51
|
Periasamy S, Chu PY, Li YH, Hsu DZ, Liu MY. Sesamol ameliorates hypotension by modulating cytokines and PPAR-gamma in systemic inflammatory response. EXCLI JOURNAL 2016; 14:948-57. [PMID: 26839527 PMCID: PMC4732502 DOI: 10.17179/excli2015-367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/10/2015] [Indexed: 01/24/2023]
Abstract
Sepsis is one of the major causes of death reported in intensive care units. Acute kidney injury (AKI) and hypotension are important in the pathogenesis and mortality of systemic inflammatory response (SIR). Sesamol delays mortality in sepsis; however, its effects on AKI and hypotension and the role of peroxisome proliferator-activated receptor-ɣ (PPAR-γ) activation have not been established. We investigated the effect of sesamol on SIR in cecal ligation and puncture (CLP)-induced acute kidney injury and lipopolysaccharide (LPS)-induced hypotension in rats. Sesamol was subcutaneously injected 1 h after SIR. Renal function (BUN and CRE) and proinflammatory mediators interleukin (IL)-1β and IL-6 were increased after CLP. Tumor necrosis factor (TNF)-α, IL-1β, IL-10, and nitrite production were significantly increased 6 h after LPS-induced hypotension (mean arterial pressure was significantly decreased). Sesamol significantly inhibited BUN, CRE, IL-1β, IL-6, and nitrite after CLP-induced acute renal injury. In addition, sesamol increased mean arterial pressure and IL-10, inhibited TNF-α and IL-1β, but did not affect nitrite production in LPS-induced hypotension. Sesamol increased PPAR-γ in the leucocytes and peritoneal macrophages in LPS-induced SIR. We conclude that sesamol regulates leucocyte and macrophage PPAR-γ-associated systemic cytokines expression, thereby ameliorates acute kidney injury and hypotension in rats.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Chu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hui Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
52
|
Rahal EA, Constantin WN, Zeidan N, Abdelnoor AM. Atorvastatin Reduces the Survival of Candida albicans-Infected BALB/c Mice. Front Microbiol 2015; 6:1474. [PMID: 26732740 PMCID: PMC4686692 DOI: 10.3389/fmicb.2015.01474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Several antimicrobial and immunosuppressive effects have been attributed to the statins class of antihyperlipidemia drugs. Several studies have also indicated clinical benefits for the use of statins during the management of infections and sepsis. To assess whether the immunosuppressive effects of statins outweigh their antimicrobial effects during a fungal infection BALB/c mice were administered Candida albicans via intraperitoneal injection. These mice received either a co-injection of atorvastatin along with the infection, were treated with one injection of atorvastatin per day for 5 days prior to infection, or were infected and then treated with one injection of atorvastatin for 5 days afterward. Groups that received C. albicans without being treated with atorvastatin were included as controls along with a group that only received phosphate-buffered saline. Mouse survival was then monitored; additionally, serum IFN-γ and IL-4 levels were determined by enzyme linked immunosorbent assay to assess pro-inflammatory and pro-humoral responses, respectively. Atorvastatin administration was capable of altering mouse survival rate with the lowest rate (11.1%) being observed in the group treated for 5 days prior to infection with atorvastatin compared to mice infected but not treated with atorvastatin (44.4%). IFN-γ and IL-4 levels were depressed in all C. albicans-infected groups treated with atorvastatin. The possibility that statin administration may suppress or modulate particular components of the immune system during an infection in man should be further explored in large randomized controlled trials.
Collapse
Affiliation(s)
- Elias A Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Wissam N Constantin
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Nabil Zeidan
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Alexander M Abdelnoor
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
53
|
Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H. Role of Mitochondrial DNA in Septic AKI via Toll-Like Receptor 9. J Am Soc Nephrol 2015; 27:2009-20. [PMID: 26574043 DOI: 10.1681/asn.2015040376] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/27/2015] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) contributes to the development of polymicrobial septic AKI. However, the mechanisms that activate the TLR9 pathway and cause kidney injury during sepsis remain unknown. To determine the role of mitochondrial DNA (mtDNA) in TLR9-associated septic AKI, we established a cecal ligation and puncture (CLP) model of sepsis in wild-type (WT) and Tlr9-knockout (Tlr9KO) mice. We evaluated systemic circulation and peritoneal cavity dynamics and immune response and tubular mitochondrial dysfunction to determine upstream and downstream effects on the TLR9 pathway, respectively. CLP increased mtDNA levels in the plasma and peritoneal cavity of WT and Tlr9KO mice in the early phase, but the increase in the peritoneal cavity was significantly higher in Tlr9KO mice than in WT mice. Concomitantly, leukocyte migration to the peritoneal cavity increased, and plasma cytokine production and splenic apoptosis decreased in Tlr9KO mice compared with WT mice. Furthermore, CLP-generated renal mitochondrial oxidative stress and mitochondrial vacuolization in the proximal tubules in the early phase were reversed in Tlr9KO mice. To elucidate the effects of mtDNA on immune response and kidney injury, we intravenously injected mice with mitochondrial debris (MTD), including substantial amounts of mtDNA. MTD caused an immune response similar to that induced by CLP, including upregulated levels of plasma IL-12, splenic apoptosis, and mitochondrial injury, but this effect was attenuated by Tlr9KO. Moreover, MTD-induced renal mitochondrial injury was abolished by DNase pretreatment. These findings suggest that mtDNA activates TLR9 and contributes to cytokine production, splenic apoptosis, and kidney injury during polymicrobial sepsis.
Collapse
Affiliation(s)
| | | | | | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; and
| | - Yoshihide Fujigaki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
54
|
Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, Huang Z. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats. Int J Mol Sci 2015; 16:20595-608. [PMID: 26334271 PMCID: PMC4613220 DOI: 10.3390/ijms160920595] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jian Huang
- Department of Nephrology, the Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Yi Li
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Ruiming Chang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | - Haidong Wu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
| | - Jiali Lin
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China.
- Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
55
|
Abstract
Sepsis is a major cause of acute kidney injury (AKI) with high rates of morbidity and mortality. Surfactant proteins A and D (SP-A, SP-D) play a critical role in host defense and regulate inflammation during infection. Recent studies indicate SP-A and SP-D are expressed in the kidney. The current study examines the role of SP-A and SP-D in the pathogenesis of sepsis-induced AKI. Wild-type (WT) and SP-A/SP-D double-knockout (KO) C57BL/6 mice were treated by cecal ligation and puncture (CLP) or sham surgery. Histological, cellular, and molecular indices of kidney injury were investigated in septic mice 6 and 24 h after CLP. Twenty-four hours after CLP, kidney injury was more severe, renal function was decreased, and blood creatinine and blood urea nitrogen were higher in septic SP-A/SP-D KO mice (P < 0.05, versus septic WT mice). Kidney edema and vascular permeability were increased in septic SP-A/SP-D KO mice (P < 0.01, versus septic WT mice). Apoptotic cells increased significantly (P < 0.01) in the kidney of septic SP-A/SP-D KO mice compared with septic WT mice. Molecular analysis revealed levels of Bcl-2 (an inhibitor of apoptosis) were lower and levels of caspase 3 (a biomarker of apoptosis) were higher in the kidney of septic SP-A/SP-D KO mice (P < 0.01, versus septic WT mice). Furthermore, levels of nuclear factor κB and phosphorylated IκB-α increased significantly in the kidney of septic SP-A/SP-D KO mice compared with septic WT mice, suggesting SP-A/SP-D KO mice have a more pronounced inflammatory response to sepsis. We conclude SP-A and SP-D attenuate kidney injury by modulating inflammation and apoptosis in sepsis-induced AKI.
Collapse
|
56
|
Wang Y, Braun OÖ, Zhang S, Norström E, Thorlacius H. Thrombin generation in abdominal sepsis is Rho-kinase-dependent. Biochem Biophys Res Commun 2015; 460:691-6. [DOI: 10.1016/j.bbrc.2015.03.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023]
|
57
|
Yorulmaz H, Ozkok E, Erguven M, Ates G, Aydın I, Tamer S. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis. Int J Clin Exp Med 2015; 8:3640-50. [PMID: 26064259 PMCID: PMC4443093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
We aimed to investigate the effects of prior treatment of simvastatin on mitochondrial enzyme, ghrelin, and hypoxia-inducible factor 1 α (HIF-1 α) on hepatic tissue in rats treated with Lipopolysaccharides (LPS) during the early phase of sepsis. Rats were divided into four groups: control, LPS (20 mg/kg, i.p.), Simvastatin (20 mg/kg, p.o.), and LPS + Simvastatin group. We measured citrate synthase, complex I, II, I-III, II-III enzymes activities, serum and tissue levels of TNF-α, IL-10 using ELISA. Liver sections underwent histopathologic examination and TNF-α, IL-10, HIF-1α and ghrelin immunoreactivity were examined using immunohistochemistry methods. There were no differences in all groups for mitochondrial enzyme activities. In terms of both ELISA and immunohistochemistry findings; the levels of serum and tissue TNF-α and IL-10 were higher in the experimental groups than controls (P < 0.05). In the LPS group, the hepatocyte cell membrane and sinusoid structure were damaged. In the Simvastatin +LPS group, hepatocytes and sinusoidal cord structure were partially improved. For HIF-1α, in all experimental groups immunoreactivity was increased (P < 0.05). In the Simvastatin group, Ghrelin levels were increased in comparison with the other groups (P < 0.01). Ghrelin levels were greatly decreased in LPS (P < 0.05). We observed that the degree of hepatocellular degeneration was partially reduced depending on the dosage and duration of prior simvastatin treatment with LPS, probably due to alterations of Ghrelin and HIF-1α levels.
Collapse
Affiliation(s)
- Hatice Yorulmaz
- Department of Physiology, Medical Faculty, Halic UniversityIstanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, The Institue for Experimental Medicine, Istanbul UniversityIstanbul, Turkey
| | - Mine Erguven
- Faculty of Health Sciences, Istanbul Aydin UniversityIstanbul, Turkey
| | - Gulten Ates
- Department of Basic Medical Sciences, Physiology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Irfan Aydın
- Department of Basic Medical Sciences, Histology and Embriology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| | - Sule Tamer
- Department of Basic Medical Sciences, Physiology, Istanbul Medical Faculty, Istanbul UniversityIstanbul, Turkey
| |
Collapse
|
58
|
Kidney injury is independent of endothelial HIF-1α. J Mol Med (Berl) 2015; 93:891-904. [PMID: 25754172 DOI: 10.1007/s00109-015-1264-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Hypoxia-inducible transcription factors (HIFs) control cellular adaptation to low oxygen. In the kidney, activation of HIF is beneficial during injury; however, the specific contribution of HIF-1α in renal endothelial cells (EC) remains elusive. Since EC display tissue-specific heterogeneity, we investigated how HIF-1α affects key functions of glomerular EC in vitro and its contribution to renal development and pathophysiological adaptation to acute or chronic renal injury in vivo. Loss of HIF-1α in glomerular EC induces hypoxic cell death and reduces hypoxic adhesion of macrophages in vitro. In vivo, HIF-1α expression in EC in mouse kidneys is detectable but limited. Accordingly, EC-specific ablation of HIF-1α does not lead to developmental or phenotypical abnormalities in the kidney. Renal function and expression of adhesion molecules during acute ischemic kidney injury is independent of HIF-1α in EC. Likewise, inflammation and development of fibrosis after unilateral ureteric obstruction is not influenced by endothelial HIF-1α. Taken together, although HIF-1α exerts effects on glomerular EC in vitro, endothelial HIF-1α does not influence renal development and pathophysiological adaptation to kidney injury in vivo. This implies a profound difference of the hypoxic response of the renal vascular bed compared to other organs, such as the heart. This has implications for the development of pharmacological strategies targeting the endothelial hypoxic response pathways. KEY MESSAGE HIF-1α controls hypoxic survival and adhesion on endothelial cells (EC) in vitro. In vivo, HIF-1α expression in renal EC is low. Deletion of HIF-1α in EC does not affect kidney development and function in mice. Renal function after acute and chronic kidney injury is independent of HIF-1α in EC. Data suggest organ-specific regulation of HIF-1α function in EC.
Collapse
|
59
|
Jiang Y, Gao M, Wang W, Lang Y, Tong Z, Wang K, Zhang H, Chen G, Liu M, Yao Y, Xiao X. Sinomenine hydrochloride protects against polymicrobial sepsis via autophagy. Int J Mol Sci 2015; 16:2559-73. [PMID: 25625512 PMCID: PMC4346851 DOI: 10.3390/ijms16022559] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/09/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022] Open
Abstract
Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs). The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN) is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl) is widely used to treat rheumatoid arthritis (RA). However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP) in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA) was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3) puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS)-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM). 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.
Collapse
Affiliation(s)
- Yu Jiang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Min Gao
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Wenmei Wang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Yuejiao Lang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Zhongyi Tong
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Kangkai Wang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Huali Zhang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Guangwen Chen
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Meidong Liu
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Yongming Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100037, China.
| | - Xianzhong Xiao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| |
Collapse
|
60
|
Fu H, Wang QS, Luo Q, Tan S, Su H, Tang SL, Zhao ZL, Huang LP. Simvastatin inhibits apoptosis of endothelial cells induced by sepsis through upregulating the expression of Bcl-2 and downregulating Bax. World J Emerg Med 2014; 5:291-7. [PMID: 25548604 DOI: 10.5847/wjem.j.issn.1920-8642.2014.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/06/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many studies have showed that apoptosis of endothelial cells plays a curial role in the progress of sepsis. But the role of simvastatin in apoptosis of endothelial cells induced by sepsis is not clear. The present study aimed to investigate the role of simvastatin in apoptosis of endothelial cells induced by sepsis and its mechanism. METHODS Human umbilical vein endothelial cells (HUVECs) were randomly divided into three groups: control group, sepsis serum intervention group (sepsis group) and simvastatin+sepsis serum intervention group (simvastatin group). After 24-hour incubation with corresponding culture medium, the relative growth rate of HUVECS in different groups was detected by MTT assay; the apoptosis of HUVECs was detected by Hoechst33258 assay and flow cytometry; and the expression of the Bcl-2 and Bax genes of HUVECs was detected by PCR. RESULTS Compared with the sepsis group, HUVECs in the simvastatin group had a higher relative growth rate. Apoptotic HUVECs decreased significantly in the simvastatin group in comparison with the sepsis group. Expression of the Bcl-2 gene in HUVECs decreased obviously, but the expression of the Bax gene increased obviously after 24-hour incubation with sepsis serum; however, the expression of the Bcl-2 and Bax genes was just the opposite in the simvastatin group. CONCLUSIONS Our study suggests that simvastatin can inhibit apoptosis of endothelial cells induced by sepsis through upregulating the expression of Bcl-2 and downregulating Bax. It may be one of the mechanisms for simvastatin to treat sepsis.
Collapse
Affiliation(s)
- Hui Fu
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Qiao-Sheng Wang
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Qiong Luo
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Si Tan
- Department of Infection, Third Hospital of Hengyang City, Hengyang 421001, China
| | - Hua Su
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Shi-Lin Tang
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zheng-Liang Zhao
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Li-Ping Huang
- Department of Critical Care Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
61
|
He L, Peng X, Zhu J, Chen X, Liu H, Tang C, Dong Z, Liu F, Peng Y. Mangiferin attenuate sepsis-induced acute kidney injury via antioxidant and anti-inflammatory effects. Am J Nephrol 2014; 40:441-50. [PMID: 25427663 DOI: 10.1159/000369220] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/15/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a frequent and serious complication of sepsis. A growing body of evidence now suggests that inflammatory reactions and tubular dysfunction induced by oxidative stress involved in the mechanisms of the disease. This study aimed to determine the role of anti-inflammatory and anti-oxidant activities of mangiferin (MA) in sepsis-induced AKI. METHODS We investigated the effects of MA on apoptosis of rat kidney proximal tubular cell (RPTC), together with renal function and morphological alterations of mice undergoing cecal-ligation and puncture (CLP). The levels of oxidative stress in kidney tissues were also determined. Moreover, we mainly focus on the effects of MA in regulating the production of NLRP3 and Nrf2 in the present study. RESULTS The exposure to LPS (5 μg/ml) yielded a significant increase of apoptosis in RPTC cells, which was largely inhibited by MA pretreatment. MA attenuates renal dysfunction and ameliorates the morphological changes in the septic mice induced by CLP. MA inhibits oxidative stress, decreases serum levels of IL-1β and IL-18, and prevents tubular epithelial cells apoptosis in kidneys of CLP mice model. Data in this study also suggest that MA promotes Nrf2 expression and suppresses renal NLRP3 inflammasome activation. CONCLUSION In summary, MA protects against sepsis-induced AKI through NLRP3 inflammasome inhibition and Nrf2 up-regulation. Thus, the mangiferin could thus be a promising candidate for development of a multi-potent drug.
Collapse
Affiliation(s)
- Liyu He
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Wang Z, Sims CR, Patil NK, Gokden N, Mayeux PR. Pharmacologic targeting of sphingosine-1-phosphate receptor 1 improves the renal microcirculation during sepsis in the mouse. J Pharmacol Exp Ther 2014; 352:61-6. [PMID: 25355645 DOI: 10.1124/jpet.114.219394] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microvascular failure is hallmark of sepsis in humans and is recognized as a strong predictor of mortality. In the mouse subjected to cecal ligation and puncture (CLP) to induce a clinically relevant sepsis, renal microvascular permeability increases and peritubular capillary perfusion declines rapidly in the kidney leading to acute kidney injury (AKI). Sphingosine-1-phosphate (S1P) is a key regulator of microvascular endothelial function. To investigate the role of S1P in the development of microvascular permeability and peritubular capillary hypoperfusion in the kidney during CLP-induced AKI, we used a pharmacologic approach and a clinically relevant delayed dosing paradigm. Evans blue dye was used to measure renal microvascular permeability and intravital video microscopy was used to quantitate renal cortical capillary perfusion. The S1P receptor 1 (S1P1) agonist SEW2871 [5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2,4-oxadiazole] and S1P2 antagonist JTE-013 [N-(2,6-dichloro-4-pyridinyl)-2-[1,3-dimethyl-4-(1-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-hydrazinecarboxamide] were administered at the time of CLP and produced a dose-dependent but partial reduction in renal microvascular permeability at 6 hours after CLP. However, neither agent improved capillary perfusion at 6 hours. With delayed administration at 6 hours after CLP, only SEW2871 reversed microvascular permeability when measured at 18 hours. Importantly, SEW2871 also restored capillary perfusion and improved renal function. These data suggest that S1P1 and S1P2 do not regulate the early decline in renal capillary perfusion. However, later in the course of sepsis, pharmacologic stimulation of S1P1, even when delaying therapy until after injury has occurred, improves capillary and renal function, suggesting this approach should be evaluated as an adjunct therapy during sepsis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Clark R Sims
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Naeem K Patil
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman Gokden
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
63
|
Doi K, Yahagi N, Nangaku M, Noiri E. [Acute kidney injury: progress in diagnosis and treatments. Topics: IV. Pathophysiology and treatments; 2. Acute kidney injury in intensive care unit]. ACTA ACUST UNITED AC 2014; 103:1081-7. [PMID: 25026777 DOI: 10.2169/naika.103.1081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
64
|
De Gennaro L, Brunetti ND, Correale M, Buquicchio F, Caldarola P, Di Biase M. Statin therapy in heart failure: for good, for bad, or indifferent? Curr Atheroscler Rep 2014; 16:377. [PMID: 24277654 DOI: 10.1007/s11883-013-0377-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Statins are effective in the prevention of coronary events and the treatment of acute coronary syndromes. However, their efficacy and safety in patients with heart failure (HF) is still a matter of debate. On the basis of literature evidence from subgroup analysis, retrospective, prospective cohort studies, and randomized controlled trials, in this review we try to answer the following question: Is statin therapy in HF patients for good, for bad, or indifferent? Some studies showed a negative impact of low cholesterol levels in patients with severe HF (endotoxin-lipoprotein hypothesis and coenzyme Q10 hypothesis). On the other hand, a large amount of literature demonstrates that in patients with HF, statins have a positive impact on survival and other outcomes, regardless of whether the HF was of ischemic or nonischemic origin, which is related to a combination of mechanisms (pleiotropic effects and cholesterol reduction). Much of this evidence, however, comes from observational and retrospective studies and subgroup analyses of statin use in patients with HF. Randomized clinical trials examining the efficacy of statins in HF (GISSI-HF and CORONA) did not show a benefit in mortality for patients with HF randomized to receive statins. Nevertheless, a meta-analysis found that statin therapy does not decrease all-cause or cardiovascular mortality but significantly decreases the rate of hospitalization for worsening HF and increased left ventricular ejection fraction compared with placebo.
Collapse
Affiliation(s)
- Luisa De Gennaro
- Cardiology Department, University of Foggia, Viale Pinto 1, 71100, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
65
|
Morel J, Singer M. Statins, fibrates, thiazolidinediones and resveratrol as adjunctive therapies in sepsis: could mitochondria be a common target? Intensive Care Med Exp 2014; 2:9. [PMID: 26266909 PMCID: PMC4512973 DOI: 10.1186/2197-425x-2-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/30/2014] [Indexed: 02/07/2023] Open
Abstract
Through their pleiotropic actions, statins, fibrates, thiazolidinediones and resveratrol can target multiple mechanisms involved in sepsis. Their actions on mitochondrial function are of interest in a pathological state where bioenergetic failure may play a key role in the development of organ dysfunction. We review these four drug groups as potential adjunctive therapies in sepsis with a particular focus upon mitochondria. Systematic review of clinical and experimental trials was done with a literature search using the PubMed database. Search terms included statins, fibrates, thiazolidinediones, resveratrol, mitochondria, sepsis, peroxisome proliferator-activated receptors, inflammation, oxidative stress and organ dysfunction. With the exception of statins, most of the compelling evidence for the use of these agents in sepsis comes from the experimental literature. The agents all exert anti-inflammatory and anti-oxidant properties, plus protective effects against mitochondrial dysfunction and stimulation of mitochondrial biogenesis. Improved outcomes (organ dysfunction, survival) have been reported in a variety of sepsis models. Notably, positive outcome effects were more commonly seen when the agents were given as pre- rather than post-treatment of sepsis. Statins, fibrates, thiazolidinediones and resveratrol prevent sepsis-induced injury to organs and organelles with outcome improvements. Their effects on mitochondrial function may be integral in offering this protection. Definitive clinical trials are needed to evaluate their utility in septic patients or those at high risk of developing sepsis.
Collapse
Affiliation(s)
- Jerome Morel
- Département d'anesthésie réanimation, Centre Hospitalier Universitaire de Saint Etienne, 42055, Saint Etienne, France,
| | | |
Collapse
|
66
|
Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SMM, McCormick JK, Mele T. A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes 2014; 7:233. [PMID: 24725742 PMCID: PMC4022086 DOI: 10.1186/1756-0500-7-233] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022] Open
Abstract
Background The lack of a reliable scoring system that predicts the development of septic shock and death precludes comparison of disease and/or treatment outcomes in animal models of sepsis. We developed a murine sepsis score (MSS) that evaluates seven clinical variables, and sought to assess its validity and reliability in an experimental mouse model of polymicrobial sepsis. Methods Stool collected from the cecum of C57BL/6 (B6) mice was dissolved in 0.9% normal saline (NS) and filtered, resulting in a fecal solution (FS) which was injected intraperitoneally into B6 mice. Disease severity was monitored by MSS during the experimental timeline. Blood and tissue samples were harvested for the evaluation of inflammatory changes after sepsis induction. The correlation between pro-inflammatory markers and MSS was assessed by the Spearman rank correlation coefficient. Results Mice injected with FS at a concentration of 90 mg/mL developed polymicrobial sepsis with a 75% mortality rate at 24 hours. The MSS was highly predictive of sepsis progression and mortality, with excellent discriminatory power, high internal consistency (Cronbach alpha coefficient = 0.92), and excellent inter-rater reliability (intra-class coefficient = 0.96). An MSS of 3 had a specificity of 100% for predicting onset of septic shock and death within 24 hours. Hepatic dysfunction and systemic pro-inflammatory responses were confirmed by biochemical and cytokine analyses where the latter correlated well with the MSS. Significant bacterial dissemination was noted in multiple organs. Furthermore, the liver, spleen, and intestine demonstrated histopathological evidence of injury. Conclusions The MSS reliably predicts disease progression and mortality in an animal model of polymicrobial sepsis. More importantly, it may be used to assess and compare outcomes among various experimental models of sepsis, and serve as an ethically acceptable alternative to death as an endpoint.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tina Mele
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
67
|
|
68
|
Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. Am J Physiol Renal Physiol 2014; 306:F734-43. [PMID: 24500690 DOI: 10.1152/ajprenal.00643.2013] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a complication of sepsis and leads to a high mortality rate. Human and animal studies suggest that mitochondrial dysfunction plays an important role in sepsis-induced multi-organ failure; however, the specific mitochondrial targets damaged during sepsis remain elusive. We used a clinically relevant cecal ligation and puncture (CLP) murine model of sepsis and assessed renal mitochondrial function using high-resolution respirometry, renal microcirculation using intravital microscopy, and renal function. CLP caused a time-dependent decrease in mitochondrial complex I and II/III respiration and reduced ATP. By 4 h after CLP, activity of manganese superoxide dismutase (MnSOD) was decreased by 50% and inhibition was sustained through 36 h. These events were associated with increased mitochondrial superoxide generation. We then evaluated whether the mitochondria-targeted antioxidant Mito-TEMPO could reverse renal mitochondrial dysfunction and attenuate sepsis-induced AKI. Mito-TEMPO (10 mg/kg) given at 6 h post-CLP decreased mitochondrial superoxide levels, protected complex I and II/III respiration, and restored MnSOD activity by 18 h. Mito-TEMPO also improved renal microcirculation and glomerular filtration rate. Importantly, even delayed therapy with a single dose of Mito-TEMPO significantly increased 96-h survival rate from 40% in untreated septic mice to 80%. Thus, sepsis causes sustained inactivation of three mitochondrial targets that can lead to increased mitochondrial superoxide. Importantly, even delayed therapy with Mito-TEMPO alleviated kidney injury, suggesting that it may be a promising approach to treat septic AKI.
Collapse
Affiliation(s)
- Naeem K Patil
- Dept. of Pharmacology and Toxicology, Univ. of Arkansas for Medical Sciences, 325 Jack Stephens Dr., Biomedical Bldg. I, 323D, Little Rock, AR 72205.
| | | | | | | |
Collapse
|
69
|
Bao H, Ge Y, Wang Z, Zhuang S, Dworkin L, Peng A, Gong R. Delayed administration of a single dose of lithium promotes recovery from AKI. J Am Soc Nephrol 2014; 25:488-500. [PMID: 24408869 DOI: 10.1681/asn.2013040350] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Evidence suggests that glycogen synthase kinase 3β (GSK3β) contributes to AKI; however, its role in post-AKI kidney repair remains uncertain. Here, delayed treatment with a single dose of lithium, a selective inhibitor of GSK3β and a US Food and Drug Administration-approved mood stabilizer, accelerated recovery of renal function, promoted repopulation of renal tubular epithelia, and improved kidney repair in murine models of cisplatin- and ischemia/reperfusion-induced AKI. These effects associated with reduced GSK3β activity and elevated expression of proproliferative molecules, including cyclin D1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α), in renal tubular epithelia. In cultured renal tubular cells, cisplatin exposure led to transient repression of GSK3β activity followed by a prolonged upregulation of activity. Rescue treatment with lithium inhibited GSK3β activity, enhanced nuclear expression of cyclin D1, c-Myc, and HIF-1α, and boosted cellular proliferation. Similarly, ectopic expression of a kinase-dead mutant of GSK3β enhanced the expression of cyclin D1, c-Myc, and HIF-1α and amplified cellular proliferation after cisplatin injury, whereas forced expression of a constitutively active mutant of GSK3β abrogated the effects of lithium. Mechanistically, GSK3β colocalized and physically interacted with cyclin D1, c-Myc, and HIF-1α in tubular cells. In silico analysis revealed that cyclin D1, c-Myc, and HIF-1α harbor putative GSK3β consensus phosphorylation motifs, implying GSK3β-directed phosphorylation and subsequent degradation of these molecules. Notably, cotreatment with lithium enhanced the proapoptotic effects of cisplatin in cultured colon cancer cells. Collectively, our findings suggest that pharmacologic targeting of GSK3β by lithium may be a novel therapeutic strategy to improve renal salvage after AKI.
Collapse
Affiliation(s)
- Hui Bao
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; and
| | | | | | | | | | | | | |
Collapse
|
70
|
Cavdar Z, Ozbal S, Celik A, Ergur BU, Guneli E, Ural C, Camsari T, Guner GA. The effects of alpha-lipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model. Biotech Histochem 2013; 89:304-14. [PMID: 24160412 DOI: 10.3109/10520295.2013.847498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that are responsible for degradation of extracellular matrix (ECM); they are involved in the pathogenesis of ischemia-re-perfusion (I-R) injury. We investigated the possible preventive effect of alpha-lipoic acid (LA) in a renal I-R injury model in rats by assessing its reducing effect on the expression and activation of MMP-2 and MMP-9 induced by I-R. Rats were assigned to four groups: control, sham-operated, I-R (saline, i.p.) and I-R+ LA (100 mg/kg, i.p.). After a right nephrectomy, I-R was induced by clamping the left renal pedicle for 1 h, followed by 6 h re-perfusion. In the sham group, a right nephrectomy was performed and left renal pedicles were dissected without clamping and the entire left kidney was excised after 6 h. LA pretreatment was started 30 min prior to induction of ischemia. Injury to tubules was evaluated using light and electron microscopy. The expressions of MMP-2 and MMP-9 were determined by immunohistochemistry and their activities were analyzed by gelatin zymography. Serum creatinine was measured using a quantitative kit based on the Jaffe colorimetric technique. Malondialdehyde (MDA) and glutathione (GSH) were analyzed using high performance liquid chromatography. Tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 were assessed using enzyme-linked immunosorbent assay (ELISA). I-R caused tubular dilatation and brush border loss. LA decreased both renal dysfunction and abnormal levels of MDA and GSH during I-R. Moreover, LA decreased significantly both MMP-2 and MMP-9 expressions and activations during I-R. TIMP-1 and TIMP-2 levels were increased significantly by LA administration. LA modulated increased MMP-2 and MMP-9 activities and decreased TIMP-1 and TIMP-2 levels during renal I-R.
Collapse
Affiliation(s)
- Z Cavdar
- Department of Molecular Medicine, Health Sciences Institute
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Holthoff JH, Wang Z, Patil NK, Gokden N, Mayeux PR. Rolipram improves renal perfusion and function during sepsis in the mouse. J Pharmacol Exp Ther 2013; 347:357-64. [PMID: 24018639 DOI: 10.1124/jpet.113.208520] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microcirculatory dysfunction is correlated with increased mortality among septic patients and is believed to be a major contributor to the development of acute kidney injury (AKI). Rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, has been shown to reduce microvascular permeability and in the kidney, increase renal blood flow (RBF). This led us to investigate its potential to improve the renal microcirculation and preserve renal function during sepsis using a murine cecal ligation and puncture (CLP) model to induce sepsis. Rolipram, tested at doses of 0.3-10 mg/kg i.p., acutely restored capillary perfusion in a bell-shaped dose-response effect with 1 mg/kg being the lowest most efficacious dose. This dose also acutely increased RBF despite transiently decreasing mean arterial pressure. Rolipram also reduced renal microvascular permeability. It is noteworthy that delayed treatment with rolipram at 6 hours after CLP restored the renal microcirculation, reduced blood urea nitrogen and serum creatinine, and increased glomerular filtration rate at 18 hours. However, delayed treatment with rolipram did not reduce serum nitrate/nitrite levels, a marker of nitric oxide production, nor reactive nitrogen species generation in renal tubules. These data show that restoring the microcirculation with rolipram, even with delayed treatment, is enough to improve renal function during sepsis despite the generation of oxidants and suggest that PDE4 inhibitors should be evaluated further for their ability to treat septic-induced AKI.
Collapse
Affiliation(s)
- Joseph H Holthoff
- Department of Pharmacology and Toxicology (J.H.H, Z.W., N.K.P., P.R.M.) and Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
72
|
Fähling M, Mathia S, Paliege A, Koesters R, Mrowka R, Peters H, Persson PB, Neumayer HH, Bachmann S, Rosenberger C. Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI. J Am Soc Nephrol 2013; 24:1806-19. [PMID: 23970125 DOI: 10.1681/asn.2013030281] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Renal hypoxia occurs in AKI of various etiologies, but adaptation to hypoxia, mediated by hypoxia-inducible factor (HIF), is incomplete in these conditions. Preconditional HIF activation protects against renal ischemia-reperfusion injury, yet the mechanisms involved are largely unknown, and HIF-mediated renoprotection has not been examined in other causes of AKI. Here, we show that selective activation of HIF in renal tubules, through Pax8-rtTA-based inducible knockout of von Hippel-Lindau protein (VHL-KO), protects from rhabdomyolysis-induced AKI. In this model, HIF activation correlated inversely with tubular injury. Specifically, VHL deletion attenuated the increased levels of serum creatinine/urea, caspase-3 protein, and tubular necrosis induced by rhabdomyolysis in wild-type mice. Moreover, HIF activation in nephron segments at risk for injury occurred only in VHL-KO animals. At day 1 after rhabdomyolysis, when tubular injury may be reversible, the HIF-mediated renoprotection in VHL-KO mice was associated with activated glycolysis, cellular glucose uptake and utilization, autophagy, vasodilation, and proton removal, as demonstrated by quantitative PCR, pathway enrichment analysis, and immunohistochemistry. In conclusion, a HIF-mediated shift toward improved energy supply may protect against acute tubular injury in various forms of AKI.
Collapse
|
73
|
Ajrouche R, Al-Hajje A, El-Helou N, Awada S, Rachidi S, Zein S, Salameh P. Statins decrease mortality in Lebanese patients with sepsis: A multicenter study. Pharm Pract (Granada) 2013; 11:102-8. [PMID: 24155857 PMCID: PMC3798175 DOI: 10.4321/s1886-36552013000200007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/09/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sepsis is a significant public health concern. The clinical response to statins is variable among sepsis patients. OBJECTIVE The aim of the study was to determinate the effect of statin-treatment on mortality in Lebanese patients with sepsis. METHODS A retrospective multicenter study on Lebanese patients with sepsis between January 2008 and March 2012 was conducted. Patients with a primary diagnosis of sepsis admitted to the intensive care unit of two tertiary care hospitals in Beirut were included. Patients who continued to receive statin therapy for dyslipidemia during the hospital course were included in the statin treatment group. The control group consisted of patients not taking statin. Demographic characteristics, clinical signs, standard laboratory test and treatment received were compared between these two groups using univariate analysis. Logistic regression and survival analysis were performed by SPSS. RESULTS THREE HUNDRED FIFTY ONE LEBANESE PATIENTS WERE INCLUDED (AGE: 71.33 SD=14.97 years; Male: 56%). Among them, 30% took a statin at the doses recommended for dyslipidemia. The comparison of the two groups showed that in the statin treatment group: The mean serum level of C-reactive protein at the time of sepsis was significantly decreased (P=0.050), the length-stay at ICU significantly increased (P=0.047) and mortality significantly reduced (P<0.001). Results were confirmed by logistic regression, particularly for mortality. In the Cox regression analysis, hypothermia and shock were significantly associated with high mortality while statin treatment decreased mortality (hazard ratio = 0.540; 95% CI: 0.302-0.964; P=0.037). CONCLUSIONS At usual doses for dyslipidemia, statin treatment decreased incidence of mortality related to sepsis and improved the survival in this Lebanese septic population. Large randomized controlled clinical trials must be realized to give conclusive results about the potential beneficial effect of statins in sepsis.
Collapse
Affiliation(s)
- Rola Ajrouche
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy & Clinical Pharmacy department, Doctoral School of Sciences & Technology. Lebanese University. Beirut ( Lebanon )
| | | | | | | | | | | | | |
Collapse
|
74
|
Olguner CG, Koca U, Altekin E, Ergür BU, Duru S, Girgin P, Taşdöğen A, Gündüz K, Güzeldağ S, Akkuş M, Micili SC. Ischemic preconditioning attenuates lipid peroxidation and apoptosis in the cecal ligation and puncture model of sepsis. Exp Ther Med 2013; 5:1581-1588. [PMID: 23837035 PMCID: PMC3702658 DOI: 10.3892/etm.2013.1034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022] Open
Abstract
Sepsis and septic shock are are among the major causes of mortality in intensive care units. The lung and kidney are the organs most affected by sepsis. Evidence exists that lipid peroxidation and apoptosis may be responsible for the high mortality due to sepsis. Ischemic preconditioning (IP) is a method for the protection of tissues and organs against ischemia/reperfusion injury by reducing reactive oxygen species levels, lipid peroxidation and apoptosis. In the present study, the effects of IP were investigated in cecal ligation and puncture (CLP)-induced sepsis in rats. The three groups of animals used in the present controlled study were the sham-operated group (sham, n=7), which only underwent a laparotomy; the sepsis group (sepsis, n=7), which underwent cecal ligation and perforation; and the IP + sepsis group (IP+sepsis, n=7), which underwent CLP immediately prior to the application of three cycles of IP to the hind limb. The study was terminated at 6 h after the induction of CLP. Blood, kidney and lung tissue samples were collected for the determination of serum creatinine, blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL) and lung tissue malondialdehyde (MDA) levels, as well as histological examination. The serum creatinine, plasma NGAL and lung tissue MDA levels in the sepsis group were significantly increased compared with those in the sham and the IP+sepsis groups (P<0.05). Alveolar macrophage counts, histological kidney and lung injury scores, kidney (caspase 3) and lung tissue immuonreactivity (M30) scores in the sepsis group were also significantly increased compared with those in the sham and IP+sepsis groups (P<0.05). The alveolar macrophage count in the IP+sepsis group was increased compared with that in the sham group (P<0.05). In conclusion, IP inhibits lipid peroxidation and attenuates histological injury and apoptosis in the lung and kidney during sepsis.
Collapse
Affiliation(s)
- Cimen Gülben Olguner
- Departments of Anaesthesiology and Reanimation, School of Medicine, Dokuz Eylül University, İzmir 35340
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Liu L, Li Y, Hu Z, Su J, Huo Y, Tan B, Wang X, Liu Y. Small interfering RNA targeting Toll-like receptor 9 protects mice against polymicrobial septic acute kidney injury. Nephron Clin Pract 2013; 122:51-61. [PMID: 23548820 DOI: 10.1159/000346953] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/08/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIMS Although recent reports suggest that Toll-like receptor (TLR) 9 is associated with the pathogenesis of polymicrobial septic acute kidney injury (AKI), it is still unclear whether and how renal TLR9 is involved in the development of polymicrobial septic AKI. This study aimed to determine whether the expression of TLR9 in mouse renal cells is related to the development of polymicrobial septic AKI. METHODS The efficacy of small interfering RNA (siRNA) targeting TLR9 was tested in a cultured murine macrophage cell line (RAW264.7 cells). The most potent siRNA was transfected into mice using the hydrodynamic method prior to the induction of polymicrobial septic AKI being induced by cecal ligation and puncture (CLP). TLR9 knockdown was determined by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting in RAW264.7 cells and kidney tissues. The levels of serum creatinine and blood urea nitrogen (BUN) and the renal histopathology assessment were determined at 6-, 12-, and 24-hour time points after CLP, and renal cell apoptosis was studied at 24 h. The 4- and 7-day survival rates of mice were also observed. RESULTS We found that mice developed AKI in our model of polymicrobial sepsis, despite fluid and antibiotic resuscitation, which resembles human sepsis. siRNA to TLR9 successfully silenced the induction of renal TLR9 gene and protein expression following CLP. Effective silencing of renal TLR9 expression decreased renal cell apoptosis, mitigated the severity of AKI, and increased the survival of mice. CONCLUSIONS Our data demonstrates the induction of TLR9 expression in mouse kidney tissue following CLP. Renal cell apoptosis and AKI in our model of polymicrobial sepsis are dependent on TLR9. Thus, TLR9 may play a critical role in the pathophysiology of polymicrobial septic AKI.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
The effects of dexmedetomidine on secondary acute lung and kidney injuries in the rat model of intra-abdominal sepsis. ScientificWorldJournal 2013; 2013:292687. [PMID: 23476127 PMCID: PMC3586481 DOI: 10.1155/2013/292687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/15/2013] [Indexed: 12/13/2022] Open
Abstract
In the present study, the effects of dexmedetomidine on secondary lung and kidney injuries were studied in the rat model of intra-abdominal sepsis by immunohistological and biochemical examinations. We measured serum creatinine, kidney tissue malondialdehide and plasma neutrophil gelatinase-associated lipocalin levels. In order to evaluate tissue injury we determined kidney tissue mononuclear cell infiltration score, alveolar macrophage count, histological kidney and lung injury scores and kidney and lung tissue immunoreactivity scores. We demonstrated that dexmedetomidine attenuates sepsis-induced lung and kidney injuries and apoptosis in the rat model of sepsis. There is still need for comparative studies in order to determine the effects of dexmedetomidine on organ functions in early human sepsis.
Collapse
|
77
|
Rajmane Y, Shaikh S, Basha K, Reddy GECV, Nair S, Kamath S, Sreejesh G, Rao H, Ramana V, Kumar ASM. Infant mouse brain passaged Dengue serotype 2 virus induces non-neurological disease with inflammatory spleen collapse in AG129 mice after splenic adaptation. Virus Res 2013; 173:386-97. [PMID: 23337909 DOI: 10.1016/j.virusres.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 01/10/2023]
Abstract
AG129 mice are known to be permissive to infection by multiple serotypes of Dengue virus (DENV). There exists a concern that mouse passaged strains of the virus may induce neurological complications rather than increased vascular permeability in these mice, hence the use of human clinical isolates of the virus to develop the AG129 mouse model of Dengue disease with increased vascular permeability. The present study evaluated four mouse brain passaged DENV strains, each belonging to a different serotype and three of them having an original isolation history in India, for their suitability to serve as candidates to induce rapid lethal disease in AG129 mice. While all the viruses were able to establish a productive infection in the spleen, none of them induced paralysis despite their mouse brain passage history. Only the type-2 virus acquired the ability to induce a lethal disease after a single round of spleen to spleen passage, and became highly virulent after five more rounds. This apparently non-neurological lethal disease was characterized by high viral burden, elevated vascular permeability, serum TNF-α surge immediately before moribund stage, transient leukocytosis followed by severe leukopenia, lymphopenia throughout the course of the infection, and transient thrombocytopenia. The disease was also characterized by inflammatory splenic collapse during moribund stage, reminiscent of spontaneous splenic rupture reported in rare cases of severe Dengue in humans.
Collapse
Affiliation(s)
- Yogesh Rajmane
- Therapeutic proteins Group, Dhirubhai Ambani Life Sciences Centre, Reliance Life Sciences Pvt Ltd., Rabale, Navi Mumbai 400 701, Maharashtra, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Elias RM, Correa-Costa M, Barreto CR, Silva RC, Hayashida CY, Castoldi Â, Gonçalves GM, Braga TT, Barboza R, Rios FJ, Keller AC, Cenedeze MA, Hyane MI, D'Império-Lima MR, Figueiredo-Neto AM, Reis MA, Marinho CRF, Pacheco-Silva A, Câmara NOS. Oxidative stress and modification of renal vascular permeability are associated with acute kidney injury during P. berghei ANKA infection. PLoS One 2012; 7:e44004. [PMID: 22952850 PMCID: PMC3432099 DOI: 10.1371/journal.pone.0044004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Collapse
Affiliation(s)
- Rosa Maria Elias
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Reinaldo Correia Silva
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Y. Hayashida
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Ângela Castoldi
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Giselle Martins Gonçalves
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Renato Barboza
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco José Rios
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marcos Antonio Cenedeze
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Meire Ioshie Hyane
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Regina D'Império-Lima
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Marlene Antônia Reis
- Divisão de Patologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | | | - Alvaro Pacheco-Silva
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
80
|
McDowell SA, Ma Y, Kusano R, Akinbi HT. Simvastatin is protective during Staphylococcus aureus pneumonia. Curr Pharm Biotechnol 2012; 12:1455-62. [PMID: 21401521 DOI: 10.2174/138920111798281027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 01/02/2023]
Abstract
Epidemiologic studies suggest that the incidence and severity of sepsis are ameliorated in patients on statins (3- hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) for cholesterol lowering indications. We sought to understand the mechanism underlying such protection and hypothesized that simvastatin would be protective in mice against acute infection with Staphylococcus aureus, the primary etiologic agent in sepsis. Mice were treated with simvastatin or buffer for two weeks and were subsequently challenged with S. aureus intratracheally or intravenously. Relative to buffer-treated mice, bacterial killing was enhanced 4-fold (p=0.02), systemic dissemination was reduced, and lethality was decreased (hazard ratio 8.8, 95% CI 2.5 to 31.3, p=0.001) in mice that were pretreated with simvastatin for two weeks. Systemic inflammatory response was abrogated and the local elaboration of inflammatory mediators was diminished. Serum concentrations of pro-fibrinolytic protein C were elevated (p=0.034), while the concentration of pro-coagulant tissue factor in bronchoalveolar lavage fluids was attenuated (reduced 25%), p=0.001, in simvastatin-treated mice. Taken together, these data indicate that extended treatment with simvastatin is protective during infection with S. aureus through enhanced bacterial clearance, anti-inflammatory, and anti-coagulant activities. These studies provide insights into the mechanism by which statins confer protection in acute infection, support the notion that statins may be effective adjuncts in the treatment of sepsis, and provide a rationale for randomized control trials in patients that are at a high risk for infection characterized by coagulopathy.
Collapse
|
81
|
Castoldi A, Braga TT, Correa-Costa M, Aguiar CF, Bassi ÊJ, Correa-Silva R, Elias RM, Salvador F, Moraes-Vieira PM, Cenedeze MA, Reis MA, Hiyane MI, Pacheco-Silva Á, Gonçalves GM, Câmara NOS. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS One 2012; 7:e37584. [PMID: 22655058 PMCID: PMC3360043 DOI: 10.1371/journal.pone.0037584] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/22/2012] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2−/−, TLR4−/− and MyD88−/− male mice were subjected to sepsis by cecal ligation and puncture (CLP). Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2−/−, TLR4−/− and MyD88−/− mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT). MyD88−/− mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1+low cells migration compared with the knockout mice and decreased in GR1+high cells migration into the peritoneal cavity. The TLR2−/−, TLR4−/−, and MyD88−/− mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.
Collapse
Affiliation(s)
- Angela Castoldi
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Tárcio Teodoro Braga
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Cristhiane Fávero Aguiar
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ênio José Bassi
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Reinaldo Correa-Silva
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Elias
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fábia Salvador
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Manoel Moraes-Vieira
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Antônio Cenedeze
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Meire Ioshie Hiyane
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Álvaro Pacheco-Silva
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- IIEP, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Giselle Martins Gonçalves
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
82
|
Murugan R, Weissfeld L, Yende S, Singbartl K, Angus DC, Kellum JA. Association of statin use with risk and outcome of acute kidney injury in community-acquired pneumonia. Clin J Am Soc Nephrol 2012; 7:895-905. [PMID: 22461537 DOI: 10.2215/cjn.07100711] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Sepsis is a leading cause of AKI. Animal studies suggest that the pleiotropic effect of statins attenuates the risk for AKI and decreases mortality. This study examined whether statin use was associated with a lower risk for pneumonia-induced AKI and 1-year and cause-specific mortality in patients with AKI. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Multicenter, prospective cohort study of 1836 patients hospitalized with community-acquired pneumonia. RESULTS Baseline characteristics differed among statin users and nonusers. Of the 413 patients (22.5%) who received a statin before hospitalization, statin treatment, when adjusted for differences in age, severity of pneumonia, admission from nursing home, health insurance, and propensity for statin use, did not reduce the risk for AKI (odds ratio [OR], 1.32 [95% confidence interval (CI), 1.02-1.69]; P=0.05). Of patients with AKI (n=631), statin use was associated with a lower risk for death at 1 year (27.8% versus 38.8%; P=0.01), which was not significant when adjusted for differences in age, severity of pneumonia and AKI, use of mechanical ventilation, and propensity score (OR, 0.72 [95% CI, 0.50-1.06]; P=0.09). Among patients with AKI, cardiovascular disease accounted for one third of all deaths. CONCLUSIONS In a large cohort of patients hospitalized with pneumonia, statins did not reduce the risk for AKI. Among patients with AKI, statin use was not associated with lower risk for death at 1 year. The higher risk for AKI observed among statin users may be due to indication bias.
Collapse
Affiliation(s)
- Raghavan Murugan
- CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Leelahavanichkul A, Bocharov AV, Kurlander R, Baranova IN, Vishnyakova TG, Souza AC, Hu X, Doi K, Vaisman B, Amar M, Sviridov D, Chen Z, Remaley AT, Csako G, Patterson AP, Yuen PST, Star RA, Eggerman TL. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2749-58. [PMID: 22327076 PMCID: PMC3859147 DOI: 10.4049/jimmunol.1003445] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Class B scavenger receptors (SR-Bs), such as SR-BI/II or CD36, bind lipoproteins but also mediate bacterial recognition and phagocytosis. In evaluating whether blocking receptors can prevent intracellular bacterial proliferation, phagocyte cytotoxicity, and proinflammatory signaling in bacterial infection/sepsis, we found that SR-BI/II- or CD36-deficient phagocytes are characterized by a reduced intracellular bacterial survival and a lower cytokine response and were protected from bacterial cytotoxicity in the presence of antibiotics. Mice deficient in either SR-BI/II or CD36 are protected from antibiotic-treated cecal ligation and puncture (CLP)-induced sepsis, with greatly increased peritoneal granulocytic phagocyte survival (8-fold), a drastic diminution in peritoneal bacteria counts, and a 50-70% reduction in systemic inflammation (serum levels of IL-6, TNF-α, and IL-10) and organ damage relative to CLP in wild-type mice. The survival rate of CD36-deficient mice after CLP was 58% compared with 17% in control mice. When compensated for mineralocorticoid and glucocorticoid deficiency, SR-BI/II-deficient mice had nearly a 50% survival rate versus 5% in mineralo-/glucocorticoid-treated controls. Targeting SR-B receptors with L-37pA, a peptide that functions as an antagonist of SR-BI/II and CD36 receptors, also increased peritoneal granulocyte counts, as well as reduced peritoneal bacteria and bacterium-induced cytokine secretion. In the CLP mouse sepsis model, L-37pA improved survival from 6 to 27%, reduced multiple organ damage, and improved kidney function. These results demonstrate that the reduction of both SR-BI/II- and CD36-dependent bacterial invasion and inflammatory response in the presence of antibiotic treatment results in granulocyte survival and local bacterial containment, as well as reduces systemic inflammation and organ damage and improves animal survival during severe infections.
Collapse
Affiliation(s)
- Asada Leelahavanichkul
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Roger Kurlander
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Ana C.P. Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Kent Doi
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Boris Vaisman
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Marcelo Amar
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Denis Sviridov
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Alan T. Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Gyorgy Csako
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
- Office of Biotechnology Activities, Office of the Director, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892
- Division of Diabetes, Endocrinology, and Metabolic Diseases, NIDDK, National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
84
|
Rothberg MB, Bigelow C, Pekow PS, Lindenauer PK. Association between statins given in hospital and mortality in pneumonia patients. J Gen Intern Med 2012; 27:280-6. [PMID: 21842322 PMCID: PMC3286569 DOI: 10.1007/s11606-011-1826-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/23/2011] [Accepted: 08/01/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Statins are prescribed to lower cholesterol, but also have anti-inflammatory properties. Some observational studies suggest that statins may reduce mortality from sepsis. METHODS Using a highly detailed administrative database, we conducted an observational cohort study of all patients aged ≥18 years who received a discharge diagnosis of pneumonia from 2003-2005 at 376 hospitals. Patients with contraindications to statins, and those unable to take oral medications or discharged within 2 days were excluded. We used multivariable logistic regression and propensity matching to compare mortality among patients who did and did not receive statins on hospital day 1 or 2. RESULTS Of the 121,254 patients who met the inclusion criteria, median age was 74; 56% were female and 70% were white; 19% received a statin on day 1 or 2. Compared to patients who did not receive statins, statin-treated patients were less likely to be admitted to intensive care (15.7% vs 18.1%, p < 0.001), require mechanical ventilation (6.9% vs. 9.3%, p < 0.001), or die in hospital (3.9% vs 5.7%, p < 0.001). After multivariable adjustment, including the propensity for statin treatment and severity at presentation, mortality was lower in statin-treated patients [OR for propensity-adjusted 0.86 (95% CI 0.79 to 0.93) OR for propensity-matched 0.90, (0.82 to 0.99)]. For patients admitted to intensive care the adjusted odds ratio for mortality with statins was 0.93 (95% CI 0.81 to 1.06), whereas outside intensive care it was 0.79 (95% CI 0.71 to 0.87). CONCLUSIONS Inpatient treatment with statins is associated with a modest reduction in pneumonia mortality outside of intensive care.
Collapse
Affiliation(s)
- Michael B Rothberg
- Center for Quality of Care Research, Baystate Medical Center, Springfield, MA 01199, USA.
| | | | | | | |
Collapse
|
85
|
Sepsis Immunopathology: Perspectives of Monitoring and Modulation of the Immune Disturbances. Arch Immunol Ther Exp (Warsz) 2012; 60:123-35. [DOI: 10.1007/s00005-012-0166-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/07/2011] [Indexed: 02/02/2023]
|
86
|
Sepsis-induced acute kidney injury—is there a lack of energy? Intensive Care Med 2012; 38:735-7. [DOI: 10.1007/s00134-012-2489-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 01/01/2012] [Indexed: 01/16/2023]
|
87
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
88
|
Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:505-16. [PMID: 22119717 DOI: 10.1016/j.ajpath.2011.10.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/30/2011] [Accepted: 10/17/2011] [Indexed: 11/23/2022]
Abstract
Acute kidney injury is a frequent and serious complication of sepsis. To better understand the development of sepsis-induced acute kidney injury, we performed the first time-dependent studies to document changes in renal hemodynamics and oxidant generation in the peritubular microenvironment using the murine cecal ligation and puncture (CLP) model of sepsis. CLP caused an increase in renal capillary permeability at 2 hours, followed by decreases in mean arterial pressure, renal blood flow (RBF), and renal capillary perfusion at 4 hours, which were sustained through 18 hours. The decline in hemodynamic parameters was associated with hypoxia and oxidant generation in the peritubular microenvironment and a decrease in glomerular filtration rate. The role of oxidants was assessed using the superoxide dismutase mimetic/peroxynitrite scavenger MnTMPyP [Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin]. At 10 mg/kg administered 6 hours after CLP, MnTMPyP did not alter blood pressure, but blocked superoxide and peroxynitrite generation, reversed the decline in RBF, capillary perfusion, and glomerular filtration rate, preserved tubular architecture, and increased 48-hour survival. However, MnTMPyP administered at CLP did not prevent capillary permeability or the decrease in RBF and capillary perfusion, which suggests that these early events are not mediated by oxidants. These data demonstrate that renal hemodynamic changes occur early after sepsis and that targeting the later oxidant generation can break the cycle of injury and enable the microcirculation and renal function to recover.
Collapse
|
89
|
Pathak E, MacMillan-Crow LA, Mayeux PR. Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury. J Pharmacol Exp Ther 2011; 340:192-201. [PMID: 22011433 DOI: 10.1124/jpet.111.183756] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress has been implicated to play a major role in multiorgan dysfunction during sepsis. To study the mechanism of oxidant generation in acute kidney injury (AKI) during sepsis, we developed an in vitro model of sepsis using primary cultures of mouse cortical tubular epithelial cells exposed to serum (2.5-10%) collected from mice at 4 h after induction of sepsis by cecal ligation and puncture (CLP) or Sham (no sepsis). CLP serum produced a concentration-dependent increase in nitric oxide (NO) (nitrate + nitrite) release at 6 h and cytotoxicity (lactate dehydrogenase release) at 18 h compared with Sham serum treatment. Before cytotoxicity there was a decrease in mitochondrial membrane potential, which was followed by increased superoxide and peroxynitrite levels compared with Sham serum. The role of oxidants was evaluated by using the superoxide dismutase mimetic and peroxynitrite scavenger manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin tetratosylate hydroxide (MnTmPyP). MnTmPyP (10-100 μM) produced a concentration-dependent preservation of ATP and protection against cytotoxicity. MnTmPyP blocked mitochondrial superoxide and peroxynitrite generation produced by CLP serum but had no effect on NO levels. Although MnTmPyP did not block the initial CLP serum-induced fall in mitochondrial membrane potential, it allowed mitochondrial membrane potential to recover. Data from this in vitro model suggest a time-dependent generation of mitochondrial oxidants, mitochondrial dysfunction, and renal tubular epithelial cell injury and support the therapeutic potential of manganese porphyrin compounds in preventing sepsis-induced AKI.
Collapse
Affiliation(s)
- Elina Pathak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
90
|
Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int 2011; 81:370-8. [PMID: 21975863 DOI: 10.1038/ki.2011.347] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mortality rate of patients who develop acute kidney injury during sepsis nearly doubles. The effectiveness of therapy is hampered because it is usually initiated only after the onset of symptoms. As renal microvascular failure during sepsis is correlated with the generation of reactive nitrogen species, the therapeutic potential of resveratrol, a polyphenol vasodilator that is also capable of scavenging reactive nitrogen species, was investigated using the cecal ligation and puncture (CLP) murine model of sepsis-induced acute kidney injury. Resveratrol when given at 5.5 h following CLP reversed the decline in cortical capillary perfusion, assessed by intravital microscopy, at 6 h in a dose-dependent manner. Resveratrol produced the greatest improvement in capillary perfusion and increased renal blood flow and the glomerular filtration rate without raising systemic pressure. A single dose at 6 h after CLP was unable to improve renal microcirculation assessed at 18 h; however, a second dose at 12 h significantly improved microcirculation and decreased the levels of reactive nitrogen species in tubules, while improving renal function. Moreover, resveratrol given at 6, 12, and 18 h significantly improved survival. Hence, resveratrol may have a dual mechanism of action to restore the renal microcirculation and scavenge reactive nitrogen species, thus protecting the tubular epithelium even when administered after the onset of sepsis.
Collapse
|
91
|
Yang W, Yamada M, Tamura Y, Chang K, Mao J, Zou L, Feng Y, Kida K, Scherrer-Crosbie M, Chao W, Ichinose F, Yu YM, Fischman AJ, Tompkins RG, Yao S, Kaneki M. Farnesyltransferase inhibitor FTI-277 reduces mortality of septic mice along with improved bacterial clearance. J Pharmacol Exp Ther 2011; 339:832-41. [PMID: 21873557 DOI: 10.1124/jpet.111.183558] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Treatment with statins, inhibitors of HMG-CoA reductase, extends the survival of septic mice. However, the molecular mechanisms underlying the cholesterol-lowering, independent beneficial effects of statins in sepsis are poorly understood. The inhibition of protein isoprenylation, namely farnesylation and geranylgeranylation, has been proposed as a mediator of the pleiotropic protective effects of statins, although direct evidence is lacking. Major features of sepsis-induced immune suppression include T-cell dysfunction, which is characterized by apoptosis of splenic T cells, increased CD4(+)Foxp3(+) regulatory T cells (Tregs), and suppression of type 1 helper T-cell response [e.g., interferon-γ (IFN-γ) secretion] in mice. Here, we show that the induction of sepsis by cecal ligation and puncture (CLP) resulted in increases in farnesyltransferase activity and farnesylated proteins in the spleen relative to sham operation. Treatment with farnesyltransferase inhibitor N-[4-[2(R)-amino-3-mercaptopropyl]amino-2-phenylbenzoyl]methionine methyl ester trifluoroacetate salt (FTI-277) (25 mg/kg b.wt. i.p.) at 2 h after CLP blocked the increase in farnesylated proteins and improved survival and bacterial clearance of septic mice. FTI-277 reverted to or mitigated sepsis-induced apoptosis in spleen and thymus, increased splenic CD4(+)Foxp3(+) Tregs, and suppressed IFN-γ secretion and proliferation of splenocytes in response to anti-CD3+CD28 antibodies in mice. Moreover, FTI-277 promoted macrophage phagocytotic activity in septic mice. These results indicate that elevation in protein farnesylation plays a role in derangements in immune function and mortality of septic mice. These findings suggest that prevention of immune dysfunction might contribute to FTI-277-induced improvement in survival of septic mice. These data highlight protein farnesyltransferase as a novel potential molecular target to reduce the mortality of patients with sepsis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School,Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Feeney JM, Jayaraman V, Spilka J, Shapiro DS, Ellner S, Marshall WT, Jacobs LM. Prehospital HMG Co-A reductase inhibitor use and reduced mortality in hemorrhagic shock due to trauma. Eur J Trauma Emerg Surg 2011; 38:171-6. [DOI: 10.1007/s00068-011-0144-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022]
|
93
|
Ghaly T, Rabadi MM, Weber M, Rabadi SM, Bank M, Grom JM, Fallon JT, Goligorsky MS, Ratliff BB. Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia. Am J Physiol Renal Physiol 2011; 301:F802-12. [PMID: 21775481 DOI: 10.1152/ajprenal.00124.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.
Collapse
Affiliation(s)
- Tammer Ghaly
- Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Keller SA, Moore CC, Evans SL, McKillop IH, Huynh T. Activated Protein C Alters Inflammation and Protects Renal Function in Sepsis. J Surg Res 2011; 168:e103-9. [DOI: 10.1016/j.jss.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/10/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
|
95
|
Abstract
Sepsis-induced acute kidney injury occurs in 20% to 50% of septic patients and nearly doubles the mortality rate of sepsis. Because treatment in the septic patient is usually begun only after the onset of symptoms, therapy that is effective even when delayed would have the greatest impact on patient survival. The metalloproteinase meprin A, an oligomeric complex made of α- and β-subunits, is highly expressed at the brush-border membranes of the kidney and capable of degrading numerous substrates including extracellular matrix proteins and cytokines. The goal of the present study was to compare the therapeutic potential of actinonin, an inhibitor of meprin A, when administered before and after the onset of sepsis. Mice were treated with actinonin at 30 min before or 7 h after induction of sepsis by cecal ligation and puncture (CLP). Intravital videomicroscopy was used to image renal peritubular capillary perfusion and reactive nitrogen species. Actinonin treatment 30 min before CLP reduced IL-1β levels and prevented the fall in renal capillary perfusion at 7 and 18 h. Actinonin also prevented the fall in renal capillary perfusion even when administered at 7 h after CLP. In addition, even late administration of actinonin preserved renal morphology and lowered blood urea nitrogen and serum creatinine concentrations. These data suggest that agents such as actinonin should be evaluated further as possible therapeutic agents because targeting both the early systemic and later organ-damaging effects of sepsis should have the highest likelihood of success.
Collapse
|
96
|
Seely KA, Holthoff JH, Burns ST, Wang Z, Thakali KM, Gokden N, Rhee SW, Mayeux PR. Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2011; 301:F209-17. [PMID: 21511700 DOI: 10.1152/ajprenal.00687.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sepsis is a leading cause of acute kidney injury (AKI) and mortality in children. Understanding the development of pediatric sepsis and its effects on the kidney are critical in uncovering new therapies. The goal of this study was to characterize the development of sepsis-induced AKI in the clinically relevant cecal ligation and puncture (CLP) model of peritonitis in rat pups 17-18 days old. CLP produced severe sepsis demonstrated by time-dependent increase in serum cytokines, NO, markers of multiorgan injury, and renal microcirculatory hypoperfusion. Although blood pressure and heart rate remained unchanged after CLP, renal blood flow (RBF) was decreased 61% by 6 h. Renal microcirculatory analysis showed the number of continuously flowing cortical capillaries decreased significantly from 69 to 48% by 6 h with a 66% decrease in red blood cell velocity and a 57% decline in volumetric flow. The progression of renal microcirculatory hypoperfusion was associated with peritubular capillary leakage and reactive nitrogen species generation. Sham adults had higher mean arterial pressure (118 vs. 69 mmHg), RBF (4.2 vs. 1.1 ml·min(-1)·g(-1)), and peritubular capillary velocity (78% continuous flowing capillaries vs. 69%) compared with pups. CLP produced a greater decrease in renal microcirculation in pups, supporting the notion that adult models may not be the most appropriate for studying pediatric sepsis-induced AKI. Lower RBF and reduced peritubular capillary perfusion in the pup suggest the pediatric kidney may be more susceptible to AKI than would be predicted using adults models.
Collapse
Affiliation(s)
- Kathryn A Seely
- Dept. of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham St., #611, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kouroumichakis I, Papanas N, Proikaki S, Zarogoulidis P, Maltezos E. Statins in prevention and treatment of severe sepsis and septic shock. Eur J Intern Med 2011; 22:125-33. [PMID: 21402241 DOI: 10.1016/j.ejim.2010.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/28/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
Severe sepsis is an infection-induced inflammatory syndrome that can lead to multi-organ dysfunction and continues to be a major cause of morbidity and mortality worldwide. Because numerous cascades are triggered during sepsis, selective blocking of inflammatory mediators may be insufficient to arrest this process, and recent therapeutic approaches have proven controversial. Statins are the most commonly prescribed agents for hypercholesterolaemia and dominate the area of cardiovascular risk reduction. Moreover, these drugs have a variety of actions that are independent of their lipid lowering effect. Such anti-inflammatory, antioxidant, immunomodulatory, and antiapoptotic features have been collectively referred to as pleiotropic effects. By virtue of their pleiotropic effects, statins have also emerged as potentially useful in various critical care areas such as bacteraemia, the early phases of sepsis and septic shock, as well as the management of serious infections. This review outlines current evidence on the use of statins for preventing and treating sepsis.
Collapse
Affiliation(s)
- I Kouroumichakis
- Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | |
Collapse
|
98
|
Burns KEA, Chant C, Smith O, Cuthbertson B, Fowler R, Cook DJ, Kruger P, Webb S, Alhashemi J, Dominguez-Cherit G, Zala C, Rubenfeld GD, Marshall JC. A Canadian Critical Care Trials Group project in collaboration with the international forum for acute care trialists - Collaborative H1N1 Adjuvant Treatment pilot trial (CHAT): study protocol and design of a randomized controlled trial. Trials 2011; 12:70. [PMID: 21388549 PMCID: PMC3068961 DOI: 10.1186/1745-6215-12-70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/09/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Swine origin influenza A/H1N1 infection (H1N1) emerged in early 2009 and rapidly spread to humans. For most infected individuals, symptoms were mild and self-limited; however, a small number developed a more severe clinical syndrome characterized by profound respiratory failure with hospital mortality ranging from 10 to 30%. While supportive care and neuraminidase inhibitors are the main treatment for influenza, data from observational and interventional studies suggest that the course of influenza can be favorably influenced by agents not classically considered as influenza treatments. Multiple observational studies have suggested that HMGCoA reductase inhibitors (statins) can exert a class effect in attenuating inflammation. The Collaborative H1N1 Adjuvant Treatment (CHAT) Pilot Trial sought to investigate the feasibility of conducting a trial during a global pandemic in critically ill patients with H1N1 with the goal of informing the design of a larger trial powered to determine impact of statins on important outcomes. METHODS/DESIGN A multi-national, pilot randomized controlled trial (RCT) of once daily enteral rosuvastatin versus matched placebo administered for 14 days for the treatment of critically ill patients with suspected, probable or confirmed H1N1 infection. We propose to randomize 80 critically ill adults with a moderate to high index of suspicion for H1N1 infection who require mechanical ventilation and have received antiviral therapy for ≤ 72 hours. Site investigators, research coordinators and clinical pharmacists will be blinded to treatment assignment. Only research pharmacy staff will be aware of treatment assignment. We propose several approaches to informed consent including a priori consent from the substitute decision maker (SDM), waived and deferred consent. The primary outcome of the CHAT trial is the proportion of eligible patients enrolled in the study. Secondary outcomes will evaluate adherence to medication administration regimens, the proportion of primary and secondary endpoints collected, the number of patients receiving open-label statins, consent withdrawals and the effect of approved consent models on recruitment rates. DISCUSSION Several aspects of study design including the need to include central randomization, preserve allocation concealment, ensure study blinding compare to a matched placebo and the use novel consent models pose challenges to investigators conducting pandemic research. Moreover, study implementation requires that trial design be pragmatic and initiated in a short time period amidst uncertainty regarding the scope and duration of the pandemic. TRIAL REGISTRATION NUMBER ISRCTN45190901.
Collapse
Affiliation(s)
- Karen EA Burns
- Interdepartmental Division of Critical Care Medicine and Departments of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Clarence Chant
- Interdepartmental Division of Critical Care Medicine and Departments of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Orla Smith
- Interdepartmental Division of Critical Care Medicine and Departments of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Brian Cuthbertson
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Robert Fowler
- Interdepartmental Division of Critical Care Medicine and Departments of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Deborah J Cook
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Peter Kruger
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Steve Webb
- Intensive Care, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | | | - Carlos Zala
- Hospital Central de San Isidro, Dr. Melchor Angel Posse, San Isidro, Buenos Aires, Argentina
| | - Gordon D Rubenfeld
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - John C Marshall
- Interdepartmental Division of Critical Care Medicine and Departments of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
99
|
Mithani S, Kuskowski M, Slinin Y, Ishani A, McFalls E, Adabag S. Dose-Dependent Effect of Statins on the Incidence of Acute Kidney Injury After Cardiac Surgery. Ann Thorac Surg 2011; 91:520-5. [DOI: 10.1016/j.athoracsur.2010.10.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/01/2023]
|
100
|
Nežić L, Amidžić L, Jaćević V, Dobrić S, Škrbić R, Stojiljković M, Komić J, Stoisavljević-Šatara S. Simvastatin improves survival and reduces leukocyte recruitment and hepatocyte apoptosis in endotoxin-induced liver injury. SCRIPTA MEDICA 2011. [DOI: 10.5937/scrimed1101007n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|