications in different fields. Increasing the naturally low yields of bioactive metabolites within their host producers can be problematic, and yield improvement is further hampered by such fungi often being genetic intractable or having demanding culturing conditions. Additionally, total synthesis does not always represent a cost-effective approach for producing bioactive fungal-inspired metabolites, especially when pursuing assembly of compounds with complex chemistry. This review aims at providing insights into heterologous production of secondary metabolites from filamentous fungi, which has been established as a potent system for the biosynthesis of bioactive compounds. Numerous advantages are associated with this technique, such as the availability of tools that allow enhanced production yields and directing biosynthesis towards analogues of the naturally occurring metabolite. Furthermore, a choice of hosts is available for heterologous expression, going from model unicellular organisms to well-characterised filamentous fungi, which has also been shown to allow the study of biosynthesis of complex secondary metabolites. Looking to the future, fungi are likely to continue to play a substantial role as sources of new pharmaceuticals and agrochemicals-either as producers of novel natural products or indeed as platforms to generate new compounds through synthetic biology.
Collapse
Affiliation(s)
- Fabrizio Alberti
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ UK
| |
Collapse
|
56
|
Expression of Talaromyces thermophilus lipase gene in Trichoderma reesei by homologous recombination at the cbh1 locus. J Ind Microbiol Biotechnol 2016; 44:377-385. [PMID: 28039549 DOI: 10.1007/s10295-016-1897-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
CBH1 (cellobiohydrolase) comprises the majority of secreted proteins by Trichoderma reesei. For expression of Talaromyces thermophilus lipase gene in T. reesei, a self-designed CBH1 promoter was applied to drive the lipase gene expression cassette which was bracketed by flanking sequences of cbh1 gene for homologous recombination. Protoplast and Agrobacterium-mediated plasmid transformations were performed and compared, resultantly, transformation mediated by Agrobacterium was overall proved to be more efficient. Stable integration of lipase gene into chromosomal DNA of T. reesei transformants was verified by PCR. After shaking flask fermentation, lipase activity of transformant reached 375 IU mL-1, whereas no cellobiohydrolase activity was detected. SDS-PAGE analysis further showed an obvious protein band about 39 kDa and no CBH1 band in fermentation broth, implying lipase gene was successfully extracellularly expressed in T. reesei via homologous recombination at cbh1 locus. This study herein would benefit genetic engineering of filamentous fungi and industrial application of thermo-alkaline lipase like in paper making and detergents addition.
Collapse
|
57
|
Guo M, Zhu X, Li H, Tan L, Pan Y. Development of a novel strategy for fungal transformation based on a mutant locus conferring carboxin-resistance in Magnaporthe oryzae. AMB Express 2016; 6:57. [PMID: 27558019 PMCID: PMC4996803 DOI: 10.1186/s13568-016-0232-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/24/2022] Open
Abstract
The accurate manipulation of genomic integration of mutant alleles or fluorescent fusion-protein constructs is necessary for understanding of pathogenic mechanism of Magnaporthe oryzae. Recently, this can be achieved by integrating of exogenous DNA randomly into genome of this pathogen, but ectopic integration may result in alteration of gene expression or gene disruption due to unpredictable position effects and/or disruption of protein-coding regions. In this study, we establish a novel strategy for locus-specific integration of exogenous DNA via carboxin-resistance reconstitution by a point-mutation (H245L) on succinate dehydrogenase subunit Mosdi1. Independent transformants derived from the same reconstitution construct showed consistent fluorescent signal and undiversified phenotypes, including hyphae growth, conidiation and pathogenicity, in M. oryzae. Meanwhile, 96 % of all transformants integrate correctly into the Mosdi1 locus as a single copy. Furthermore, we provide a vector carrying yeast recombination cassette and thus allow assembly of multiple overlapping DNA fragments by yeast in vivo recombination for gene complementation and protein localization assay.
Collapse
|
58
|
Yu Y, Li T, Wu N, Ren L, Jiang L, Ji X, Huang H. Mechanism of Arachidonic Acid Accumulation during Aging in Mortierella alpina: A Large-Scale Label-Free Comparative Proteomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9124-9134. [PMID: 27776414 DOI: 10.1021/acs.jafc.6b03284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arachidonic acid (ARA) is an important polyunsaturated fatty acid having various beneficial physiological effects on the human body. The aging of Mortierella alpina has long been known to significantly improve ARA yield, but the exact mechanism is still elusive. Herein, multiple approaches including large-scale label-free comparative proteomics were employed to systematically investigate the mechanism mentioned above. Upon ultrastructural observation, abnormal mitochondria were found to aggregate around shrunken lipid droplets. Proteomics analysis revealed a total of 171 proteins with significant alterations of expression during aging. Pathway analysis suggested that reactive oxygen species (ROS) were accumulated and stimulated the activation of the malate/pyruvate cycle and isocitrate dehydrogenase, which might provide additional NADPH for ARA synthesis. EC 4.2.1.17-hydratase might be a key player in ARA accumulation during aging. These findings provide a valuable resource for efforts to further improve the ARA content in the oil produced by aging M. alpina.
Collapse
Affiliation(s)
- Yadong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Tao Li
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Na Wu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Ling Jiang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| |
Collapse
|
59
|
The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J Microbiol Biotechnol 2016; 32:204. [DOI: 10.1007/s11274-016-2168-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 11/26/2022]
|
60
|
Deng H, Gao R, Chen J, Liao X, Cai Y. An efficient polyethylene glycol-mediated transformation system of lentiviral vector in Shiraia bambusicola. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Armas-Tizapantzi A, Montiel-González AM. RNAi silencing: A tool for functional genomics research on fungi. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
62
|
Kilaru S, Schuster M, Latz M, Das Gupta S, Steinberg N, Fones H, Gurr SJ, Talbot NJ, Steinberg G. A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:118-24. [PMID: 26092798 PMCID: PMC4502457 DOI: 10.1016/j.fgb.2015.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/29/2022]
Abstract
We establish the sdi1 of Z. tritici locus for targeted integration of constructs as single copies. Integration of constructs conveys carboxin resistance. We provide a vector for integration of eGFP-expressing construct into the sdi1 locus. Integration into sdi1 locus is not affecting virulence of Z. tritici.
Understanding the cellular organization and biology of fungal pathogens requires accurate methods for genomic integration of mutant alleles or fluorescent fusion-protein constructs. In Zymoseptoria tritici, this can be achieved by integrating of plasmid DNA randomly into the genome of this wheat pathogen. However, untargeted ectopic integration carries the risk of unwanted side effects, such as altered gene expression, due to targeting regulatory elements, or gene disruption following integration into protein-coding regions of the genome. Here, we establish the succinate dehydrogenase (sdi1) locus as a single “soft-landing” site for targeted ectopic integration of genetic constructs by using a carboxin-resistant sdi1R allele, carrying the point-mutation H267L. We use various green and red fluorescent fusion constructs and show that 97% of all transformants integrate correctly into the sdi1 locus as single copies. We also demonstrate that such integration does not affect the pathogenicity of Z. tritici, and thus the sdi1 locus is a useful tool for virulence analysis in genetically modified Z. tritici strains. Furthermore, we have developed a vector which facilitates yeast recombination cloning and thus allows assembly of multiple overlapping DNA fragments in a single cloning step for high throughput vector and strain generation.
Collapse
Affiliation(s)
- S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| | - M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Das Gupta
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - N Steinberg
- Geography, University of Exeter, Exeter EX4 4RJ, UK
| | - H Fones
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S J Gurr
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - N J Talbot
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
63
|
Blum A, Benfield AH, Stiller J, Kazan K, Batley J, Gardiner DM. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production. Fungal Genet Biol 2016; 90:1-11. [PMID: 26932301 DOI: 10.1016/j.fgb.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Abstract
Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes.
Collapse
Affiliation(s)
- Ailisa Blum
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Aurélie H Benfield
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jacqueline Batley
- School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Donald M Gardiner
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
64
|
Fan Z, Yu H, Guo Q, He D, Xue B, Xie X, Yokoyama K, Wang L. Identification and characterization of an anti-oxidative stress-associated mutant of Aspergillus fumigatus transformed by Agrobacterium tumefaciens. Mol Med Rep 2016; 13:2367-76. [PMID: 26847000 PMCID: PMC4768994 DOI: 10.3892/mmr.2016.4839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/29/2015] [Indexed: 01/20/2023] Open
Abstract
Aspergillus fumigatus is one of the most common opportunistic pathogenic fungi, surviving in various environmental conditions. Maintenance of the redox homeostasis of the fungus relies upon the well‑organized regulation between reactive oxygen species generated by immune cells or its own organelles, and the activated anti‑oxidative stress mechanism. To investigate such a mechanism, the present study obtained a number of randomly‑inserted mutants of A. fumigatus, mediated by Agrobacterium tumefaciens. In addition, a high throughput hydrogen peroxide screening system was established to examine ~1,000 mutants. A total of 100 mutants exhibited changes in hydrogen peroxide sensitivity, among which a significant increase in sensitivity was observed in the AFM2658 mutant. Further investigations of the mutant were also performed, in which the sequence of this mutant was characterized using thermal asymmetric interlaced‑polymerase chain reaction. This revealed that the insertion site was located on chromosome 2 afu1_92, and the 96 bp sequence was knocked out, which partially comprised a sequence localized between the integral membrane protein coding region and the helix‑loop‑helix transcription factor coding region. A decrease in the levels of anti‑oxidative stress‑associated mRNAs were observed, and an increase in reactive oxygen species were detected using fluorescence. The results of the present study demonstrated that this sequence may have a protective role in A. fumigatus in the presence of oxidative stress.
Collapse
Affiliation(s)
- Zhongqi Fan
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huimei Yu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qi Guo
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baiji Xue
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangli Xie
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Koji Yokoyama
- Medical Mycology Research Center, Chiba University, Chiba 260‑8673, Japan
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
65
|
Gómez S, López-Estepa M, Fernández FJ, Suárez T, Vega MC. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes. ADVANCED TECHNOLOGIES FOR PROTEIN COMPLEX PRODUCTION AND CHARACTERIZATION 2016; 896:167-84. [DOI: 10.1007/978-3-319-27216-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
66
|
Zhang X, Li X, Xia L. Heterologous Expression of an Alkali and Thermotolerant Lipase from Talaromyces thermophilus in Trichoderma reesei. Appl Biochem Biotechnol 2015; 176:1722-35. [DOI: 10.1007/s12010-015-1673-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/19/2015] [Indexed: 01/28/2023]
|
67
|
Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. PLoS One 2015; 10:e0125960. [PMID: 25992547 PMCID: PMC4437780 DOI: 10.1371/journal.pone.0125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.
Collapse
Affiliation(s)
- Martin Korn
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Johannes Schmidpeter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlis Dahl
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Susanne Müller
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Lars M. Voll
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Christian Koch
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
- * E-mail:
| |
Collapse
|
68
|
Kakule TB, Jadulco RC, Koch M, Janso JE, Barrows LR, Schmidt EW. Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites. ACS Synth Biol 2015; 4:625-33. [PMID: 25226362 PMCID: PMC4487227 DOI: 10.1021/sb500296p] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Strategies
are needed for the robust production of cryptic, silenced,
or engineered secondary metabolites in fungi. The filamentous fungus Fusarium heterosporum natively synthesizes the polyketide
equisetin at >2 g L–1 in a controllable manner.
We hypothesized that this production level was achieved by regulatory
elements in the equisetin pathway, leading to the prediction that
the same regulatory elements would be useful in producing other secondary
metabolites. This was tested by using the native eqxS promoter and eqxR regulator in F. heterosporum, synthesizing heterologous natural products in yields of ∼1
g L–1. As proof of concept for the practical application,
we resurrected an extinct pathway from an endophytic fungus with an
initial yield of >800 mg L–1, leading to the
practical
synthesis of a selective antituberculosis agent. Finally, the method
enabled new insights into the function of polyketide synthases in
filamentous fungi. These results demonstrate a strategy for optimally
employing native regulators for the robust synthesis of secondary
metabolites.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E. Janso
- Natural Products,
Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06355, United States
| | | | | |
Collapse
|
69
|
Liu R, Chen L, Jiang Y, Zhou Z, Zou G. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 2015; 1:15007. [PMID: 27462408 PMCID: PMC4860831 DOI: 10.1038/celldisc.2015.7] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/28/2015] [Indexed: 02/03/2023] Open
Abstract
Filamentous fungi have wide applications in biotechnology. The CRISPR/Cas9 system is a powerful genome-editing method that facilitates genetic alterations of genomes in a variety of organisms. However, a genome-editing approach has not been reported in filamentous fungi. Here, we demonstrated the establishment of a CRISPR/Cas9 system in the filamentous fungus Trichoderma reesei by specific codon optimization and in vitro RNA transcription. It was shown that the CRISPR/Cas9 system was controllable and conditional through inducible Cas9 expression. This system generated site-specific mutations in target genes through efficient homologous recombination, even using short homology arms. This system also provided an applicable and promising approach to targeting multiple genes simultaneously. Our results illustrate that the CRISPR/Cas9 system is a powerful genome-manipulating tool for T. reesei and most likely for other filamentous fungal species, which may accelerate studies on functional genomics and strain improvement in these filamentous fungi.
Collapse
Affiliation(s)
- Rui Liu
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Ling Chen
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yanping Jiang
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Gen Zou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
70
|
Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics 2015; 16:326. [PMID: 25909478 PMCID: PMC4409711 DOI: 10.1186/s12864-015-1526-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/13/2015] [Indexed: 02/08/2023] Open
Abstract
Background Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. Results In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. Conclusion The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1526-0) contains supplementary material, which is available to authorized users.
Collapse
|
71
|
Arazoe T, Ogawa T, Miyoshi K, Yamato T, Ohsato S, Sakuma T, Yamamoto T, Arie T, Kuwata S. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 2015; 112:1335-42. [DOI: 10.1002/bit.25559] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Takayuki Arazoe
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Tetsuo Ogawa
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Kennosuke Miyoshi
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Tohru Yamato
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Shuichi Ohsato
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| | - Tetsushi Sakuma
- Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Takashi Yamamoto
- Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tsutomu Arie
- Faculty of Agriculture; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Shigeru Kuwata
- Graduate School of Agriculture; Meiji University; 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 Japan
| |
Collapse
|
72
|
Ramamoorthy V, Govindaraj L, Dhanasekaran M, Vetrivel S, Kumar KK, Ebenezar E. Combination of driselase and lysing enzyme in one molar potassium chloride is effective for the production of protoplasts from germinated conidia of Fusarium verticillioides. J Microbiol Methods 2015; 111:127-34. [PMID: 25724844 DOI: 10.1016/j.mimet.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
Various cell wall degrading enzymes and the protoplasting media were evaluated for the production of protoplast in Fusarium verticillioides. Among the various enzymes tested, driselase at 12.5 mg/ml in 1 M KCl protoplasting medium produced the maximum number of protoplast. Next to driselase, lysing enzyme at 10 mg/ml in 1.2 M MgSO4 protoplasting medium was found to be the second best enzyme for the production of protoplast. More interestingly, the combined use of driselase @ 12.5 mg/ml and lysing enzyme @ 10 mg/ml in 1 M KCl exhibited the additive effect on protoplast formation. Germinated conidia of F. verticillioides are the most susceptible fungal material for protoplast production. The use of sucrose at 1.2 M in the regeneration medium supported the maximum regeneration of protoplast. From the present study, we recommend driselase (12.5 mg/ml) and lysing enzyme (10 mg/ml) in 1 M KCl protoplasting medium and germinated conidia of F. verticillioides for the maximum production of protoplasts and 1.2 M sucrose is the best osmoticum for the regeneration of protoplasts.
Collapse
Affiliation(s)
- Vellaisamy Ramamoorthy
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu 628 252, India.
| | - Lavanya Govindaraj
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu 628 252, India
| | - Madhumitha Dhanasekaran
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu 628 252, India
| | - Sharmilee Vetrivel
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu 628 252, India
| | - Krish K Kumar
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu 628 252, India
| | - Edward Ebenezar
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Vallanadu, Tamil Nadu 628 252, India
| |
Collapse
|
73
|
|
74
|
|
75
|
Tzima AK, Paplomatas EJ, Schoina C, Domazakis E, Kang S, Goodwin PH. Successful Agrobacterium mediated transformation of Thielaviopsis basicola by optimizing multiple conditions. Fungal Biol 2014; 118:675-82. [PMID: 25110130 DOI: 10.1016/j.funbio.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 03/02/2014] [Accepted: 04/22/2014] [Indexed: 11/15/2022]
Abstract
Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens-mediated transformation (ATMT) protocols were unsuccessful. Successful transformation required the addition of V8 juice (to induce germination of T. basicola chlamydospores) and higher concentrations of acetosyringone in the co-cultivation medium, and of chlamydospores/endoconidia, A. tumefaciens cells during co-cultivation. With these modifications, two T. basicola strains were successfully transformed with the green (egfp) or red (AsRed) fluorescent protein genes. Chlamydospores/endoconidia transformed with the egfp gene exhibited strong green fluorescence, but their fluorescence became weaker as the germ tubes emerged. Transformants harbouring the AsRed gene displayed strong red fluorescence in both chlamydospores/endoconidia and germ tubes. Fluorescent microscopic observations of an AsRed-labelled strain colonizing roots of transgenic Nicotiana benthamiana plants, which express the actin filaments labelled with EGFP, at 24 hours post inoculation showed varying levels of fungal germination and penetration. At this stage, the infection appeared to be biotrophic with the EGFP-labelled host actin filaments not being visibly degraded, even in host root cells in close contact with the hyphae. This is the first report of ATMT of T. basicola, and the use of an AsRed-labelled strain to directly observe the root infection process.
Collapse
Affiliation(s)
- Aliki K Tzima
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | - Epaminondas J Paplomatas
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Charikleia Schoina
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Emmanouil Domazakis
- Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
76
|
A quick and accurate screening method for fungal gene-deletion mutants by direct, priority-based, and inverse PCRs. J Microbiol Methods 2014; 105:39-41. [PMID: 25019520 DOI: 10.1016/j.mimet.2014.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/21/2014] [Accepted: 06/21/2014] [Indexed: 11/22/2022]
Abstract
Using two-step-PCR screening which consists of direct and priority-based PCR and inverse PCR, fungal gene-deletion mutants were selected quickly and accurately. It omits genomic DNA extraction and Southern blotting steps and prevents misinterpretations caused by PCR failure. It is anticipated to facilitate large-scale reverse genetic studies in fungi.
Collapse
|
77
|
Shao Y, Lei M, Mao Z, Zhou Y, Chen F. Insights into Monascus biology at the genetic level. Appl Microbiol Biotechnol 2014; 98:3911-22. [PMID: 24633442 DOI: 10.1007/s00253-014-5608-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The genus of Monascus was nominated by van Tieghem in 1884, but its fermented product-red mold rice (RMR), namely red yeast rice, has been used as folk medicines, food colorants, and fermentation starters for more than thousands of years in oriental countries. Nowadays, RMR is widely developed as food supplements around the world due to its functional compounds such as monacolin K (MK, also called lovastatin) and γ-aminobutyric acid. But the usage of RMR also incurs controversy resulting from contamination of citrinin (a kind of mycotoxin) produced by some Monascus strains. In the past decade, it has made great progress to Monascus spp. at the genetic level with the application of molecular biology techniques to restrain the citrinin production and increase the yields of MK and pigment in RMR, as well as aid Monascus classification and phylogenesis. Up to now, hundreds of papers about Monascus molecular biology (MMB) have been published in the international primary journals. However, to our knowledge, there is no MMB review issued until now. In this review, current understanding of Monascus spp. from the view of molecular biology will be covered and insights into research areas that need to be further investigated will also be discussed.
Collapse
Affiliation(s)
- Yanchun Shao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
78
|
Koh CMJ, Liu Y, Moehninsi, Du M, Ji L. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiol 2014; 14:50. [PMID: 25188820 PMCID: PMC4101874 DOI: 10.1186/1471-2180-14-50] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/21/2014] [Indexed: 01/19/2023] Open
Abstract
Background Rhodosporidium toruloides is a β-carotenoid accumulating, oleaginous yeast that has great biotechnological potential. The lack of reliable and efficient genetic manipulation tools have been a major hurdle blocking its adoption as a biotechnology platform. Results We report for the first time the development of a highly efficient targeted gene deletion method in R. toruloides ATCC 10657 via Agrobacterium tumefaciens-mediated transformation. To further improve targeting frequency, the KU70 and KU80 homologs in R. toruloides were isolated and characterized in detail. A KU70-deficient mutant (∆ku70e) generated with the hygromycin selection cassette removed by the Cre-loxP recombination system showed a dramatically improved targeted gene deletion frequency, with over 90% of the transformants being true knockouts when homology sequence length of at least 1 kb was used. Successful gene targeting could be made with homologous flanking sequences as short as 100 bp in the ∆ku70e strain. KU70 deficiency did not perturb cell growth although an elevated sensitivity to DNA mutagenic agents was observed. Compared to the other well-known oleaginous yeast, Yarrowia lipolytica, R. toruloides KU70/KU80 genes contain much higher density of introns and are the most GC-rich KU70/KU80 genes reported. Conclusions The KU70-deficient mutant generated herein was effective in improving gene deletion frequency and allowed shorter homology sequences to be used for gene targeting. It retained the key oleaginous and fast growing features of R. toruloides. The strain should facilitate both fundamental and applied studies in this important yeast, with the approaches taken here likely to be applicable in other species in subphylum Pucciniomycotina.
Collapse
|
79
|
Sun J, Li X, Feng P, Zhang J, Xie Z, Song E, Xi L. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei. Med Mycol 2014; 52:167-78. [DOI: 10.1093/mmy/myt006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
80
|
Bidirectional-genetics platform, a dual-purpose mutagenesis strategy for filamentous fungi. EUKARYOTIC CELL 2013; 12:1547-53. [PMID: 24058171 DOI: 10.1128/ec.00234-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapidly increasing fungal genome sequences call for efficient ways of generating mutants to translate quickly gene sequences into their functions. A reverse genetic strategy via targeted gene replacement (TGR) has been inefficient for many filamentous fungi due to dominant production of undesirable ectopic transformants. Although large-scale random insertional mutagenesis via transformation (i.e., forward genetics) facilitates high-throughput uncovering of novel genes of interest, generating a huge number of transformants, which is necessary to ensure the likelihood of mutagenizing most genes, is time-consuming. We propose a new strategy, entitled the Bidirectional-Genetics (BiG) platform, which combines both forward and reverse genetic strategies by recycling ectopic transformants derived from TGR as a source for random insertional mutants. The BiG platform was evaluated using the rice blast fungus Magnaporthe oryzae as a model. Over 10% of >1,000 M. oryzae ectopic transformants, generated during disruption of specific genes, displayed abnormality in vegetative growth, pigmentation, and/or asexual reproduction. In this pool of putative mutants, we isolated insertional mutants with mutations in three genes involved in histidine biosynthesis (MoHIS5), vegetative growth (MoVPS74), or conidiophore formation (MoFRQ) (where "Mo" indicates "M. oryzae"), supporting the utility of this platform for systematic gene function studies.
Collapse
|
81
|
Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 2013; 31:1562-74. [PMID: 23988676 DOI: 10.1016/j.biotechadv.2013.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 07/06/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi.
Collapse
|
82
|
Ianiri G, Idnurm A, Wright SAI, Durán-Patrón R, Mannina L, Ferracane R, Ritieni A, Castoria R. Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 2013; 79:3101-15. [PMID: 23455346 PMCID: PMC3623128 DOI: 10.1128/aem.03851-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/25/2013] [Indexed: 11/20/2022] Open
Abstract
Patulin is a mycotoxin that contaminates pome fruits and derived products worldwide. Basidiomycete yeasts belonging to the subphylum Pucciniomycotina have been identified to have the ability to degrade this molecule efficiently and have been explored through different approaches to understand this degradation process. In this study, Sporobolomyces sp. strain IAM 13481 was found to be able to degrade patulin to form two different breakdown products, desoxypatulinic acid and (Z)-ascladiol. To gain insight into the genetic basis of tolerance and degradation of patulin, more than 3,000 transfer DNA (T-DNA) insertional mutants were generated in strain IAM 13481 and screened for the inability to degrade patulin using a bioassay based on the sensitivity of Escherichia coli to patulin. Thirteen mutants showing reduced growth in the presence of patulin were isolated and further characterized. Genes disrupted in patulin-sensitive mutants included homologs of Saccharomyces cerevisiae YCK2, PAC2, DAL5, and VPS8. The patulin-sensitive mutants also exhibited hypersensitivity to reactive oxygen species as well as genotoxic and cell wall-destabilizing agents, suggesting that the inactivated genes are essential for tolerating and overcoming the initial toxicity of patulin. These results support a model whereby patulin degradation occurs through a multistep process that includes an initial tolerance to patulin that utilizes processes common to other external stresses, followed by two separate pathways for degradation.
Collapse
Affiliation(s)
- G. Ianiri
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri—Kansas City, Kansas City, Missouri, USA
| | - A. Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri—Kansas City, Kansas City, Missouri, USA
| | - S. A. I. Wright
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| | - R. Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - L. Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Universita' di Roma, Rome, Italy
- Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica Annalaura Segre, CNR, Monterotondo, Rome, Italy
| | - R. Ferracane
- Dipartimento di Scienza degli Alimenti, Università di Napoli Federico II, Parco Gussone, Portici, Italy
| | - A. Ritieni
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Naples, Italy
| | - R. Castoria
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
83
|
RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Enzyme Microb Technol 2013; 53:104-9. [PMID: 23769310 DOI: 10.1016/j.enzmictec.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
The cellulase and xylanase genes of filamentous Trichoderma fungi exist under carbon catabolite repression mediated by the regulator carbon catabolite repressor (CREI). Our objective was to find the role of CREI in a cellulase-hyperproducing mutant of Trichoderma koningii, and address whether enzyme production can be further improved by silencing the cre1 gene. cre1 partially silenced strains were constructed to improve enzyme production in T. koningii YC01, a cellulase-hyperproducing mutant. Silencing of cre1 resulted in derepression of cellulase gene expression in glucose-based cultivation. The cre1 interference strain C313 produced 2.1-, 1.4-, 0.8-, and 0.8-fold higher amounts of filter paper activity, β-1,4-exoglucanase activity (ρ-nitrophenyl-β-D-cellobioside as substrate), β-1,4-endoglucanase activity (sodium carboxymethyl cellulose as substrate), and xylanase activity, respectively, than the control strain, suggesting that silencing of cre1 resulted in enhanced enzyme production capability. In addition, downregulation of cre1 resulted in elevated expression of another regulator of xylanase and cellulase expression, xyr1, indicating that CREI also acted as a repressor of xyr1 transcription in T. koningii under inducing conditions. These results show that RNAi is a feasible method for analyzing the regulatory mechanisms of gene expression and improving xylanase and cellulase productivity in T. koningii.
Collapse
|
84
|
Papon N, Savini V, Lanoue A, Simkin AJ, Crèche J, Giglioli-Guivarc'h N, Clastre M, Courdavault V, Sibirny AA. Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 2013; 59:73-90. [PMID: 23616192 DOI: 10.1007/s00294-013-0391-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the Saccharomycotina CTG clade which has been studied over the last 40 years due to its biotechnological interest, biological control potential and clinical importance. Such a wide range of applications in various areas of fundamental and applied scientific research has progressively made C. guilliermondii an attractive model for exploring the potential of yeast metabolic engineering as well as for elucidating new molecular events supporting pathogenicity and antifungal resistance. All these research fields now take advantage of the establishment of a useful molecular toolbox specifically dedicated to C. guilliermondii genetics including the construction of recipient strains, the development of selectable markers and reporter genes and optimization of transformation protocols. This area of study is further supported by the availability of the complete genome sequence of the reference strain ATCC 6260 and the creation of numerous databases dedicated to gene ontology annotation (metabolic pathways, virulence, and morphogenesis). These genetic tools and genomic resources represent essential prerequisites for further successful development of C. guilliermondii research in medical mycology and in biological control by facilitating the identification of the multiple factors that contribute to its pathogenic potential. These genetic and genomic advances should also expedite future practical uses of C. guilliermondii strains of biotechnological interest by opening a window into a better understanding of the biosynthetic pathways of valuable metabolites.
Collapse
Affiliation(s)
- Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales, Faculté de Pharmacie, Université François-Rabelais de Tours, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiol Res 2013; 168:340-350. [PMID: 23602122 DOI: 10.1016/j.micres.2013.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 11/23/2022]
Abstract
To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, Agrobacterium tumefaciens-mediated transformation (ATMT) was used to identify mutants of C. gloeosporioides impaired in pathogenicity. An ATMT library of 4128 C. gloeosporioides transformants was generated. Transformants were screened for defects in pathogenicity with a detached copper brown leaf assay. 32 mutants showing reproducible pathogenicity defects were obtained. Southern blot analysis showed 60.4% of the transformants had single-site T-DNA integrations. 16 Genomic sequences flanking T-DNA were recovered from mutants by thermal asymmetric interlaced PCR, and were used to isolate the tagged genes from the genome sequence of wild-type C. gloeosporioides by Basic Local Alignment Search Tool searches against the local genome database of the wild-type C. gloeosporioides. One potential pathogenicity genes encoded calcium-translocating P-type ATPase. Six potential pathogenicity genes had no known homologs in filamentous fungi and were likely to be novel fungal virulence factors. Two putative genes encoded Glycosyltransferase family 28 domain-containing protein and Mov34/MPN/PAD-1 family protein, respectively. Five potential pathogenicity genes had putative function matched with putative protein of other Colletotrichum species. Two known C. gloeosporioides pathogenicity genes were also identified, the encoding Glomerella cingulata hard-surface induced protein and C. gloeosporioides regulatory subunit of protein kinase A gene involved in cAMP-dependent PKA signal transduction pathway.
Collapse
|
86
|
He Y, Liu Q, Shao Y, Chen F. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 2013; 97:4965-76. [PMID: 23546425 DOI: 10.1007/s00253-013-4851-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/25/2023]
Abstract
Normally, gene targeting by homologous recombination occurs rarely during a transformation process since non-homologous recombination is predominant in filamentous fungi. In our previous researches, the average gene replacement frequency (GRF) in Monascus ruber M7 was as low as 15 %. To develop a highly efficient gene targeting system for M. ruber M7, two M. ruber M7 null mutants of ku70 (MrΔku70) and ku80 (MrΔku80) were constructed which had no apparent defects in the development including vegetative growth, colony phenotype, microscopic morphology and spore yield compared with M. ruber M7. In addition, the production of some significant secondary metabolites such as pigments and citrinin had no differences between the two disruptants and the wild-type strain. Further results revealed that the GRFs of triA (encoding a putative acetyltransferase) were 42.2 % and 61.5 % in the MrΔku70 and MrΔku80 strains, respectively, while it was only about 20 % in M. ruber M7. Furthermore, GRFs of these two disruptants at other loci (the pigE, fmdS genes in MrΔku70 and the ku70 gene in MrΔku80) were investigated, and the results indicated that GRFs in the MrΔku70 strain and the MrΔku80 strain were doubled and tripled compared with that in M. ruber M7, respectively. Therefore, the ku70 and ku80 null mutants of M. ruber M7, especially the ku80-deleted strain, will be excellent hosts for efficient gene targeting.
Collapse
Affiliation(s)
- Yi He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | | | | | | |
Collapse
|
87
|
Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnol Lett 2013; 35:1035-43. [DOI: 10.1007/s10529-013-1169-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/18/2013] [Indexed: 01/21/2023]
|
88
|
Zhang T, Qi Z, Wang Y, Zhang F, Li R, Yu Q, Chen X, Wang H, Xiong X, Tang K. Agrobacterium tumefaciens-mediated transformation of Penicillium expansum PE-12 and its application in molecular breeding. Microbiol Res 2013; 168:130-7. [DOI: 10.1016/j.micres.2012.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/30/2012] [Accepted: 11/04/2012] [Indexed: 11/26/2022]
|
89
|
Foureau E, Courdavault V, Simkin AJ, Sibirny AA, Crèche J, Giglioli-Guivarc'h N, Clastre M, Papon N. Transformation ofCandida guilliermondiiwild-type strains using theStaphylococcus aureusMRSA 252blegene as a phleomycin-resistant marker. FEMS Yeast Res 2013; 13:354-8. [DOI: 10.1111/1567-1364.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Emilien Foureau
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| | - Vincent Courdavault
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté des Sciences et Techniques; Université François-Rabelais de Tours; Tours; France
| | - Andrew J. Simkin
- School of Biological Sciences; University of Essex; Colchester; UK
| | | | - Joël Crèche
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| | - Nathalie Giglioli-Guivarc'h
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté des Sciences et Techniques; Université François-Rabelais de Tours; Tours; France
| | - Marc Clastre
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| | - Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales; Faculté de Pharmacie; Université François-Rabelais de Tours; Tours; France
| |
Collapse
|
90
|
Long LK, Wang Y, Yang J, Xu X, Liu G. A septation related gene AcsepH in Acremonium chrysogenum is involved in the cellular differentiation and cephalosporin production. Fungal Genet Biol 2013. [DOI: 10.1016/j.fgb.2012.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
91
|
Hatoh K, Izumitsu K, Morita A, Shimizu K, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. MYCOSCIENCE 2013. [DOI: 10.1016/j.myc.2012.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
92
|
Watson R, Wang S. A method for making directed changes to the Fusarium graminearum genome without leaving markers or other extraneous DNA. Fungal Genet Biol 2012; 49:556-66. [DOI: 10.1016/j.fgb.2012.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/06/2023]
|
93
|
Dave K, Ahuja M, Jayashri T, Sirola RB, Punekar NS. A novel selectable marker based on Aspergillus niger arginase expression. Enzyme Microb Technol 2012; 51:53-8. [DOI: 10.1016/j.enzmictec.2012.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 11/27/2022]
|
94
|
van der Burgt A, Severing E, de Wit PJGM, Collemare J. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements. Curr Biol 2012; 22:1260-5. [PMID: 22658596 DOI: 10.1016/j.cub.2012.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/12/2012] [Accepted: 05/03/2012] [Indexed: 11/25/2022]
Abstract
Spliceosomal introns are noncoding sequences that separate exons in eukaryotic genes and are removed from pre-messenger RNAs by the splicing machinery. Their origin has remained a mystery in biology since their discovery because intron gains seem to be infrequent in many eukaryotic lineages. Although a few recent intron gains have been reported, none of the proposed gain mechanisms can convincingly explain the high number of introns in present-day eukaryotic genomes. Here we report on particular spliceosomal introns that share high sequence similarity and are reminiscent of introner elements. These elements multiplied in unrelated genes of six fungal genomes and account for the vast majority of intron gains in these fungal species. Such introner-like elements (ILEs) contain all typical characteristics of regular spliceosomal introns (RSIs) but are longer and predicted to harbor more stable secondary structures. However, dating of multiplication events showed that they degenerate in sequence and length within 100,000 years to eventually become indistinguishable from RSIs. We suggest that ILEs not only account for intron gains in six fungi but also in ancestral eukaryotes to give rise to most RSIs by a yet unknown multiplication mechanism.
Collapse
Affiliation(s)
- Ate van der Burgt
- Laboratory of Phytopathology, Wageningen University, 6708PB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
95
|
Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol 2012; 78:5341-52. [PMID: 22636004 DOI: 10.1128/aem.01234-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.
Collapse
|
96
|
Jianping Z, Guifang D, Kai Z, Yongjun Z, Yongliang L, Liuqing Y. Screening and identification of insertion mutants from Bipolaris eleusines by mutagenesis based on restriction enzyme-mediated integration. FEMS Microbiol Lett 2012; 330:90-7. [PMID: 22432435 DOI: 10.1111/j.1574-6968.2012.02537.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ophiobolin A is sesterterpenoid-type phytotoxin and may be an important candidate for development of new crop protection and pharmaceutical products. The restriction enzyme-mediated integration (REMI) method was used to introduce the plasmid pSH75 into the ophiobolin A-producing filamentous fungus Bipolaris eleusines. A total of 323 stable transformants were obtained, all of which were capable of growing on potato-dextrose agar medium containing 200 μg mL(-1) hygromycin B. The transformation frequency was about 4-5 transformants μg(-1) plasmid DNA. An ophibolin A-deficient transformant (B014) was assessed and the presence of the hph gene in this transformant was confirmed by PCR. The cell-free cultural filtrates of this transformant showed significantly less inhibition on mycelial growth of the fungal pathogen Rhizoctoni solani but little effect on barnyard grass as opposed to that of the wild-type B. eleusines. There was no detectable amount of ophiobolin A in B014 samples measured with HPLC. This research suggests REMI as a potential approach for improving the production of ophiobolin A by B. eleusines via genetic engineering to upregulate certain genes responsible for desired biosynthetic pathways.
Collapse
Affiliation(s)
- Zhang Jianping
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
97
|
Papon N, Courdavault V, Clastre M, Simkin AJ, Crèche J, Giglioli-Guivarc’h N. Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology (Reading) 2012; 158:585-600. [DOI: 10.1099/mic.0.055244-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Vincent Courdavault
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Marc Clastre
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Andrew J. Simkin
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Joël Crèche
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | | |
Collapse
|
98
|
Ridenour JB, Hirsch RL, Bluhm BH. Identifying genes in Fusarium verticillioides through forward and reverse genetics. Methods Mol Biol 2012; 835:457-479. [PMID: 22183671 DOI: 10.1007/978-1-61779-501-5_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The increasing availability of sequenced genomes for plant pathogenic fungi has revolutionized molecular plant pathology in recent years. However, the genetic regulatory networks underlying many important components of pathogenesis remain poorly defined. Although the protocols outlined in this chapter can be utilized to identify genes regulating a wide range of biological processes in many filamentous fungi, we focus on describing how to identify genes through forward and reverse genetics, using the plant pathogenic fungus Fusarium verticillioides as a model for the protocol. Specifically, this chapter explains how to create a collection of insertional mutants via Restriction Enzyme Mediated Integration (REMI) and how to screen mutants with a high-throughput method to visualize defects in amylolysis. Next, techniques are described to define the genomic lesions in REMI mutants with genome-walker PCR in order to identify candidate genes. Finally, protocols are presented describing a reverse-genetic approach to disrupt candidate genes in the wild-type strain with a split-marker strategy to confirm the phenotype observed in the REMI mutant.
Collapse
Affiliation(s)
- J B Ridenour
- Division of Agriculture, Department of Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | | | | |
Collapse
|
99
|
A. K. Pahirulzaman K, Williams K, Lazarus CM. A Toolkit for Heterologous Expression of Metabolic Pathways in Aspergillus oryzae. Methods Enzymol 2012; 517:241-60. [DOI: 10.1016/b978-0-12-404634-4.00012-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
100
|
Santhanam P. Random insertional mutagenesis in fungal genomes to identify virulence factors. Methods Mol Biol 2012; 835:509-17. [PMID: 22183674 DOI: 10.1007/978-1-61779-501-5_31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) has become an important tool for functional genomics in fungi. ATMT-based approaches such as random insertional mutagenesis and targeted knockout are widely used for gene functional analysis in plant-pathogen interactions. Here, we describe a protocol for the identification of pathogenicity and virulence genes through random insertional mutagenesis using the fungal wilt pathogen Verticillium dahliae as an example for the protocol.
Collapse
|