51
|
Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc Natl Acad Sci U S A 2008; 105:3327-32. [PMID: 18305165 DOI: 10.1073/pnas.0711864105] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We show that, during budding yeast meiosis, axis ensemble Hop1/Red1 and synaptonemal complex (SC) component Zip1 tend to occur in alternating strongly staining domains. The widely conserved AAA+-ATPase Pch2 mediates this pattern, likely by means of direct intervention along axes. Pch2 also coordinately promotes timely progression of cross-over (CO) and noncross-over (NCO) recombination. Oppositely, in a checkpoint-triggering aberrant situation (zip1Delta), Pch2 mediates robust arrest of stalled recombination complexes, likely via nucleolar localization. We suggest that, during WT meiosis, Pch2 promotes progression of SC-associated CO and NCO recombination complexes at a regulated early-midpachytene transition that is rate-limiting for later events; in contrast, during defective meiosis, Pch2 ensures that aberrant recombination complexes fail to progress so that intermediates can be harmlessly repaired during eventual return to growth. Positive vs. negative roles of Pch2 in the two situations are analogous to positive vs. negative roles of Mec1/ATR, suggesting that Pch2 might mediate Mec1/ATR activity. We further propose that regulatory surveillance of normal and abnormal interchromosomal interactions in mitotic and meiotic cells may involve "structure-dependent interchromosomal interaction" (SDIX) checkpoints.
Collapse
|
52
|
Keeney S. Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis. GENOME DYNAMICS AND STABILITY 2008; 2:81-123. [PMID: 21927624 PMCID: PMC3172816 DOI: 10.1007/7050_2007_026] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks made by the Spo11 protein, a relative of archaeal topoisomerase VI. This review summarizes recent studies that provide insight to the mechanism of DNA cleavage by Spo11, functional interactions of Spo11 with other proteins required for break formation, mechanisms that control the timing of recombination initiation, and evolutionary conservation and divergence of these processes.
Collapse
Affiliation(s)
- Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021 USA,
| |
Collapse
|
53
|
De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, Grelon M. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 2007; 26:4126-37. [PMID: 17762870 PMCID: PMC2230667 DOI: 10.1038/sj.emboj.7601815] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 07/06/2007] [Indexed: 11/08/2022] Open
Abstract
The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.
Collapse
Affiliation(s)
- Arnaud De Muyt
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Daniel Vezon
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Ghislaine Gendrot
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Jean-Luc Gallois
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
| | - Rebecca Stevens
- Unité de Recherche Génétique et Amélioration des Fruits et Légumes, INRA, Montfavet, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, Versailles, France
- Institut Jean-Pierre Bourgin, INRA de Versailles, Station de Génétique et d'Amélioration des Plantes, UR-254, Route de St-Cyr, Versailles, 78026 France. Tel.: +33 1 30 83 33 08; Fax: +33 1 30 83 33 19; E-mail:
| |
Collapse
|
54
|
Abstract
The faithful segregation of homologous chromosomes during meiosis is dependent on the formation of physical connections (chiasma) that form following reciprocal exchange of DNA molecules during meiotic recombination. Here we review the current knowledge in the Caenorhabditis elegans meiotic recombination field. We discuss recent developments that have improved our understanding of the crucial steps that must precede the initiation and propagation of meiotic recombination. We summarize the pathways that impact on meiotic prophase entry and the current understanding of how chromosomes reorganize and interact to promote homologous chromosome pairing and subsequent synapsis. We pay particular attention to the mechanisms that contribute to meiotic DNA double-strand break (DSB) formation and strand exchange processes, and how the C. elegans system compares with other model organisms. Finally, we highlight current and future areas of research that are likely to further our understanding of the meiotic recombination process.
Collapse
Affiliation(s)
- Tatiana Garcia-Muse
- DNA Damage Response Laboratory, Clare Hall Laboratories, Cancer Research UK, Blanch Lane, South Mimms, EN6 3LD, UK
| | | |
Collapse
|
55
|
Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one. BMC DEVELOPMENTAL BIOLOGY 2007; 7:87. [PMID: 17650311 PMCID: PMC1965470 DOI: 10.1186/1471-213x-7-87] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 07/24/2007] [Indexed: 01/13/2023]
Abstract
Background The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I. Results Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for meiosis- and apoptosis-related markers. COR-1 (meiosis-specific) highlighted axial elements of the synaptonemal complex and allowed definitive identification of the stages of meiotic prophase I. Labelling for cleaved poly-(ADP-ribose) polymerase (PARP-1), an inactivated DNA repair protein, indicated apoptosis. The same oocytes were then labelled for DNA double strand breaks (DSBs) using TUNEL. 1960 oocytes produced analysable results. Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or TUNEL, or neither. Oocytes with fragmented (19.8%) or compressed (21.2%) axial elements showed slight but significant differences in staining for cleaved PARP-1 and TUNEL to those with intact elements. However, fragmentation of axial elements alone was not a good indicator of cell demise. Cleaved PARP-1 and TUNEL staining were not necessarily coincident, showing that TUNEL is not a reliable marker of apoptosis in oocytes. Conclusion Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse fetal and early postnatal oocytes, with greatest incidence at the diplotene stage. Careful selection of appropriate markers for oocyte apoptosis is essential.
Collapse
|
56
|
Maleki S, Neale MJ, Arora C, Henderson KA, Keeney S. Interactions between Mei4, Rec114, and other proteins required for meiotic DNA double-strand break formation in Saccharomyces cerevisiae. Chromosoma 2007; 116:471-86. [PMID: 17558514 PMCID: PMC2084462 DOI: 10.1007/s00412-007-0111-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 11/24/2022]
Abstract
In most sexually reproducing organisms, meiotic recombination is initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. In budding yeast, nine other proteins are also required for DSB formation, but the roles of these proteins and the interactions among them are poorly understood. We report further studies of the behaviors of these proteins. Consistent with other studies, we find that Mei4 and Rec114 bind to chromosomes from leptonema through early pachynema. Both proteins showed only limited colocalization with the meiotic cohesin subunit Rec8, suggesting that Mei4 and Rec114 associated preferentially with chromatin loops. Rec114 localization was independent of other DSB factors, but Mei4 localization was strongly dependent on Rec114 and Mer2. Systematic deletion analysis identified protein regions important for a previously described two-hybrid interaction between Mei4 and Rec114. We also report functional characterization of a previously misannotated 5' coding exon of REC102. Sequences encoded in this exon are essential for DSB formation and for Rec102 interaction with Rec104, Spo11, Rec114, and Mei4. Finally, we also examined genetic requirements for a set of previously described two-hybrid interactions that can be detected only when the reporter strain is induced to enter meiosis. This analysis reveals new functional dependencies for interactions among the DSB proteins. Taken together, these studies support the view that Mei4, Rec114, and Mer2 make up a functional subgroup that is distinct from other subgroups of the DSB proteins: Spo11-Ski8, Rec102-Rec104, and Mre11-Rad50-Xrs2. These studies also suggest that an essential function of Rec102 and Rec104 is to connect Mei4 and Rec114 to Spo11.
Collapse
Affiliation(s)
- Shohreh Maleki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
57
|
Robine N, Uematsu N, Amiot F, Gidrol X, Barillot E, Nicolas A, Borde V. Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:1868-80. [PMID: 17189430 PMCID: PMC1820458 DOI: 10.1128/mcb.02063-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/30/2006] [Accepted: 12/12/2006] [Indexed: 02/05/2023] Open
Abstract
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spo11 protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spo11 with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spo11 to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spo11.
Collapse
Affiliation(s)
- Nicolas Robine
- Institut Curie, Recombinaison et Instabilité Génétique, Centre de Recherche, UMR7147 CNRS-Institut Curie-Université P. et M. Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
58
|
Sasanuma H, Murakami H, Fukuda T, Shibata T, Nicolas A, Ohta K. Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Nucleic Acids Res 2007; 35:1119-33. [PMID: 17264124 PMCID: PMC1851646 DOI: 10.1093/nar/gkl1162] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is initiated by DNA double-stranded break (DSB) formation catalyzed by Spo11, a type-II topoisomerase-like transesterificase, presumably via a dimerization-mediated mechanism. We demonstrate the existence of in vivo interactions between Spo11 proteins carrying distinct tags, and the chromatin-binding and DSB activity of tagged Spo11 at innate and targeted DSB sites upon fusion to the Gal4 DNA-binding domain. First we identified the interaction between Spo11-3FLAG and Gal4BD-Spo11 proteins, and established that this interaction specifically occurs at the time of DSB formation. We then observed that presence of the Gal4BD-spo11Y135F (nuclease-deficient) protein allows Spo11-3FLAG recruitment at the GAL2 locus, indicative of the formation of a hetero-complex near the GAL2 UAS sites, but no formation of double- or single-strand breaks. Spo11 self-interaction around the GAL2 DSB site depends on other proteins for DSB formation, in particular Rec102, Rec104 and Rec114. Together, these results suggest that in vivo self-association of Spo11 during meiosis is genetically regulated. The results are discussed in relation to possible roles of Spo11 self-interaction in the control of the cleavage activity.
Collapse
Affiliation(s)
- Hiroyuki Sasanuma
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Hajime Murakami
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Fukuda
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Takehiko Shibata
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alain Nicolas
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Kunihiro Ohta
- Genetic System Regulation Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan, The Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Saitama 338-8570, Japan, Institut Curie, Centre de recherche, CNRS UMR7147, Université Piere et Marie Curie, 26 rue d’Ulm 75248, Paris Cedex 05, France and Shibata Distinguished Scientist Laboratory, RIKEN Discovery Research Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
- *To whom correspondence should be addressed. Tel: +81 48 467 9277; Fax: +81 48 462 4691;
| |
Collapse
|
59
|
|
60
|
Henderson KA, Kee K, Maleki S, Santini P, Keeney S. Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell 2006; 125:1321-32. [PMID: 16814718 PMCID: PMC1950680 DOI: 10.1016/j.cell.2006.04.039] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/07/2006] [Accepted: 04/19/2006] [Indexed: 12/11/2022]
Abstract
Meiosis is a specialized cell division that halves the genome complement, producing haploid gametes/spores from diploid cells. Proper separation of homologous chromosomes at the first meiotic division requires the production of physical connections (chiasmata) between homologs through recombinational exchange of chromosome arms after sister-chromatid cohesion is established but before chromosome segregation takes place. The events of meiotic prophase must thus occur in a strictly temporal order, but the molecular controls coordinating these events have not been well elucidated. Here, we demonstrate that the budding yeast cyclin-dependent kinase Cdc28 directly regulates the formation of the DNA double-strand breaks that initiate recombination by phosphorylating the Mer2/Rec107 protein and thereby modulating interactions of Mer2 with other proteins required for break formation. We propose that this function of Cdc28 helps to coordinate the events of meiotic prophase with each other and with progression through prophase.
Collapse
Affiliation(s)
- Kiersten A. Henderson
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
| | - Kehkooi Kee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
| | - Shohreh Maleki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
| | - Paul Santini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY USA
- * Corresponding author: Phone (212) 639-5182; FAX: (212) 717-3627; e-mail:
| |
Collapse
|
61
|
Keeney S, Neale MJ. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 2006; 34:523-5. [PMID: 16856850 DOI: 10.1042/bst0340523] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Homologous recombination is essential for accurate chromosome segregation during meiosis in most sexual organisms. Meiotic recombination is initiated by the formation of DSBs (DNA double-strand breaks) made by the Spo11 protein. We review here recent findings pertaining to protein–protein interactions important for DSB formation, the mechanism of an early step in the processing of Spo11-generated DSBs, and regulation of DSB formation by protein kinases.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., Box 97, New York, NY 10021, USA.
| | | |
Collapse
|
62
|
Li J, Hooker GW, Roeder GS. Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics 2006; 173:1969-81. [PMID: 16783010 PMCID: PMC1569690 DOI: 10.1534/genetics.106.058768] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In budding yeast, at least 10 proteins are required for formation of the double-strand breaks (DSBs) that initiate meiotic recombination. Spo11 is the enzyme responsible for cleaving DNA and is found in a complex that also contains Ski8, Rec102, and Rec104. The Mre11/Rad50/Xrs2 complex is required for both DSB formation and DSB processing. In this article we investigate the functions of the remaining three proteins--Mer2, Mei4, and Rec114--with particular emphasis on Mer2. The Mer2 protein is present in vegetative cells, but it increases in abundance and becomes phosphorylated specifically during meiotic prophase. Mer2 localizes to distinct foci on meiotic chromosomes, with foci maximally abundant prior to the formation of synaptonemal complex. If DSB formation is blocked (e.g., by a spo11 mutation), dephosphorylation of Mer2 and its dissociation from chromosomes are delayed. We have also found that the Mei4 and Rec114 proteins localize to foci on chromosomes and these foci partially colocalize with each other and with Mer2. Furthermore, the three proteins co-immunoprecipitate. Mer2 does not show significant colocalization with Mre11 or Rec102 and Mer2 does not co-immunoprecipitate with Rec102. We propose that Mer2, Mei4, and Rec114 form a distinct complex required for DSB formation.
Collapse
Affiliation(s)
- Jing Li
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, and Department of Genetics, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
63
|
Lorenz A, Estreicher A, Kohli J, Loidl J. Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe. Chromosoma 2006; 115:330-40. [PMID: 16532353 DOI: 10.1007/s00412-006-0053-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 10/24/2022]
Abstract
In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Chromosome Biology, University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
64
|
Prieler S, Penkner A, Borde V, Klein F. The control of Spo11's interaction with meiotic recombination hotspots. Genes Dev 2005; 19:255-69. [PMID: 15655113 PMCID: PMC545890 DOI: 10.1101/gad.321105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Programmed double-strand breaks (DSBs), which initiate meiotic recombination, arise through the activity of the evolutionary conserved topoisomerase homolog Spo11. Spo11 is believed to catalyze the DNA cleavage reaction in the initial step of DSB formation, while at least a further 11 factors assist in Saccharomyces cerevisiae. Using chromatin-immunoprecipitation (ChIP), we detected the transient, noncovalent association of Spo11 with meiotic hotspots in wild-type cells. The establishment of this association requires Rec102, Rec104, and Rec114, while the timely removal of Spo11 from chromatin depends on several factors, including Mei4 and Ndt80. In addition, at least one further component, namely, Red1, is responsible for locally restricting Spo11's interaction to the core region of the hotspot. In chromosome spreads, we observed meiosis-specific Spo11-Myc foci, independent of DSB formation, from leptotene until pachytene. In both rad50S and com1Delta/sae2Delta mutants, we observed a novel reaction intermediate between Spo11 and hotspots, which leads to the detection of full-length hotspot DNA by ChIP in the absence of artificial cross-linking. Although this DNA does not contain a break, its recovery requires Spo11's catalytic residue Y135. We propose that detection of uncross-linked full-length hotspot DNA is only possible during the reversible stage of the Spo11 cleavage reaction, in which rad50S and com1Delta/sae2Delta mutants transiently arrest.
Collapse
Affiliation(s)
- Silvia Prieler
- Institute of Botany, Max F. Perutz Laboratories, Department of Chromosome Biology, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
65
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
66
|
Reddy KC, Villeneuve AM. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 2004; 118:439-52. [PMID: 15315757 DOI: 10.1016/j.cell.2004.07.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/21/2004] [Accepted: 07/06/2004] [Indexed: 11/18/2022]
Abstract
Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.
Collapse
Affiliation(s)
- Kirthi C Reddy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|