51
|
Bestas B, McClorey G, Tedebark U, Moreno PMD, Roberts TC, Hammond SM, Smith CIE, Wood MJA, Andaloussi SE. Design and application of bispecific splice-switching oligonucleotides. Nucleic Acid Ther 2014; 24:13-24. [PMID: 24506779 DOI: 10.1089/nat.2013.0462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Targeting of pre-mRNA by short splice-switching oligonucleotides (SSOs) is increasingly being used as a therapeutic modality, one rationale being to disrupt splicing so as to remove exons containing premature termination codons, or to restore the translation reading frame around out-of-frame deletion mutations. The aim of this study was to investigate the effect of chemically linking individual SSOs so as to ascertain equimolar cellular uptake that would provide for more defined drug formulations. In contrast to conventional bispecific SSOs generated by conjugation in solution, here we describe a protocol for synthesis of bispecific SSOs on solid phase. These SSOs comprised of either a non-cleavable hydrocarbon linker or disulfide-based cleavable linkers. To assess the efficacy of these SSOs we have utilized splice switching to bypass a disease-causing mutation in the DMD gene concurrent with disruption of the reading frame of the myostatin gene (Mstn). The premise of this approach is that disruption of myostatin expression is known to induce muscle hypertrophy and so for Duchenne muscular dystrophy (DMD) could be expected to have a better outcome than dystrophin restoration alone. All tested SSOs mediated simultaneous robust exon removal from mature Dmd and Mstn transcripts in myotubes. Our results also demonstrate that using cleavable SSOs is preferred over the non-cleavable counterparts and that these are equally efficient at inducing exon skipping as cocktails of monospecific versions. In conclusion, we have developed a protocol for solid-phase synthesis of single molecule cleavable bispecific SSOs that can be efficiently exploited for targeting of multiple RNA transcripts.
Collapse
Affiliation(s)
- Burcu Bestas
- 1 Department of Laboratory Medicine, Karolinska Institutet , Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Echigoya Y, Yokota T. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 2013; 24:57-68. [PMID: 24380394 DOI: 10.1089/nat.2013.0451] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common and lethal genetic disorders, with 20,000 children per year born with DMD globally. DMD is caused by mutations in the dystrophin (DMD) gene. Antisense-mediated exon skipping therapy is a promising therapeutic approach that uses short DNA-like molecules called antisense oligonucleotides (AOs) to skip over/splice out the mutated part of the gene to produce a shortened but functional dystrophin protein. One major challenge has been its limited applicability. Multiple exon skipping has recently emerged as a potential solution. Indeed, many DMD patients need exon skipping of multiple exons in order to restore the reading frame, depending on how many base pairs the mutated exon(s) and adjacent exons have. Theoretically, multiple exon skipping could be used to treat approximately 90%, 80%, and 98% of DMD patients with deletion, duplication, and nonsense mutations, respectively. In addition, multiple exon skipping could be used to select deletions that optimize the functionality of the truncated dystrophin protein. The proof of concept of systemic multiple exon skipping using a cocktail of AOs has been demonstrated in dystrophic dog and mouse models. Remaining challenges include the insufficient efficacy of systemic treatment, especially for therapies that target the heart, and limited long-term safety data. Here we review recent preclinical developments in AO-mediated multiple exon skipping and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yusuke Echigoya
- 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta, Canada
| | | |
Collapse
|
53
|
Jirka SMG, Heemskerk H, Tanganyika-de Winter CL, Muilwijk D, Pang KH, de Visser PC, Janson A, Karnaoukh TG, Vermue R, 't Hoen PAC, van Deutekom JCT, Aguilera B, Aartsma-Rus A. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice. Nucleic Acid Ther 2013; 24:25-36. [PMID: 24320790 DOI: 10.1089/nat.2013.0448] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy that is currently being tested in various clinical trials. This approach is based on restoring the open reading frame of dystrophin transcripts resulting in shorter but partially functional dystrophin proteins as found in patients with Becker muscular dystrophy. After systemic administration, a large proportion of AONs ends up in the liver and kidneys. Therefore, enhancing AON uptake by skeletal and cardiac muscle would improve the AONs' therapeutic effect. For phosphorodiamidate morpholino oligomer, AONs use nonspecific positively charged cell penetrating peptides to enhance efficacy. However, this is challenging for negatively charged 2'-O-methyl phosphorothioate oligomer. Therefore, we screened a 7-mer phage display peptide library to identify muscle and heart homing peptides in vivo in the mdx mouse model and found a promising candidate peptide capable of binding muscle cells in vitro and in vivo. Upon systemic administration in dystrophic mdx mice, conjugation of a 2'-O-methyl phosphorothioate AON to this peptide indeed improved uptake in skeletal and cardiac muscle, and resulted in higher exon skipping levels with a significant difference in heart and diaphragm. Based on these results, peptide conjugation represents an interesting strategy to enhance the therapeutic effect of exon skipping with 2'-O-methyl phosphorothioate AONs for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Silvana M G Jirka
- 1 Department of Human Genetics, Leiden University Medical Center , Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Jarmin S, Kymalainen H, Popplewell L, Dickson G. New developments in the use of gene therapy to treat Duchenne muscular dystrophy. Expert Opin Biol Ther 2013; 14:209-30. [PMID: 24308293 DOI: 10.1517/14712598.2014.866087] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a lethal X-linked inherited disorder characterised by progressive muscle weakness, wasting and degeneration. Although the gene affected in DMD was identified over 25 years ago, there is still no effective treatment. AREAS COVERED Here we review some of the genetic-based strategies aimed at amelioration of the DMD phenotype. A number of Phase II/III clinical trials of antisense oligonucleotide-induced exon skipping for restoration of the open reading frame (ORF) of the DMD gene have recently been completed. The potential strategies for overcoming the hurdles that appear to prevent exon skipping becoming an effective treatment for DMD currently are discussed. EXPERT OPINION The applicability of exon skipping as a therapy to DMD is restricted and the development of alternative strategies that are more encompassing is needed. The rapid pre-clinical advances that are being made in the field of adeno-associated virus (AAV)-based delivery of micro-dystrophin would address this. The obstacles to be faced with gene replacement strategies would include the need for high viral titres, efficient muscle targeting and avoidance of immune response to vector and transgene. The new emerging field of gene editing could potentially provide permanent correction of the DMD gene and the feasibility of such an approach to DMD is discussed.
Collapse
Affiliation(s)
- Susan Jarmin
- Royal Holloway University of London , Egham, Surrey , UK
| | | | | | | |
Collapse
|
55
|
Antisense therapy in neurology. J Pers Med 2013; 3:144-76. [PMID: 25562650 PMCID: PMC4251390 DOI: 10.3390/jpm3030144] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology.
Collapse
|
56
|
Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402369. [PMID: 23984357 PMCID: PMC3747431 DOI: 10.1155/2013/402369] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an incurable, X-linked progressive muscle degenerative disorder that results from the absence of dystrophin protein and leads to premature death in affected individuals due to respiratory and/or cardiac failure typically by age of 30. Very recently the exciting prospect of an effective oligonucleotide therapy has emerged which restores dystrophin protein expression to affected tissues in DMD patients with highly promising data from a series of clinical trials. This therapeutic approach is highly mutation specific and thus is personalised. Therefore DMD has emerged as a model genetic disorder for understanding and overcoming of the challenges of developing personalised genetic medicines. One of the greatest weaknesses of the current oligonucleotide approach is that it is a mutation-specific therapy. To address this limitation, we have recently demonstrated that exons 45–55 skipping therapy has the potential to treat clusters of mutations that cause DMD, which could significantly reduce the number of compounds that would need to be developed in order to successfully treat all DMD patients. Here we discuss and review the latest preclinical work in this area as well as a variety of accompanying issues, including efficacy and potential toxicity of antisense oligonucleotides, prior to human clinical trials.
Collapse
|
57
|
Fletcher S, Meloni PL, Johnsen RD, Wong BL, Muntoni F, Wilton SD. Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genomic Med 2013; 1:162-73. [PMID: 24498612 PMCID: PMC3865583 DOI: 10.1002/mgg3.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/02/2022] Open
Abstract
We describe two donor splice site mutations, affecting dystrophin exons 16 and 45 that led to Duchenne muscular dystrophy (DMD), through catastrophic inactivation of the mRNA. These gene lesions unexpectedly resulted in the retention of the downstream introns, thereby increasing the length of the dystrophin mRNA by 20.2 and 36 kb, respectively. Splice-switching antisense oligomers targeted to exon 16 excised this in-frame exon and the following intron from the patient dystrophin transcript very efficiently in vitro, thereby restoring the reading frame and allowing synthesis of near-normal levels of a putatively functional dystrophin isoform. In contrast, targeting splice-switching oligomers to exon 45 in patient cells promoted only modest levels of an out-of-frame dystrophin transcript after transfection at high oligomer concentrations, whereas dual targeting of exons 44 and 45 or 45 and 46 resulted in more efficient exon skipping, with concomitant removal of intron 45. The splice site mutations reported here appear highly amenable to antisense oligomer intervention. We suggest that other splice site mutations may need to be evaluated for oligomer interventions on a case-by-case basis.
Collapse
Affiliation(s)
- Sue Fletcher
- Centre for Comparative Genomics, Murdoch University South St, 6150, Perth, Western Australia, Australia ; Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Penny L Meloni
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Russell D Johnsen
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| | - Brenda L Wong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Centre and University of Cincinnati College of Medicine Cincinnati, 45229-3039, Ohio
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Institute of Child Health London London, WC1N 1EH, United Kingdom
| | - Stephen D Wilton
- Centre for Comparative Genomics, Murdoch University South St, 6150, Perth, Western Australia, Australia ; Centre for Neuromuscular and Neurological Disorders, University of Western Australia Perth 6009, Western Australia, Australia
| |
Collapse
|
58
|
Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Précigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med 2013; 5:1128-45. [PMID: 23716398 PMCID: PMC3721478 DOI: 10.1002/emmm.201202168] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/26/2022] Open
Abstract
Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5–6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM.
Collapse
Affiliation(s)
- Christina Gedicke-Hornung
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Havens MA, Duelli DM, Hastings ML. Targeting RNA splicing for disease therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:247-66. [PMID: 23512601 PMCID: PMC3631270 DOI: 10.1002/wrna.1158] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.
Collapse
Affiliation(s)
- Mallory A. Havens
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science. North Chicago, IL, 60064, USA. No conflicts of interest
| | - Dominik M. Duelli
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. No conflicts of interest
| | - Michelle L. Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science. North Chicago, IL, 60064, USA, Phone: 847-578-8517 Fax: 847-578-3253. No conflicts of interest
| |
Collapse
|
60
|
Sarkozy A, Bushby K, Mercuri E. Muscular Dystrophies. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-58. [DOI: 10.1016/b978-0-12-383834-6.00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
61
|
Foster H, Popplewell L, Dickson G. Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 2012; 23:676-87. [PMID: 22647146 DOI: 10.1089/hum.2012.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite an expansive wealth of research following the discovery of the DMD gene 25 years ago, there is still no curative treatment for Duchenne muscular dystrophy. However, there are currently many promising lines of research, including cell-based therapies and pharmacological reagents to upregulate dystrophin via readthrough of nonsense mutations or by upregulation of the dystrophin homolog utrophin. Here we review genetic-based therapeutic strategies aimed at the amelioration of the DMD phenotype. These include the reintroduction of a copy of the DMD gene into an affected tissue by means of a viral vector; correction of the mutated DMD transcript by antisense oligonucleotide-induced exon skipping to restore the open reading frame; and direct modification of the DMD gene at a chromosomal level through genome editing. All these approaches are discussed in terms of the more recent advances, and the hurdles to be overcome if a comprehensive and effective treatment for DMD is to be found. These hurdles include the need to target all musculature of the body. Therefore any potential treatment would need to be administered systemically. In addition, any treatment needs to have a long-term effect, with the possibility of readministration, while avoiding any potentially detrimental immune response to the vector or transgene.
Collapse
Affiliation(s)
- Helen Foster
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | |
Collapse
|
62
|
Targeted exon skipping to address "leaky" mutations in the dystrophin gene. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e48. [PMID: 23344648 PMCID: PMC3499695 DOI: 10.1038/mtna.2012.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-truncating mutations in the dystrophin gene lead to the progressive muscle wasting disorder Duchenne muscular dystrophy, whereas in-frame deletions typically manifest as the milder allelic condition, Becker muscular dystrophy. Antisense oligomer-induced exon skipping can modify dystrophin gene expression so that a disease-associated dystrophin pre-mRNA is processed into a Becker muscular dystrophy-like mature transcript. Despite genomic deletions that may encompass hundreds of kilobases of the gene, some dystrophin mutations appear “leaky”, and low levels of high molecular weight, and presumably semi-functional, dystrophin are produced. A likely causative mechanism is endogenous exon skipping, and Duchenne individuals with higher baseline levels of dystrophin may respond more efficiently to the administration of splice-switching antisense oligomers. We optimized excision of exons 8 and 9 in normal human myoblasts, and evaluated several oligomers in cells from eight Duchenne muscular dystrophy patients with deletions in a known “leaky” region of the dystrophin gene. Inter-patient variation in response to antisense oligomer induced skipping in vitro appeared minimal. We describe oligomers targeting exon 8, that unequivocally increase dystrophin above baseline in vitro, and propose that patients with leaky mutations are ideally suited for participation in antisense oligomer mediated splice-switching clinical studies.
Collapse
|
63
|
Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther 2012; 20:2120-33. [PMID: 22968479 DOI: 10.1038/mt.2012.181] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder resulting from lesions of the gene encoding dystrophin. These usually consist of large genomic deletions, the extents of which are not correlated with the severity of the phenotype. Out-of-frame deletions give rise to dystrophin deficiency and severe DMD phenotypes, while internal deletions that produce in-frame mRNAs encoding truncated proteins can lead to a milder myopathy known as Becker muscular dystrophy (BMD). Widespread restoration of dystrophin expression via adeno-associated virus (AAV)-mediated exon skipping has been successfully demonstrated in the mdx mouse model and in cardiac muscle after percutaneous transendocardial delivery in the golden retriever muscular dystrophy dog (GRMD) model. Here, a set of optimized U7snRNAs carrying antisense sequences designed to rescue dystrophin were delivered into GRMD skeletal muscles by AAV1 gene transfer using intramuscular injection or forelimb perfusion. We show sustained correction of the dystrophic phenotype in extended muscle areas and partial recovery of muscle strength. Muscle architecture was improved and fibers displayed the hallmarks of mature and functional units. A 5-year follow-up ruled out immune rejection drawbacks but showed a progressive decline in the number of corrected muscle fibers, likely due to the persistence of a mild dystrophic process such as occurs in BMD phenotypes. Although AAV-mediated exon skipping was shown safe and efficient to rescue a truncated dystrophin, it appears that recurrent treatments would be required to maintain therapeutic benefit ahead of the progression of the disease.
Collapse
|
64
|
Tanganyika-de Winter CL, Heemskerk H, Karnaoukh TG, van Putten M, de Kimpe SJ, van Deutekom J, Aartsma-Rus A. Long-term Exon Skipping Studies With 2'-O-Methyl Phosphorothioate Antisense Oligonucleotides in Dystrophic Mouse Models. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e44. [PMID: 23344236 PMCID: PMC3464881 DOI: 10.1038/mtna.2012.38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD) is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynamic profile of antisense oligonucleotides (AONs). Here, we tested the safety and efficacy of subcutaneously administered 2'-O-methyl phosphorothioate AON at 200 mg/kg/week for up to 6 months in mouse models with varying levels of disease severity: mdx mice (mild phenotype) and mdx mice with one utrophin allele (mdx/utrn(+/-); more severe phenotype). Long-term treatment was well tolerated and exon skipping and dystrophin restoration confirmed for all animals. Notably, in the more severely affected mdx/utrn(+/-) mice the therapeutic effect was larger: creatine kinase (CK) levels were more decreased and rotarod running time was more increased. This suggests that the mdx/utrn(+/-) model may be a more suitable model to test potential therapies than the regular mdx mouse. Our results also indicate that long-term subcutaneous treatment in dystrophic mouse models with these AONs is safe and beneficial.Molecular Therapy-Nucleic Acids (2012) 1, e44; doi:10.1038/mtna.2012.38; published online 4 September 2012.
Collapse
|
65
|
Yokota T, Nakamura A, Nagata T, Saito T, Kobayashi M, Aoki Y, Echigoya Y, Partridge T, Hoffman EP, Takeda S. Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther 2012; 22:306-15. [PMID: 22888777 DOI: 10.1089/nat.2012.0368] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and the most prevalent form of muscular dystrophy, characterized by rapid progression of muscle degeneration. Antisense-mediated exon skipping is currently one of the most promising therapeutic options for DMD. However, unmodified antisense oligos such as morpholinos require frequent (weekly or bi-weekly) injections. Recently, new generation morpholinos such as vivo-morpholinos are reported to lead to extensive and prolonged dystrophin expression in the dystrophic mdx mouse, an animal model of DMD. The vivo-morpholino contains a cell-penetrating moiety, octa-guanidine dendrimer. Here, we sought to test the efficacy of multiple exon skipping of exons 6-8 with vivo-morpholinos in the canine X-linked muscular dystrophy, which harbors a splice site mutation at the boundary of intron 6 and exon 7. We designed and optimized novel antisense cocktail sequences and combinations for exon 8 skipping and demonstrated effective exon skipping in dystrophic dogs in vivo. Intramuscular injections with newly designed cocktail oligos led to high levels of dystrophin expression, with some samples similar to wild-type levels. This is the first report of successful rescue of dystrophin expression with morpholino conjugates in dystrophic dogs. Our results show the potential of phosphorodiamidate morpholino oligomer conjugates as therapeutic agents for DMD.
Collapse
Affiliation(s)
- Toshifumi Yokota
- Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 2012; 109:13763-8. [PMID: 22869723 DOI: 10.1073/pnas.1204638109] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the commonest form of muscular dystrophy, is caused by lack of dystrophin. One of the most promising therapeutic approaches is antisense-mediated elimination of frame-disrupting mutations by exon skipping. However, this approach faces two major hurdles: limited applicability of each individual target exon and uncertain function and stability of each resulting truncated dystrophin. Skipping of exons 45-55 at the mutation hotspot of the DMD gene would address both issues. Theoretically it could rescue more than 60% of patients with deletion mutations. Moreover, spontaneous deletions of this specific region are associated with asymptomatic or exceptionally mild phenotypes. However, such multiple exon skipping of exons 45-55 has proved technically challenging. We have therefore designed antisense oligo (AO) morpholino mixtures to minimize self- or heteroduplex formation. These were tested as conjugates with cell-penetrating moieties (vivo-morpholinos). We have tested the feasibility of skipping exons 45-55 in H2K-mdx52 myotubes and in mdx52 mice, which lack exon 52. Encouragingly, with mixtures of 10 AOs, we demonstrated skipping of all 10 exons in vitro, in H2K-mdx52 myotubes and on intramuscular injection into mdx52 mice. Moreover, in mdx52 mice in vivo, systemic injections of 10 AOs induced extensive dystrophin expression at the subsarcolemma in skeletal muscles throughout the body, producing up to 15% of wild-type dystrophin protein levels, accompanied by improved muscle strength and histopathology without any detectable toxicity. This is a unique successful demonstration of effective rescue by exon 45-55 skipping in a dystrophin-deficient animal model.
Collapse
|
67
|
Yokota T, Duddy W, Echigoya Y, Kolski H. Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 2012; 12:1141-52. [PMID: 22650324 DOI: 10.1517/14712598.2012.693469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, is caused by mutations of the dystrophin gene. Removal of an exon or of multiple exons using antisense molecules has been demonstrated to allow synthesis of truncated 'Becker muscular dystrophy-like' dystrophin. AREAS COVERED Approximately 15% of DMD cases are caused by a nonsense mutation. Although patient databases have previously been surveyed for applicability to each deletion mutation pattern, this is not so for nonsense mutations. Here, we examine the world-wide database containing notations for more than 1200 patients with nonsense mutations. Approximately 47% of nonsense mutations can be potentially treated with single exon skipping, rising to 90% with double exon skipping, but to reach this proportion requires the development of exon skipping molecules targeting some 68 of dystrophin's 79 exons, with patient numbers spread thinly across those exons. In this review, we discuss progress and remaining hurdles in exon skipping and an alternative strategy, stop-codon readthrough. EXPERT OPINION Antisense-mediated exon skipping therapy is targeted highly at the individual patient and is a clear example of personalized medicine. An efficient regulatory path for drug approval will be a key to success.
Collapse
Affiliation(s)
- Toshifumi Yokota
- University of Alberta, Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, 829 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada.
| | | | | | | |
Collapse
|
68
|
Lehto T, Kurrikoff K, Langel Ü. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 2012; 9:823-36. [PMID: 22594635 DOI: 10.1517/17425247.2012.689285] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Different gene therapy approaches have gained extensive interest lately and, after many initial hurdles, several promising approaches have reached to the clinics. Successful implementation of gene therapy is heavily relying on finding efficient measures to deliver genetic material to cells. Recently, non-viral delivery of nucleic acids and their analogs has gained significant interest. Among non-viral vectors, cell-penetrating peptides (CPPs) have been extensively used for the delivery of nucleic acids both in vitro and in vivo. AREAS COVERED In this review we will discuss recent advances of CPP-mediated delivery of nucleic acid-based cargo, concentrating on the delivery of plasmid DNA, splice-correcting ONs, and small-interfering RNAs. EXPERT OPINION CPPs have proved their potential as carriers for nucleic acids. However, similarly to other non-viral vectors, CPPs require further development, as efficient systemic delivery is still seldom achieved. To achieve this, CPPs should be modified with entities that would allow better endosomal escape, targeting of specific tissues and cells, and shielding agents that increase the half-life of the vehicles. Finally, to understand the clinical potential of CPPs, they require more thorough investigations in clinically relevant disease models and in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Taavi Lehto
- University of Tartu, Institute of Technology, Laboratory of Molecular Biotechnology, Tartu, Estonia.
| | | | | |
Collapse
|
69
|
Gentil C, Leturcq F, Ben Yaou R, Kaplan JC, Laforet P, Pénisson-Besnier I, Espil-Taris C, Voit T, Garcia L, Piétri-Rouxel F. Variable phenotype of del45-55 Becker patients correlated with nNOSμ mislocalization and RYR1 hypernitrosylation. Hum Mol Genet 2012; 21:3449-60. [PMID: 22589245 DOI: 10.1093/hmg/dds176] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are muscle-wasting diseases caused by mutations in the DMD gene-encoding dystrophin. Usually, out-of-frame deletions give rise to DMD, whereas in-frame deletions result in BMD. BMD patients exhibit a less severe disease because an abnormal but functional dystrophin is produced. This is the rationale for attempts to correct the reading frame by using an exon-skipping strategy. In order to apply this approach to a larger number of patients, a multi-exon skipping strategy of exons 45-55 has been proposed, because it should correct the mRNA reading frame in almost 75% of DMD patients with a deletion. The resulting dystrophin lacks part of the binding site for the neuronal nitric oxide synthase (nNOSμ), which normally binds to spectrin-like repeats 16 and 17 of the dystrophin. Since these domains are encoded by exons 42-45, we investigated the nNOSμ status in muscle biopsies from 12 BMD patients carrying spontaneous deletions spaning exons 45-55. We found a wide spectrum of nNOSμ expression and localization. The strictly cytosolic mislocalization of nNOSμ was associated with the more severe phenotypes. Cytosolic NO production correlated with both hypernitrosylation of the sarcoplasmic reticulum calcium-release-channel ryanodine receptor type-1 (RyR1) and release of calstabin-1, a central hub of Ca(2+) signaling and contraction in muscle. Finally, this study shows that the terminal truncation of the nNOS-binding domain in the 'therapeutic' del45-55 dystrophin is not innocuous, since it can perturb the nNOS-dependent stability of the RyR1/calstabin-1 complex.
Collapse
Affiliation(s)
- Christel Gentil
- UM76-UPMC/U974-Inserm/UMR7215-CNRS, Institut de Myologie 105 Bd de l’Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Berger J, Berger S, Jacoby AS, Wilton SD, Currie PD. Evaluation of exon-skipping strategies for Duchenne muscular dystrophy utilizing dystrophin-deficient zebrafish. J Cell Mol Med 2012; 15:2643-51. [PMID: 21251213 PMCID: PMC4373433 DOI: 10.1111/j.1582-4934.2011.01260.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystophy (DMD) is a severe muscle wasting disease caused by mutations in the dystrophin gene. By utilizing antisense oligonucleotides, splicing of the dystrophin transcript can be altered so that exons harbouring a mutation are excluded from the mature mRNA. Although this approach has been shown to be effective to restore partially functional dystrophin protein, the level of dystrophin protein that is necessary to rescue a severe muscle pathology has not been addressed. As zebrafish dystrophin mutants (dmd) resemble the severe muscle pathology of human patients, we have utilized this model to evaluate exon skipping. Novel dmd mutations were identified to enable the design of phenotype rescue studies via morpholino administration. Correlation of induced exon-skipping efficiency and the level of phenotype rescue suggest that relatively robust levels of exon skipping are required to achieve significant therapeutic ameliorations and that pre-screening analysis of exon-skipping drugs in zebrafish may help to more accurately predict clinical trials for therapies of DMD.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
71
|
Bish LT, Sleeper MM, Forbes SC, Wang B, Reynolds C, Singletary GE, Trafny D, Morine KJ, Sanmiguel J, Cecchini S, Virag T, Vulin A, Beley C, Bogan J, Wilson JM, Vandenborne K, Kornegay JN, Walter GA, Kotin RM, Garcia L, Sweeney HL. Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol Ther 2012; 20:580-9. [PMID: 22146342 PMCID: PMC3293605 DOI: 10.1038/mt.2011.264] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Although restoration of dystrophin expression via exon skipping in both cardiac and skeletal muscle has been successfully demonstrated in the mdx mouse, restoration of cardiac dystrophin expression in large animal models of Duchenne muscular dystrophy (DMD) has proven to be a challenge. In large animals, investigators have focused on using intravenous injection of antisense oligonucleotides (AO) to mediate exon skipping. In this study, we sought to optimize restoration of cardiac dystrophin expression in the golden retriever muscular dystrophy (GRMD) model using percutaneous transendocardial delivery of recombinant AAV6 (rAAV6) to deliver a modified U7 small nuclear RNA (snRNA) carrying antisense sequence to target the exon splicing enhancers of exons 6 and 8 and correct the disrupted reading frame. We demonstrate restoration of cardiac dystrophin expression at 13 months confirmed by reverse transcription-PCR (RT-PCR) and immunoblot as well as membrane localization by immunohistochemistry. This was accompanied by improved cardiac function as assessed by cardiac magnetic resonance imaging (MRI). Percutaneous transendocardial delivery of rAAV6 expressing a modified U7 exon skipping construct is a safe, effective method for restoration of dystrophin expression and improvement of cardiac function in the GRMD canine and may be easily translatable to human DMD patients.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ryoo SR, Jang H, Kim KS, Lee B, Kim KB, Kim YK, Yeo WS, Lee Y, Kim DE, Min DH. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 2012; 33:2754-61. [DOI: 10.1016/j.biomaterials.2011.12.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 01/20/2023]
|
73
|
Parker MH, Loretz C, Tyler AE, Snider L, Storb R, Tapscott SJ. Inhibition of CD26/DPP-IV enhances donor muscle cell engraftment and stimulates sustained donor cell proliferation. Skelet Muscle 2012; 2:4. [PMID: 22340947 PMCID: PMC3299591 DOI: 10.1186/2044-5040-2-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/16/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. In murine-to-murine transplantation experiments, CXCR4 expression marks a population of adult murine satellite cells with robust engraftment potential in mdx mice, and CXCR4-positive murine muscle-derived SP cells home more effectively to dystrophic muscle after intra-arterial delivery in mdx5cv mice. Together, these data suggest that CXCR4 plays an important role in donor cell engraftment. Therefore, we sought to translate these results to a clinically relevant canine-to-canine allogeneic transplant model for Duchenne muscular dystrophy (DMD) and determine if CXCR4 is important for donor cell engraftment. METHODS In this study, we used a canine-to-murine xenotransplantation model to quantitatively compare canine muscle cell engraftment, and test the most effective cell population and modulating factor in a canine model of DMD using allogeneic transplantation experiments. RESULTS We show that CXCR4 expressing cells are important for donor muscle cell engraftment, yet FACS sorted CXCR4-positive cells display decreased engraftment efficiency. However, diprotin A, a positive modulator of CXCR4-SDF-1 binding, significantly enhanced engraftment and stimulated sustained proliferation of donor cells in vivo. Furthermore, the canine-to-murine xenotransplantation model accurately predicted results in canine-to-canine muscle cell transplantation. CONCLUSIONS Therefore, these results establish the efficacy of diprotin A in stimulating muscle cell engraftment, and highlight the pre-clinical utility of a xenotransplantation model in assessing the relative efficacy of muscle stem cell populations.
Collapse
Affiliation(s)
- Maura H Parker
- Program in Transplantation Biology, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mailstop D1-100, Seattle, WA, 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Childers MK, Bogan JR, Bogan DJ, Greiner H, Holder M, Grange RW, Kornegay JN. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of duchenne muscular dystrophy. Front Pharmacol 2012; 2:89. [PMID: 22291646 PMCID: PMC3253583 DOI: 10.3389/fphar.2011.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022] Open
Abstract
Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD). Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD). Young (6-week-old) GRMD dogs were treated daily with either C101 (17 mg/kg twice daily oral dose, n = 9) or placebo (vehicle only, n = 7) for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every 2 weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors) while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors). C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass, or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD.
Collapse
Affiliation(s)
- Martin K Childers
- Department of Neurology, Wake Forest University Health Sciences Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
This review discusses gene therapy as a new treatment paradigm where genetic material is introduced into cells for therapeutic benefit. The genetic material is the 'drug'. It can have a transient or ongoing effect depending on whether or not the introduced genetic material becomes part of the host cell DNA. Different delivery and gene technologies are chosen by investigators to maximise gene delivery to, and expression within, the target cells appropriate for the disease indication. The presence and expression of the introduced genetic material is monitored by molecular means so that treatment efficacy can be assessed via changes in surrogate and/or actual markers of disease. Of interest to the pathologist will be the approaches being developed for the disease indications highlighted and the monitoring of treatment efficacy.
Collapse
|
76
|
Popplewell LJ, Malerba A, Dickson G. Optimizing antisense oligonucleotides using phosphorodiamidate morpholino oligomers. Methods Mol Biol 2012; 867:143-67. [PMID: 22454060 DOI: 10.1007/978-1-61779-767-5_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted Becker muscular dystrophy-like functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript. AO-induced exon skipping resulting in functional truncated dystrophin has been demonstrated in animal models of DMD both in vitro and in vivo, in DMD patient cells in vitro in culture, and in DMD muscle explants. The recent advances made in this field suggest that it is likely that AO-induced exon skipping will be the first gene therapy for DMD to reach the clinic. However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, in particular phosphorodiamidate morpholino oligomers, for the targeted skipping of specific exons on the DMD gene.
Collapse
Affiliation(s)
- Linda J Popplewell
- School of Biological Sciences, Royal Holloway, University of London, London, UK.
| | | | | |
Collapse
|
77
|
Abstract
Antisense-mediated exon skipping to restore the disrupted dystrophin reading frame is currently in clinical trials for Duchenne muscular dystrophy. This chapter describes the rationale of this approach and gives an overview of in vitro and in vivo experiments with antisense oligonucleotides and antisense genes. Finally, an overview of clinical trials is given and outstanding questions and hurdles are discussed.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
78
|
Adkin CF, Meloni PL, Fletcher S, Adams AM, Muntoni F, Wong B, Wilton SD. Multiple exon skipping strategies to by-pass dystrophin mutations. Neuromuscul Disord 2011; 22:297-305. [PMID: 22182525 PMCID: PMC3488593 DOI: 10.1016/j.nmd.2011.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/24/2022]
Abstract
Manipulation of dystrophin pre-mRNA processing offers the potential to overcome mutations in the dystrophin gene that would otherwise lead to Duchenne muscular dystrophy. Dystrophin mutations will require the removal of one or more exons to restore the reading frame and in some cases, multiple exon skipping strategies exist to restore dystrophin expression. However, for some small intra-exonic mutations, a third strategy, not applicable to whole exon deletions, may be possible. The removal of only one frame-shifting exon flanking the mutation-carrying exon may restore the reading frame and allow synthesis of a functional dystrophin isoform, providing that no premature termination codons are encountered. For these mutations, the removal of only one exon offers a simpler, cheaper and more feasible alternative approach to the dual exon skipping that would otherwise be considered. We present strategies to by-pass intra-exonic dystrophin mutations that clearly demonstrate the importance of tailoring exon skipping strategies to specific patient mutations.
Collapse
Affiliation(s)
- Carl F Adkin
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, WA 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
79
|
Widrick JJ, Jiang S, Choi SJ, Knuth ST, Morcos PA. An octaguanidine-morpholino oligo conjugate improves muscle function of mdx mice. Muscle Nerve 2011; 44:563-70. [PMID: 21922468 DOI: 10.1002/mus.22126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Skeletal muscles of mdx mice lack functional levels of dystrophin due to a mutation in Dmd exon 23. Morpholino antisense oligomers can induce expression of a truncated dystrophin by redirecting splicing to skip processing of exon 23. METHODS We tested whether systemic administration of Vivo-Morpholino, an octaguanidine delivery moiety-Morpholino conjugate that targets exon 23 (VMO23), restored function to muscles of mdx mice. RESULTS Extensor digitorum longus (EDL) muscles of mdx mice were weaker, less powerful, and showed greater functional deficits after eccentric contractions than normal. VMO23 treatment normalized EDL force and power of mdx mice and eliminated their exaggerated sensitivity to eccentric contractions. Diaphragm muscle strips from mdx mice also produced lower-than-normal force and power, and these variables were restored to normal, or near-normal, levels by VMO23 treatment. CONCLUSION These results provide a functional basis for continuing development of VMO23 as a treatment for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
80
|
Abstract
The development of effective therapies for neuromuscular disorders such as Duchenne muscular dystrophy (DMD) is hampered by considerable challenges: skeletal muscle is the most abundant tissue in the body, and many neuromuscular disorders are multisystemic conditions. However, despite these barriers there has recently been substantial progress in the search for novel treatments. In particular, the use of antisense oligonucleotides, which are designed to target RNA and modulate pre-mRNA splicing to restore functional protein isoforms or directly inhibit the toxic effects of pathogenic RNAs, offers great promise and these approaches are now being tested in the clinic. Here, we review recent advances in the development of such antisense oligonucleotides and other promising novel approaches, including the induction of readthrough nonsense mutations.
Collapse
Affiliation(s)
- Francesco Muntoni
- UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guildford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
81
|
Johnson CN, Spring AM, Sergueev D, Shaw BR, Germann MW. Structural basis of the RNase H1 activity on stereo regular borano phosphonate DNA/RNA hybrids. Biochemistry 2011; 50:3903-12. [PMID: 21443203 DOI: 10.1021/bi200083d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous DNA chemistries for improving oligodeoxynucleotide (ODN)-based RNA targeting have been explored. The majority of the modifications render the ODN/RNA target insensitive to RNase H1. Borano phosphonate ODN's are among the few modifications that are tolerated by RNase H1. To understand the effect of the stereochemistry of the BH(3) modification on the nucleic acid structure and RNase H1 enzyme activity, we have investigated two DNA/RNA hybrids containing either a R(P) or S(P) BH(3) modification by nuclear magnetic resonance (NMR) spectroscopy. T(M) studies show that the stabilities of R(P) and S(P) modified DNA/RNA hybrids are essentially identical (313.8 K) and similar to that of an unmodified control (312.9 K). The similarity is also reflected in the imino proton spectra. To characterize such similar structures, we used a large number of NMR restraints (including dipolar couplings and backbone torsion angles) to determine structural features that were important for RNase H1 activity. The final NMR structures exhibit excellent agreement with the data (total R(x) values of <6%) with helical properties between those of an A and B helix. Subtle backbone variations are observed in the DNA near the modification, while the RNA strands are relatively unperturbed. In the case of the S(P) modification, for which more perturbations are recorded, a slightly narrower minor groove is also obtained. Unique NOE base contacts localize the S(P) BH(3) group in the major groove while the R(P) BH(3) group points away from the DNA. However, this creates a potential clash of the R(P) BH(3) groups with important RNase H1 residues in a complex, while the S(P) BH(3) groups could be tolerated. We therefore predict that on the basis of our NMR structures a fully R(P) BH(3) DNA/RNA hybrid would not be a substrate for RNase H1.
Collapse
Affiliation(s)
- Christopher N Johnson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | | | | | | | | |
Collapse
|
82
|
Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther 2011; 131:18-32. [PMID: 21514318 DOI: 10.1016/j.pharmthera.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 02/08/2023]
Abstract
It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21-22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded.
Collapse
Affiliation(s)
- Elena Sotillo
- Division of Cancer Pathobiology, Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
83
|
Guo LT, Moore SA, Forcales S, Engvall E, Shelton GD. Evaluation of commercial dysferlin antibodies on canine, mouse and human skeletal muscle. Neuromuscul Disord 2011; 20:820-5. [PMID: 20817457 DOI: 10.1016/j.nmd.2010.07.278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/10/2010] [Accepted: 07/27/2010] [Indexed: 11/16/2022]
Abstract
Immunostaining of muscle biopsy cryosections is a powerful tool for identifying protein deficiencies. For dysferlin, a protein associated with limb-girdle muscular dystrophy and Miyoshi myopathy, weak immunostaining of normal muscle has been a problem in reliably identifying dysferlin deficiency in human patients or dystrophic animals. Here we use skeletal muscle cryosections from dog, mouse and human to test several dysferlin antibodies under different conditions of fixation, and without fixation. NCL-Hamlet antibody (mouse monoclonal), following fixation in acetone/methanol, provided the strongest and most reliable staining in sections of human muscle as well as of dog and mouse muscle. Unlike animal tissue, unfixed human muscle also gave strong and reliable staining. NCL-Hamlet 2 gave good staining in all species. Epitomics (rabbit monoclonal) antibody gave good staining of all muscles, and did not stain muscle of dysferlin-deficient mice. However, it strongly stained muscle sarcolemma of patients with dysferlin deficiency, making the antibody less useful. Abcam antibody gave weak staining, and Santa Cruz antibodies did not immunostain muscle dysferlin in any species tested. NCL-Hamlet antibody was optimal for immunoblotting in all species. Use of select antibodies for immunostaining and immunoblotting, and optimization of immunostaining methods, should increase the sensitivity of detecting dysferlin deficiency in skeletal muscle.
Collapse
Affiliation(s)
- Ling T Guo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
84
|
Abstract
A milestone of molecular medicine is the identification of dystrophin gene mutation as the cause of Duchenne muscular dystrophy (DMD). Over the last 2 decades, major advances in dystrophin biology and gene delivery technology have created an opportunity to treat DMD with gene therapy. Remarkable success has been achieved in treating dystrophic mice. Several gene therapy strategies, including plasmid transfer, exon skipping, and adeno-associated virus-mediated microdystrophin therapy, have entered clinical trials. However, therapeutic benefit has not been realized in DMD patients. Bridging the gap between mice and humans is no doubt the most pressing issue facing DMD gene therapy now. In contrast to mice, dystrophin-deficient dogs are genetically and phenotypically similar to human patients. Preliminary gene therapy studies in the canine model may offer critical insights that cannot be obtained from murine studies. It is clear that the canine DMD model may represent an important link between mice and humans. Unfortunately, our current knowledge of dystrophic dogs is limited, and the full picture of disease progression remains to be clearly defined. We also lack rigorous outcome measures (such as in situ force measurement) to monitor therapeutic efficacy in dystrophic dogs. Undoubtedly, maintaining a dystrophic dog colony is technically demanding, and the cost of dog studies cannot be underestimated. A carefully coordinated effort from the entire DMD community is needed to make the best use of the precious dog resource. Successful DMD gene therapy may depend on valid translational studies in dystrophin-deficient dogs.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
85
|
Abstract
Heart failure is an important cause of morbidity and mortality in individuals of all ages. The many-faceted nature of the clinical heart failure syndrome has historically frustrated attempts to develop an overarching explanative theory. However, much useful information has been gained by basic and clinical investigation, even though a comprehensive understanding of heart failure has been elusive. Heart failure is a growing problem, in both adult and pediatric populations, for which standard medical therapy, as of 2010, can have positive effects, but these are usually limited and progressively diminish with time in most patients. If we want curative or near-curative therapy that will return patients to a normal state of health at a feasible cost, much better diagnostic and therapeutic technologies need to be developed. This review addresses the vexing group of heart failure etiologies that include cardiomyopathies and other ventricular dysfunctions of various types, for which current therapy is only modestly effective. Although there are many unique aspects to heart failure in patients with pediatric and congenital heart disease, many of the innovative approaches that are being developed for the care of adults with heart failure will be applicable to heart failure in childhood.
Collapse
Affiliation(s)
- Daniel J Penny
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA
| | | |
Collapse
|
86
|
Mammalian models of Duchenne Muscular Dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011; 2011:184393. [PMID: 21274260 PMCID: PMC3022202 DOI: 10.1155/2011/184393] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/19/2010] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disorder characterized by muscle wasting which is caused by mutations in the DMD gene. The DMD gene encodes the sarcolemmal protein dystrophin, and loss of dystrophin causes muscle degeneration and necrosis. Thus far, therapies for this disorder are unavailable. However, various therapeutic trials based on gene therapy, exon skipping, cell therapy, read through therapy, or pharmaceutical agents have been conducted extensively. In the development of therapy as well as elucidation of pathogenesis in DMD, appropriate animal models are needed. Various animal models of DMD have been identified, and mammalian (murine, canine, and feline) models are indispensable for the examination of the mechanisms of pathogenesis and the development of therapies. Here, we review the pathological features of DMD and therapeutic applications, especially of exon skipping using antisense oligonucleotides and gene therapies using viral vectors in murine and canine models of DMD.
Collapse
|
87
|
Popplewell LJ, Graham IR, Malerba A, Dickson G. Bioinformatic and functional optimization of antisense phosphorodiamidate morpholino oligomers (PMOs) for therapeutic modulation of RNA splicing in muscle. Methods Mol Biol 2011; 709:153-78. [PMID: 21194027 DOI: 10.1007/978-1-61737-982-6_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted, Becker muscular dystrophy (BMD)-like, but functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript so that gene expression is restored. AO-induced exon skipping producing functional truncated dystrophin exon has been demonstrated in animal models of DMD both in vitro and in vivo, and in DMD patient cells in vitro in culture, and in DMD muscle explants. More recently, AO-mediated exon skipping has been confirmed in DMD patients in Phase I clinical trials. However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, and in particular phosphorodiamidate morpholino oligomers (PMOs), for the targeted skipping of specific exons on the DMD gene.
Collapse
Affiliation(s)
- Linda J Popplewell
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK.
| | | | | | | |
Collapse
|
88
|
Aartsma-Rus A, den Dunnen JT, van Ommen GJB. New insights in gene-derived therapy: the example of Duchenne muscular dystrophy. Ann N Y Acad Sci 2010; 1214:199-212. [PMID: 21121926 DOI: 10.1111/j.1749-6632.2010.05836.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The two therapeutic approaches currently most advanced in clinical trials for Duchenne muscular dystrophy are antisense-mediated exon skipping and forced read-through of premature stop codons. Interestingly, these approaches target the gene product rather than the gene itself. This review will explain the rationale and current state of affairs of these approaches and will then discuss how these gene-derived therapies might also be applicable to other diseases.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | |
Collapse
|
89
|
Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 2010; 19:9-15. [PMID: 20978473 DOI: 10.1038/mt.2010.219] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level.
Collapse
Affiliation(s)
- Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
90
|
Mendell JR, Rodino-Klapac LR, Malik V. Molecular therapeutic strategies targeting Duchenne muscular dystrophy. J Child Neurol 2010; 25:1145-8. [PMID: 20498331 PMCID: PMC3674570 DOI: 10.1177/0883073810371005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the discovery of the gene for Duchenne muscular dystrophy more than 20 years ago, scientists have worked to apply molecular principles for restoration of the dystrophin protein and correction of the underlying physiologic defect that predisposes muscle fibers to injury. Recent studies provide realistic hope that molecular therapies may help patients who have this disorder. At present, only corticosteroids can improve walking ability and increase quality of life for boys with this disease. The results are modest and encumbered by side effects. The authors review 3 molecular therapeutic approaches that have been introduced into the clinic: (1) gene replacement therapy, (2) mutation suppression, and (3) exon skipping.
Collapse
Affiliation(s)
- Jerry R. Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Louise R. Rodino-Klapac
- Center for Gene Therapy, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vinod Malik
- Center for Gene Therapy, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
91
|
Saito T, Nakamura A, Aoki Y, Yokota T, Okada T, Osawa M, Takeda S. Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient. PLoS One 2010; 5:e12239. [PMID: 20805873 PMCID: PMC2923599 DOI: 10.1371/journal.pone.0012239] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/21/2010] [Indexed: 12/27/2022] Open
Abstract
Background Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMDJ) lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. Methodology/Principal Findings We converted fibroblasts of CXMDJ and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMDJ and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. Conclusion/Significance Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Akinori Nakamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Toshifumi Yokota
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Makiko Osawa
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- * E-mail:
| |
Collapse
|
92
|
Koppanati BM, Li J, Reay DP, Wang B, Daood M, Zheng H, Xiao X, Watchko JF, Clemens PR. Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther 2010; 17:1355-62. [PMID: 20535217 PMCID: PMC2939256 DOI: 10.1038/gt.2010.84] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating primary muscle disease with pathological changes in skeletal muscle that are ongoing at the time of birth. Progressive deterioration in striated muscle function in affected individuals ultimately results in early death due to cardio-pulmonary failure. As affected individuals can be identified before birth by prenatal genetic testing for DMD, gene replacement treatment can be started in utero. This approach offers the possibility of preventing pathological changes in muscle that begin early in life. To test in utero gene transfer in the mdx mouse model of DMD, a minidystrophin gene driven by the human cytomegalovirus promoter was delivered systemically by an intraperitoneal injection to the fetus at embryonic day 16. Treated mdx mice studied at 9 weeks after birth showed widespread expression of recombinant dystrophin in skeletal muscle, restoration of the dystrophin-associated glycoprotein complex in dystrophin-expressing muscle fibers, improved muscle pathology, and functional benefit to the transduced diaphragm compared with untreated littermate controls. These results support the potential of the AAV8 vector to efficiently cross the blood vessel barrier to achieve systemic gene transfer to skeletal muscle in utero in a mouse model of muscular dystrophy, to significantly improve the dystrophic phenotype and to ameliorate the processes that lead to exhaustion of the skeletal muscle regenerative capacity.
Collapse
Affiliation(s)
- B M Koppanati
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Heemskerk H, de Winter C, van Kuik P, Heuvelmans N, Sabatelli P, Rimessi P, Braghetta P, van Ommen GJB, de Kimpe S, Ferlini A, Aartsma-Rus A, van Deutekom JCT. Preclinical PK and PD studies on 2'-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther 2010; 18:1210-7. [PMID: 20407428 PMCID: PMC2889733 DOI: 10.1038/mt.2010.72] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antisense oligonucleotides (AONs) are being developed as RNA therapeutic molecules for Duchenne muscular dystrophy. For oligonucleotides with the 2′-O-methyl-phosphorothioate (2OMePS) RNA chemistry, proof of concept has been obtained in patient-specific muscle cell cultures, the mouse and dog disease models, and recently by local administration in Duchenne patients. To further explore the pharmacokinetic (PK)/pharmacodynamic (PD) properties of this chemical class of oligonucleotides, we performed a series of preclinical studies in mice. The results demonstrate that the levels of oligonucleotides in dystrophin-deficient muscle fibers are much higher than in healthy fibers, leading to higher exon-skipping levels. Oligonucleotide levels and half-life differed for specific muscle groups, with heart muscle showing the lowest levels but longest half-life (~46 days). Intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) delivery methods were directly compared. For each method, exon-skipping and novel dystrophin expression were observed in all muscles, including arrector pili smooth muscle in skin biopsies. After i.v. administration, the oligonucleotide peak levels in plasma, liver, and kidney were higher than after s.c. or i.p. injections. However, as the bioavailability was similar, and the levels of oligonucleotide, exon-skipping, and dystrophin steadily accumulated overtime after s.c. administration, we selected this patient-convenient delivery method for future clinical study protocols.
Collapse
Affiliation(s)
- Hans Heemskerk
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Dystrophin isoform induction in vivo by antisense-mediated alternative splicing. Mol Ther 2010; 18:1218-23. [PMID: 20332768 DOI: 10.1038/mt.2010.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Antisense oligomer-induced manipulation of dystrophin pre-mRNA processing can remove exons carrying mutations, or exclude exons flanking frameshifting mutations, and restore dystrophin expression in dystrophinopathy models and in Duchenne muscular dystrophy (DMD) patients. Splice intervention can also be used to manipulate the normal dystrophin pre-mRNA processing and ablate dystrophin expression in wild-type mice, with signs of pathology being induced in selected muscles within 4 weeks of commencing treatment. The disruption of normal dystrophin pre-mRNA processing to alter the reading frame can be very efficient and offers an alternative mechanism to RNA silencing for gene suppression. In addition, it is possible to remove in-frame exon blocks from the DMD gene transcript and induce specific dystrophin isoforms that retain partial functionality, without having to generate transgenic animal models. Specific exon removal to yield in-frame dystrophin transcripts will facilitate mapping of functional protein domains, based upon exon boundaries, and will be particularly relevant where there is either limited, or conflicting information as to the consequences of in-frame dystrophin exon deletions on the clinical severity and progression of the dystrophinopathy.
Collapse
|
95
|
Townsend D, Turner I, Yasuda S, Martindale J, Davis J, Shillingford M, Kornegay JN, Metzger JM. Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. J Clin Invest 2010; 120:1140-50. [PMID: 20234088 DOI: 10.1172/jci41329] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/27/2010] [Indexed: 01/24/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disease of striated muscle deterioration caused by lack of the cytoskeletal protein dystrophin. Dystrophin deficiency causes muscle membrane instability, skeletal muscle wasting, cardiomyopathy, and heart failure. Advances in palliative respiratory care have increased the incidence of heart disease in DMD patients, for which there is no cure or effective therapy. Here we have shown that chronic infusion of membrane-sealing poloxamer to severely affected dystrophic dogs reduced myocardial fibrosis, blocked increased serum cardiac troponin I (cTnI) and brain type natriuretic peptide (BNP), and fully prevented left-ventricular remodeling. Mechanistically, we observed a markedly greater primary defect of reduced cell compliance in dystrophic canine myocytes than in the mildly affected mdx mouse myocytes, and this was associated with a lack of utrophin upregulation in the dystrophic canine cardiac myocytes. Interestingly, after chronic poloxamer treatment, the poor compliance of isolated canine myocytes remained evident, but this could be restored to normal upon direct application of poloxamer. Collectively, these findings indicate that dystrophin and utrophin are critical to membrane stability-dependent cardiac myocyte mechanical compliance and that poloxamer confers a highly effective membrane-stabilizing chemical surrogate in dystrophin/utrophin deficiency. We propose that membrane sealant therapy is a potential treatment modality for DMD heart disease and possibly other disorders with membrane defect etiologies.
Collapse
Affiliation(s)
- Dewayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Serena E, Zatti S, Reghelin E, Pasut A, Cimetta E, Elvassore N. Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integr Biol (Camb) 2010; 2:193-201. [PMID: 20473399 DOI: 10.1039/b921401a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in vitro development of human myotubes carrying genetic diseases, such as Duchenne Muscular Dystrophy, will open new perspectives in the identification of innovative therapeutic strategies. Through the proper design of the substrate, we guided the differentiation of human healthy and dystrophic myoblasts into myotubes exhibiting marked functional differentiation and highly defined sarcomeric organization. A thin film of photo cross-linkable elastic poly-acrylamide hydrogel with physiological-like and tunable mechanical properties (elastic moduli, E: 12, 15, 18 and 21 kPa) was used as substrate. The functionalization of its surface by micro-patterning in parallel lanes (75 microm wide, 100 microm spaced) of three adhesion proteins (laminin, fibronectin and matrigel) was meant to maximize human myoblasts fusion. Myotubes formed onto the hydrogel showed a remarkable sarcomere formation, with the highest percentage (60.0% +/- 3.8) of myotubes exhibiting sarcomeric organization, of myosin heavy chain II and alpha-actinin, after 7 days of culture onto an elastic (15 kPa) hydrogel and a matrigel patterning. In addition, healthy myotubes cultured in these conditions showed a significant membrane-localized dystrophin expression. In this study, the culture substrate has been adapted to human myoblasts differentiation, through an easy and rapid methodology, and has led to the development of in vitro human functional skeletal muscle myotubes useful for clinical purposes and in vitro physiological study, where to carry out a broad range of studies on human muscle physiopathology.
Collapse
Affiliation(s)
- Elena Serena
- Dipartimento di Principi e Impianti di Ingegneria Chimica DIPIC, University of Padova, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
97
|
Wood MJA, Gait MJ, Yin H. RNA-targeted splice-correction therapy for neuromuscular disease. Brain 2010; 133:957-72. [PMID: 20150322 DOI: 10.1093/brain/awq002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Splice-modulation therapy, whereby molecular manipulation of premessenger RNA splicing is engineered to yield genetic correction, is a promising novel therapy for genetic diseases of muscle and nerve-the prototypical example being Duchenne muscular dystrophy. Duchenne muscular dystrophy is the most common childhood genetic disease, affecting one in 3500 newborn boys, causing progressive muscle weakness, heart and respiratory failure and premature death. No cure exists for this disease and a number of promising new molecular therapies are being intensively studied. Duchenne muscular dystrophy arises due to mutations that disrupt the open-reading-frame in the DMD gene leading to the absence of the essential muscle protein dystrophin. Of all novel molecular interventions currently being investigated for Duchenne muscular dystrophy, perhaps the most promising method aiming to restore dystrophin expression to diseased cells is known as 'exon skipping' or splice-modulation, whereby antisense oligonucleotides eliminate the deleterious effects of DMD mutations by modulating dystrophin pre-messenger RNA splicing, such that functional dystrophin protein is produced. Recently this method was shown to be promising and safe in clinical trials both in The Netherlands and the UK. These trials studied direct antisense oligonucleotide injections into single peripheral lower limb muscles, whereas a viable therapy will need antisense oligonucleotides to be delivered systemically to all muscles, most critically to the heart, and ultimately to all other affected tissues including brain. There has also been considerable progress in understanding how such splice-correction methods could be applied to the treatment of related neuromuscular diseases, including spinal muscular atrophy and myotonic dystrophy, where defects of splicing or alternative splicing are closely related to the disease mechanism.
Collapse
Affiliation(s)
- Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
98
|
|
99
|
Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice. Mol Ther 2010; 18:881-7. [PMID: 20104211 DOI: 10.1038/mt.2009.322] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy is characterized by muscular atrophy, fibrosis, and fat accumulation. Several groups have demonstrated that in the mdx mouse, the exon-skipping strategy can restore a quasi-dystrophin in almost 100% of the muscle fibers. On the other hand, inhibition of the myostatin pathway in adult mice has been described to enhance muscle growth and improve muscle force. Our aim was to combine these two strategies to evaluate a possible additive effect. We have chosen to inhibit the myostatin pathway using the technique of RNA interference directed against the myostatin receptor AcvRIIb mRNA (sh-AcvRIIb). The restoration of a quasi-dystrophin was mediated by the vectorized U7 exon-skipping technique (U7-DYS). Adeno-associated vectors carrying either the sh-AcvrIIb construct alone, the U7-DYS construct alone, or a combination of both constructs were injected in the tibialis anterior (TA) muscle of dystrophic mdx mice. We show that even if each separate approach has some effects on muscle physiology, the combination of the dystrophin rescue and the downregulation of the myostatin receptor is required to massively improve both the tetanic force and the specific force. This study provides a novel pharmacogenetic strategy for treatment of certain neuromuscular diseases associated with muscle wasting.
Collapse
|
100
|
Mäe M, Andaloussi SE, Lehto T, Langel U. Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 2010; 6:1195-205. [PMID: 19831582 DOI: 10.1517/17425240903213688] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Short nucleic acids targeting biologically important RNAs and plasmids have been shown to be promising future therapeutics; however, their hydrophilic nature greatly limits their utility in clinics and therefore efficient delivery vectors are greatly needed. Cell-penetrating peptides (CPPs) are relatively short amphipathic and/or cationic peptides that are able to transport various biologically active molecules inside mammalian cells, both in vitro and in vivo, in a seemingly non-toxic fashion. Although CPPs have proved to be appealing drug delivery vehicles, their major limitation in nucleic acid delivery is that most of the internalized peptide-cargo is entrapped in endosomal compartments following endocytosis and the bioavailability is therefore severely reduced. Several groups are working towards overcoming this obstacle and this review highlights the evidence that by introducing chemical modification in CPPs, the bioavailability of delivered nucleic acids increases significantly.
Collapse
Affiliation(s)
- Maarja Mäe
- Stockholm University, Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences, S-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|