51
|
Onore C, Yang H, Van de Water J, Ashwood P. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder. Front Pediatr 2017; 5:43. [PMID: 28361047 PMCID: PMC5350147 DOI: 10.3389/fped.2017.00043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD.
Collapse
Affiliation(s)
- Charity Onore
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Houa Yang
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Paul Ashwood
- The M.I.N.D. Institute, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
52
|
Yeh E, Weiss LA. If genetic variation could talk: What genomic data may teach us about the importance of gene expression regulation in the genetics of autism. Mol Cell Probes 2016; 30:346-356. [PMID: 27751841 DOI: 10.1016/j.mcp.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) has been long known to have substantial genetic etiology. Much research has attempted to identify specific genes contributing to ASD risk with the goal of tying gene function to a molecular pathological explanation for ASD. A unifying molecular pathology would potentially increase understanding of what is going wrong during development, and could lead to diagnostic biomarkers or targeted preventative or therapeutic directions. We review past and current genetic mapping approaches and discuss major results, leading to the hypothesis that global dysregulation of gene or protein expression may be implicated in ASD rather than disturbance of brain-specific functions. If substantiated, this hypothesis might indicate the need for novel experimental and analytical approaches in order to understand this neurodevelopmental disorder, develop biomarkers, or consider treatment approaches.
Collapse
Affiliation(s)
- Erika Yeh
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lauren A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
53
|
Choi H, Song J, Park G, Kim J. Modeling of Autism Using Organoid Technology. Mol Neurobiol 2016; 54:7789-7795. [DOI: 10.1007/s12035-016-0274-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/30/2016] [Indexed: 01/01/2023]
|
54
|
Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2016; 37:14-30. [DOI: 10.1002/pd.4942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jiani Yin
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| |
Collapse
|
55
|
Mayne BT, Bianco-Miotto T, Buckberry S, Breen J, Clifton V, Shoubridge C, Roberts CT. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans. Front Genet 2016; 7:183. [PMID: 27790248 PMCID: PMC5062749 DOI: 10.3389/fgene.2016.00183] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.
Collapse
Affiliation(s)
- Benjamin T Mayne
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, The University of Western AustraliaPerth, WA, Australia; Plant Energy Biology, Australian Research Council Centre of Excellence, The University of Western AustraliaPerth, WA, Australia
| | - James Breen
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Bioinformatics Hub, School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
| | - Vicki Clifton
- Mater Research Institute, University of Queensland Brisbane, QLD, Australia
| | - Cheryl Shoubridge
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of AdelaideAdelaide, SA, Australia; Adelaide Medical School, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
56
|
Brondino N, Fusar-Poli L, Panisi C, Damiani S, Barale F, Politi P. Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies. J Autism Dev Disord 2016; 46:825-39. [PMID: 26443675 DOI: 10.1007/s10803-015-2619-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic system and be a potential treatment for people with ASD. The present systematic review aimed at evaluating the state-of-the-art of clinical trials of GABA modulators in autism. To date there is insufficient evidence to suggest the use of these drugs in autistic subjects, even if data are promising. Of note, short-term use of all the reviewed medications appears to be safe. Future well designed trials are needed to elucidate these preliminary findings.
Collapse
Affiliation(s)
- Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy.
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Cristina Panisi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Francesco Barale
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100, Pavia, Italy
| |
Collapse
|
57
|
Hannant P, Tavassoli T, Cassidy S. The Role of Sensorimotor Difficulties in Autism Spectrum Conditions. Front Neurol 2016; 7:124. [PMID: 27559329 PMCID: PMC4978940 DOI: 10.3389/fneur.2016.00124] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor movements, and atypical reactivity to sensory input (1). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. First, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Second, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Third, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviors such as effectively coordinating eye contact with speech and gesture, interpreting others' behavior, and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC and their contribution to the development and maintenance of ASC.
Collapse
Affiliation(s)
- Penelope Hannant
- Centre for Research in Psychology, Behaviour and Achievement, Coventry University, Coventry, UK
| | - Teresa Tavassoli
- Seaver Autism Centre, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Cassidy
- Centre for Research in Psychology, Behaviour and Achievement, Coventry University, Coventry, UK
- Autism Research Centre, University of Cambridge, Cambridge, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
58
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
59
|
Kazdoba TM, Hagerman RJ, Zolkowska D, Rogawski MA, Crawley JN. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology (Berl) 2016; 233:309-23. [PMID: 26525567 PMCID: PMC4703522 DOI: 10.1007/s00213-015-4115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Abnormalities in excitatory/inhibitory neurotransmission are hypothesized to contribute to autism spectrum disorder (ASD) etiology. BTBR T (+) Itpr3 (tf) /J (BTBR), an inbred mouse strain, displays social deficits and repetitive self-grooming, offering face validity to ASD diagnostic symptoms. Reduced GABAergic neurotransmission in BTBR suggests that GABAA receptor positive allosteric modulators (PAMs) could improve ASD-relevant BTBR phenotypes. The neuroactive steroid ganaxolone acts as a PAM, displaying anticonvulsant properties in rodent epilepsy models and an anxiolytic-like profile in the elevated plus-maze. OBJECTIVES We evaluated ganaxolone in BTBR and C57BL/6J mice in standardized assays for sociability and repetitive behaviors. Open field and anxiety-related behaviors were tested as internal controls and for comparison with the existing neuroactive steroid literature. RESULTS Ganaxolone improved aspects of social approach and reciprocal social interactions in BTBR, with no effect on repetitive self-grooming, and no detrimental effects in C57BL/6J. Ganaxolone increased overall exploratory activity in BTBR and C57BL/6J in the open field, social approach, and elevated plus-maze, introducing a confound for the interpretation of social improvements. Allopregnanolone and diazepam similarly increased total entries in the elevated plus-maze, indicating that behavioral activation may be a general property of GABAA receptor PAMs in these strains. CONCLUSIONS Ganaxolone shows promise for improving sociability. In addition, ganaxolone, as well as other GABAA receptor PAMs, enhanced overall BTBR activity. The translational implications of specific sociability improvements and nonspecific behavioral activation by ganaxolone in the BTBR model remain to be determined. Future studies to explore whether PAMs provide a novel profile with unique benefits for ASD treatment will be worthwhile.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Randi J Hagerman
- MIND Institute, Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dorota Zolkowska
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michael A Rogawski
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
60
|
Freyberg J, Robertson CE, Baron-Cohen S. Reduced perceptual exclusivity during object and grating rivalry in autism. J Vis 2015; 15:11. [PMID: 26382002 DOI: 10.1167/15.13.11] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The dynamics of binocular rivalry may be a behavioral footprint of excitatory and inhibitory neural transmission in visual cortex. Given the presence of atypical visual features in Autism Spectrum Conditions (ASC), and the growing evidence in support of the idea of an imbalance in excitatory/inhibitory neural transmission in animal and genetic models of ASC, we hypothesized that binocular rivalry might prove a simple behavioral marker of such a transmission imbalance in the autistic brain. In support of this hypothesis, we previously reported a slower rate of rivalry in ASC, driven by longer transitional states between dominant percepts. We tested whether atypical dynamics of binocular rivalry in ASC are specific to certain stimulus features. 53 participants (26 with ASC, matched for age, sex, and IQ) participated in a binocular rivalry experiment in which the dynamics of rivalry were measured at two levels of stimulus complexity, low (grayscale gratings) and high (colored objects). Individuals with ASC experienced a slower rate of binocular rivalry, driven by longer transitional states between dominant percepts. These exaggerated transitional states were present at both low and high levels of stimulus complexity (gratings and objects), suggesting that atypical binocular dynamics in autism are robust with respect to stimulus choice. Interactions between stimulus properties and rivalry dynamics in autism indicate that achromatic grating stimuli produce stronger group differences. These results confirm the finding of atypical dynamics of binocular rivalry in ASC. These dynamics were present for stimuli of both low and high levels of visual complexity, suggesting a pervasive imbalance in competitive interactions throughout the visual system of individuals with ASC.
Collapse
|
61
|
Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol 2015; 24:257-72. [PMID: 26713075 PMCID: PMC4688327 DOI: 10.5607/en.2015.24.4.257] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most complex behavioral disorders with a strong genetic influence. The objectives of this article are to review the current status of genetic research in ASD, and to provide information regarding the potential candidate genes, mutations, and genetic loci possibly related to pathogenesis in ASD. Investigations on monogenic causes of ASD, candidate genes among common variants, rare de novo mutations, and copy number variations are reviewed. The current possible clinical applications of the genetic knowledge and their future possibilities are highlighted.
Collapse
Affiliation(s)
- Heejeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
62
|
Schrider DR, Kern AD. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain. Genome Biol Evol 2015; 7:3511-28. [PMID: 26590212 PMCID: PMC4700959 DOI: 10.1093/gbe/evv228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods.
Collapse
Affiliation(s)
| | - Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway Human Genetics Institute of New Jersey, Piscataway, New Jersey
| |
Collapse
|
63
|
Tavassoli T, Bellesheim K, Tommerdahl M, Holden JM, Kolevzon A, Buxbaum JD. Altered tactile processing in children with autism spectrum disorder. Autism Res 2015; 9:616-20. [PMID: 26568449 DOI: 10.1002/aur.1563] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 11/06/2022]
Abstract
Although tactile reactivity issues are commonly reported in children with autism spectrum disorder (ASD), the underlying mechanisms are poorly understood. Less feed-forward inhibition has been proposed as a potential mechanism for some symptoms of ASD. We tested static and dynamic tactile thresholds as a behavioral proxy of feed-forward inhibition in 42 children (21 children with ASD and 21 typically developing [TD] children). Subthreshold conditioning typically raises the dynamic detection threshold, thus comparison of the dynamic to the static threshold generates a metric that predicts gamma-aminobutyric acid (GABA) mediated feed-forward inhibition. Children with ASD had marginally higher static thresholds and a significantly lower ratio between thresholds as compared with TD children. The lower ratio, only seen in children with ASD, might be indicative of less inhibition. Static thresholds were correlated with autism spectrum quotient scores, indicating the higher the tactile threshold, the more ASD traits. The amount of feed-forward inhibition (ratio between dynamic/static) was negatively correlated with autism diagnostic observation schedule repetitive behavior scores, meaning the less inhibition the more ASD symptoms. In summary, children with ASD showed altered tactile processing compared with TD children; thus measuring static and dynamic thresholds could be a potential biomarker for ASD and might be useful for prediction of treatment response with therapeutics, including those that target the GABAergic system. Autism Res 2016, 9: 616-620. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Teresa Tavassoli
- Department of Psychiatry, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | | | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599
| | - Jameson M Holden
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599
| | - Alexander Kolevzon
- Department of Psychiatry, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joseph D Buxbaum
- Department of Psychiatry, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029.,The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
64
|
Sesarini CV, Costa L, Grañana N, Coto MG, Pallia RC, Argibay PF. Association between GABA(A) receptor subunit polymorphisms and autism spectrum disorder (ASD). Psychiatry Res 2015; 229:580-2. [PMID: 26239769 DOI: 10.1016/j.psychres.2015.07.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/14/2015] [Accepted: 07/25/2015] [Indexed: 01/30/2023]
Abstract
ASD might be associated with alterations in excitation/inhibition ratio and GABA(A) has been implicated since it mediates synaptic inhibition. Polymorphisms in GABA receptor (GABAR) were studied: significant differences in allele and genotype frequencies observed between cases and controls (rs1912960, GABRA4). Haplotype analysis: rs1912960 (GABRA4) and rs211037 (GABRG2) overrepresented in cases. Rs1912960 has been associated with ASD and rs211037 with epilepsy. GABRA4 is associated with autism in the Argentinean dataset independently or in combination with GABRG2.
Collapse
Affiliation(s)
- Carla V Sesarini
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Instituto Universitario del Hospital Italiano de Buenos Aires (HIBA), Potosi 4240 (C1199ACL), CABA, Argentina.
| | - Lucas Costa
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Instituto Universitario del Hospital Italiano de Buenos Aires (HIBA), Potosi 4240 (C1199ACL), CABA, Argentina
| | - Nora Grañana
- Hospital Durand, Diaz Velez 5044 (C1405DCS), CABA, Argentina
| | - Miguel Garcia Coto
- Centro de Investigaciones del Desarrollo Psiconeurológico (CIDEP), Av. Libertador 6049 (C1428AAG), CABA, Argentina
| | - Roberto C Pallia
- Pediatric Mental Health, Hospital Italiano de Buenos Aires (HIBA), Potosi 4060 (C1181ACH), CABA, Argentina
| | - Pablo F Argibay
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Instituto Universitario del Hospital Italiano de Buenos Aires (HIBA), Potosi 4240 (C1199ACL), CABA, Argentina
| |
Collapse
|
65
|
Hua R, Wei M, Zhang C. The complex genetics in autism spectrum disorders. SCIENCE CHINA-LIFE SCIENCES 2015; 58:933-45. [PMID: 26335739 DOI: 10.1007/s11427-015-4893-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autism spectrum disorders (ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants (CNVs), linkage regions, and microRNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - MengPing Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
66
|
Vasylieva N, Ahn KC, Barnych B, Gee SJ, Hammock BD. Development of an Immunoassay for the Detection of the Phenylpyrazole Insecticide Fipronil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10038-10047. [PMID: 26196357 PMCID: PMC4605820 DOI: 10.1021/acs.est.5b01005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phenylpyrazole insecticides such as fipronil have been used as replacements for organophosphates. The wide application of fipronil raises concern about environmental contamination and risk for fish, birds, and other nontargeted beings as well as human health. A sensitive, competitive indirect heterologous enzyme-linked immunosorbent assay (ELISA) was developed. Antibodies with different specificities to fipronil and its metabolites were produced. Two ELISAs having IC50 values of 0.58 ± 0.06 and 2.6 ± 0.4 ng/mL were developed. Design of different haptens and coating antigens resulted in two assays with distinct cross-reactivity patterns for structurally related compounds: 96, 38, and 101% versus 39, 1.4, and 25% for fipronil-sulfide, fipronil-detrifluoromethylsulfonyl, and fipronil-desulfinyl, respectively. Performance of the immunoassays was demonstrated by a recovery study from spiked water and human serum and urine matrices, giving recovery values in the range of 85-111% for different concentrations. The assays demonstrated good correlation in fipronil recovery with conventional LC-MS/MS analysis. The generic assay 2265 has the sensitivity to measure fipronil and its analogs in serum at levels relevant for exposure monitoring. The assays were used to analyze human urine samples obtained from exposure studies and serum samples from rats treated with a fipronil-containing diet.
Collapse
Affiliation(s)
- Natalia Vasylieva
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Ki Chang Ahn
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Shirley J. Gee
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
- Corresponding Author, Tel. : 530-752-8465. Fax : 530-752-7519.
| |
Collapse
|
67
|
Peiker I, Schneider TR, Milne E, Schöttle D, Vogeley K, Münchau A, Schunke O, Siegel M, Engel AK, David N. Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders. PLoS One 2015; 10:e0132531. [PMID: 26147342 PMCID: PMC4492621 DOI: 10.1371/journal.pone.0132531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD.
Collapse
Affiliation(s)
- Ina Peiker
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elizabeth Milne
- Clinical Psychology Unit, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Daniel Schöttle
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Vogeley
- Department of Psychiatry, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine-Cognitive Neurology Section (INM3), Research Center Juelich, Juelich, Germany
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Odette Schunke
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Siegel
- Centre for Integrative Neuroscience and MEG Center, University of Tübingen, Tübingen, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole David
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
68
|
Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases. Mol Pharmacol 2015; 88:203-17. [PMID: 25904555 PMCID: PMC4468639 DOI: 10.1124/mol.115.097998] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases.
Collapse
Affiliation(s)
- Hongjie Yuan
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Chian-Ming Low
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Olivia A Moody
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Andrew Jenkins
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Stephen F Traynelis
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| |
Collapse
|
69
|
Puts NA, Wodka EL, Tommerdahl M, Mostofsky SH, Edden RA. Reply to Dickinson and Milne. J Neurophysiol 2015; 112:1600-1. [PMID: 25224339 DOI: 10.1152/jn.00455.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nicolaas A Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland;
| | - Ericka L Wodka
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stewart H Mostofsky
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Richard A Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
70
|
Shorter KR, Miller BH. Epigenetic mechanisms in schizophrenia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:1-7. [PMID: 25958205 DOI: 10.1016/j.pbiomolbio.2015.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/03/2023]
Abstract
Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have been implicated in a number of complex diseases. Schizophrenia and other major psychiatric and neurodevelopmental disorders are associated with abnormalities in multiple epigenetic mechanisms, resulting in altered gene expression during development and adulthood. Polymorphisms and copy number variants in schizophrenia risk genes contribute to the high heritability of the disease, but environmental factors that lead to epigenetic modifications may either reduce or exacerbate the expression of molecular and behavioral phenotypes associated with schizophrenia and related disorders. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including disruption of the dopamine, NMDA, and GABA signaling pathways, and discuss the role of epigenetic factors underlying disease pathology.
Collapse
Affiliation(s)
- Kimberly R Shorter
- McKnight Brain Institute and Departments of Psychiatry and Medicine, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Brooke H Miller
- McKnight Brain Institute and Departments of Psychiatry and Medicine, University of Florida College of Medicine, Gainesville, FL 32607, USA.
| |
Collapse
|
71
|
Khan S, Michmizos K, Tommerdahl M, Ganesan S, Kitzbichler MG, Zetino M, Garel KLA, Herbert MR, Hämäläinen MS, Kenet T. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain 2015; 138:1394-409. [PMID: 25765326 DOI: 10.1093/brain/awv043] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8-18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism group, P < 0.01 and P < 0.0001 for the typical group), with autism severity (P < 0.03), and with diagnosis (89% accuracy). A biophysically realistic computational model using data driven feedforward and feedback parameters replicated the magnetoencephalography data faithfully. The direct observation of both abnormally increased and abnormally decreased functional connectivity in autism occurring simultaneously in different functional connectivity streams, offers a potential unifying framework for the unexplained discrepancies in current findings. Given that cortical feedback, whether local or long-range, is intrinsically non-linear, while cortical feedforward is generally linear relative to the stimulus, the present results suggest decreased non-linearity alongside an increased veridical component of the cortical response in autism.
Collapse
Affiliation(s)
- Sheraz Khan
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Konstantinos Michmizos
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Mark Tommerdahl
- 3 Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Santosh Ganesan
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Manfred G Kitzbichler
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Manuel Zetino
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Keri-Lee A Garel
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Martha R Herbert
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| | - Matti S Hämäläinen
- 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA 4 Department of Radiology, MGH, Harvard Medical School, Boston, MA, USA 5 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tal Kenet
- 1 Department of Neurology, MGH, Harvard Medical School, Boston, MA, USA 2 A.A. Martinos Centre for Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA
| |
Collapse
|
72
|
Al-Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry GJ. The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex 2015; 25:631-45. [PMID: 24047602 PMCID: PMC4318531 DOI: 10.1093/cercor/bht254] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GABAergic interneurons are crucial to controlling the excitability and responsiveness of cortical circuitry. Their developmental origin may differ between rodents and human. We have demonstrated the expression of 12 GABAergic interneuron-associated genes in samples from human neocortex by quantitative rtPCR from 8 to 12 postconceptional weeks (PCW) and shown a significant anterior to posterior expression gradient, confirmed by in situ hybridization or immunohistochemistry for GAD1 and 2, DLX1, 2, and 5, ASCL1, OLIG2, and CALB2. Following cortical plate (CP) formation from 8 to 9 PCW, a proportion of cells were strongly stained for all these markers in the CP and presubplate. ASCL1 and DLX2 maintained high expression in the proliferative zones and showed extensive immunofluorescent double-labeling with the cell division marker Ki-67. CALB2-positive cells increased steadily in the SVZ/VZ from 10 PCW but were not double-labeled with Ki-67. Expression of GABAergic genes was generally higher in the dorsal pallium than in the ganglionic eminences, with lower expression in the intervening ventral pallium. It is widely accepted that the cortical proliferative zones may generate CALB2-positive interneurons from mid-gestation; we now show that the anterior neocortical proliferative layers especially may be a rich source of interneurons in the early neocortex.
Collapse
Affiliation(s)
- Nahidh Al-Jaberi
- Institute of Neuroscience Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Subrot Sarma
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Nadhim Bayatti
- Institute of Neuroscience Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK Current address: Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | |
Collapse
|
73
|
Magnetic Resonance Spectroscopy Studies of Glutamate and GABA in Autism: Implications for Excitation-Inhibition Imbalance Theory. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-014-0032-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
74
|
Contribution of Oxidative Stress to the Pathophysiology of Autism Spectrum Disorders: Impact of Genetic and Environmental Factors. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-1-4939-0440-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
75
|
Wesseling H, Guest PC, Lee CM, Wong EH, Rahmoune H, Bahn S. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders. Mol Autism 2014; 5:38. [PMID: 25061506 PMCID: PMC4109791 DOI: 10.1186/2040-2392-5-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo−/−) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo−/− mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo−/− mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MSE profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. Conclusions Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Chi-Ming Lee
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Erik Hf Wong
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK ; Department of Neuroscience, Erasmus Medical Center, Rotterdam, CA, 3000, The Netherlands
| |
Collapse
|
76
|
Chen CH, Huang CC, Cheng MC, Chiu YN, Tsai WC, Wu YY, Liu SK, Gau SSF. Genetic analysis of GABRB3 as a candidate gene of autism spectrum disorders. Mol Autism 2014; 5:36. [PMID: 24999380 PMCID: PMC4082499 DOI: 10.1186/2040-2392-5-36] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/11/2014] [Indexed: 02/02/2023] Open
Abstract
Background GABRB3 is a position candidate gene at chromosome 15q12 that has been implicated in the neurobiology of autism spectrum disorders (ASD). The aim of this study was to examine the genetic association of GABRB3 with ASD. Methods The sample consisted of 356 patients with clinical diagnosis of ASD according to the DSM-IV diagnostic criteria and confirmed by the Autism Diagnostic Interview-Revised and 386 unrelated controls. We searched for mutations at all the exonic regions and 1.6 Kb of the 5′ region of GABRB3 in the genomic DNA of all the participants using the Sanger sequencing. We implemented a case-control association analysis of variants detected in this sample, and conducted a reporter gene assay to assess the functional impact of variants at the 5′ regulatory region. Results We detected six known common SNPs; however, they were not associated with ASD. Besides, a total of 22 rare variants (12 at 5′ regulatory, 4 at intronic, and 6 at exonic regions) were detected in 18 patients and 6 controls. The frequency of rare variants was significantly higher in the patient group than in the control group (18/356 versus 6/386, odds ratio = 3.37, P = 0.007). All the 12 rare variants at the 5′ regulatory region were only detected in 7 patients, but not in any of the controls (7/356 versus 0/386, Fisher’s exact test, P = 0.006). Two patients carried multiple rare variants. Family studies showed that most of these rare variants were transmitted from their parents. Reporter gene assays revealed that four rare variants at the 5′ regulatory region and 1 at exon 1a untranslated region had elevated reporter gene activities compared to two wild type alleles. Conclusions Our data suggest rare variants of GABRB3 might be associated with ASD, and increased GABRB3 expression may contribute to the pathogenesis of ASD in some patients. Trial registration Clinical trial registration Identifier: NCT00494754
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan ; Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan ; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chia-Chun Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Veterans Hospital, Hualien, Taiwan
| | - Yen-Nan Chiu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Wen-Che Tsai
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Yu Wu
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Shih-Kai Liu
- Department of Child and Adolescent Psychiatry, Taoyaun Psychiatric Center, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, 7, Chung-Shan South Road, Taipei 10002, Taiwan ; Graduate Institute of Brain and Mind Sciences, and Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
77
|
Hadley D, Wu ZL, Kao C, Kini A, Mohamed-Hadley A, Thomas K, Vazquez L, Qiu H, Mentch F, Pellegrino R, Kim C, Connolly J, Glessner J, Hakonarson H. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nat Commun 2014; 5:4074. [PMID: 24927284 PMCID: PMC4059929 DOI: 10.1038/ncomms5074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/07/2014] [Indexed: 01/19/2023] Open
Abstract
Although multiple reports show that defective genetic networks underlie the aetiology
of autism, few have translated into pharmacotherapeutic opportunities. Since drugs
compete with endogenous small molecules for protein binding, many successful drugs
target large gene families with multiple drug binding sites. Here we search for
defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs
relative to 12,544 neurologically normal controls, to find potentially druggable
genetic targets. We find significant enrichment of structural defects
(P≤2.40E−09, 1.8-fold enrichment) in the metabotropic
glutamate receptor (GRM) GFIN, previously observed to impact attention deficit
hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is
significantly enriched (P≤3.83E−23, 2.5-fold
enrichment), as is the calmodulin 1
(CALM1) gene interaction
network (P≤4.16E−04, 14.4-fold enrichment), which
regulates voltage-independent calcium-activated action potentials at the neuronal
synapse. We find that multiple defective gene family interactions underlie autism,
presenting new translational opportunities to explore for therapeutic
interventions. The autism spectrum disorders are complex genetic traits characterized
by various neurodevelopmental deficits. Here, the authors analyse defective gene family
interaction networks in autism cases and healthy controls and identify potential gene
family interactions that may contribute to autism aetiology.
Collapse
Affiliation(s)
- Dexter Hadley
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Zhi-Liang Wu
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Akshata Kini
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Alisha Mohamed-Hadley
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kelly Thomas
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Lyam Vazquez
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Haijun Qiu
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Frank Mentch
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Renata Pellegrino
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Cecilia Kim
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - John Connolly
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | - Joseph Glessner
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Hakon Hakonarson
- 1] The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA [2] Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
78
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
79
|
Vorstman JAS, Spooren W, Persico AM, Collier DA, Aigner S, Jagasia R, Glennon JC, Buitelaar JK. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology (Berl) 2014; 231:1063-78. [PMID: 24292384 DOI: 10.1007/s00213-013-3334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE The main reason for the current lack of effective treatments for the core symptoms of autism is our limited understanding of the biological mechanisms underlying this heterogeneous group of disorders. A primary value of genetic research is enhancing our insight into the biology of autism through the study of identified autism risk genes. OBJECTIVES In the current review we discuss (1) the genes and loci that are associated with autism, (2) how these provide us with essential cues as to what neurobiological mechanisms may be involved, and (3) how these mechanisms may be used as targets for novel treatments. Next, we provide an overview of currently ongoing clinical trials registered at clinicaltrials.gov with a variety of compounds. Finally, we review current approaches used to translate knowledge derived from gene discovery into novel pharmaceutical compounds and discuss their pitfalls and problems. CONCLUSIONS An increasing number of genetic variants associated with autism have been identified. This will generate new ideas about the biological mechanisms involved in autism, which in turn may provide new leads for the development of novel pharmaceutical compounds. To optimize this pipeline of drug discovery, large-scale international collaborations are needed for gene discovery, functional validation of risk genes, and improvement of clinical outcome measures and clinical trial methodology in autism.
Collapse
Affiliation(s)
- Jacob A S Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, A001.468, University Medical Center Utrecht, Heidelberglaan 100, 3485 CX, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Background Autism spectrum conditions (ASC) are a group of conditions characterized by difficulties in communication and social interaction, alongside unusually narrow interests and repetitive, stereotyped behaviour. Genetic association and expression studies have suggested an important role for the GABAergic circuits in ASC. Syntaxin 1A (STX1A) encodes a protein involved in regulation of serotonergic and GABAergic systems and its expression is altered in autism. Methods In this study, the association between three single nucleotide polymorphisms (SNPs) (rs4717806, rs941298 and rs6951030) in STX1A gene and Asperger syndrome (AS) were tested in 650 controls and 479 individuals with AS, all of Caucasian ancestry. Results rs4717806 (P = 0.00334) and rs941298 (P = 0.01741) showed a significant association with AS, replicating previous results. Both SNPs putatively alter transcription factor binding sites both directly and through other variants in high linkage disequilibrium. Conclusions The current study confirms the role of STX1A as an important candidate gene in ASC. The exact molecular mechanisms through which STX1A contributes to the etiology remain to be elucidated.
Collapse
|
81
|
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014; 4:e360. [PMID: 24518398 PMCID: PMC3944636 DOI: 10.1038/tp.2014.4] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/15/2013] [Accepted: 01/06/2014] [Indexed: 11/21/2022] Open
Abstract
Although the involvement of genetic abnormalities in autism spectrum disorders (ASD) is well-accepted, recent studies point to an equal contribution by environmental factors, particularly environmental toxicants. However, these toxicant-related studies in ASD have not been systematically reviewed to date. Therefore, we compiled publications investigating potential associations between environmental toxicants and ASD and arranged these publications into the following three categories: (a) studies examining estimated toxicant exposures in the environment during the preconceptional, gestational and early childhood periods; (b) studies investigating biomarkers of toxicants; and (c) studies examining potential genetic susceptibilities to toxicants. A literature search of nine electronic scientific databases through November 2013 was performed. In the first category examining ASD risk and estimated toxicant exposures in the environment, the majority of studies (34/37; 92%) reported an association. Most of these studies were retrospective case-control, ecological or prospective cohort studies, although a few had weaker study designs (for example, case reports or series). Toxicants implicated in ASD included pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, toxic waste sites, air pollutants and heavy metals, with the strongest evidence found for air pollutants and pesticides. Gestational exposure to methylmercury (through fish exposure, one study) and childhood exposure to pollutants in water supplies (two studies) were not found to be associated with ASD risk. In the second category of studies investigating biomarkers of toxicants and ASD, a large number was dedicated to examining heavy metals. Such studies demonstrated mixed findings, with only 19 of 40 (47%) case-control studies reporting higher concentrations of heavy metals in blood, urine, hair, brain or teeth of children with ASD compared with controls. Other biomarker studies reported that solvent, phthalate and pesticide levels were associated with ASD, whereas PCB studies were mixed. Seven studies reported a relationship between autism severity and heavy metal biomarkers, suggesting evidence of a dose-effect relationship. Overall, the evidence linking biomarkers of toxicants with ASD (the second category) was weaker compared with the evidence associating estimated exposures to toxicants in the environment and ASD risk (the first category) because many of the biomarker studies contained small sample sizes and the relationships between biomarkers and ASD were inconsistent across studies. Regarding the third category of studies investigating potential genetic susceptibilities to toxicants, 10 unique studies examined polymorphisms in genes associated with increased susceptibilities to toxicants, with 8 studies reporting that such polymorphisms were more common in ASD individuals (or their mothers, 1 study) compared with controls (one study examined multiple polymorphisms). Genes implicated in these studies included paraoxonase (PON1, three of five studies), glutathione S-transferase (GSTM1 and GSTP1, three of four studies), δ-aminolevulinic acid dehydratase (one study), SLC11A3 (one study) and the metal regulatory transcription factor 1 (one of two studies). Notably, many of the reviewed studies had significant limitations, including lack of replication, limited sample sizes, retrospective design, recall and publication biases, inadequate matching of cases and controls, and the use of nonstandard tools to diagnose ASD. The findings of this review suggest that the etiology of ASD may involve, at least in a subset of children, complex interactions between genetic factors and certain environmental toxicants that may act synergistically or in parallel during critical periods of neurodevelopment, in a manner that increases the likelihood of developing ASD. Because of the limitations of many of the reviewed studies, additional high-quality epidemiological studies concerning environmental toxicants and ASD are warranted to confirm and clarify many of these findings.
Collapse
Affiliation(s)
- D A Rossignol
- Family Medicine, Rossignol Medical Center, Irvine, CA, USA
| | - S J Genuis
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - R E Frye
- Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
82
|
Smith-Hicks CL. GABAergic dysfunction in pediatric neuro-developmental disorders. Front Cell Neurosci 2013; 7:269. [PMID: 24391546 PMCID: PMC3867664 DOI: 10.3389/fncel.2013.00269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
The GABAergic system is central to the development and functional maturation of the nervous system. Emerging evidence support the role of GABAergic dysfunction in neuro-developmental disorders. This review presents the molecules and mechanisms that underlie GABA system dysfunction in several neuro-developmental disorders presenting in childhood. The impact on synaptic plasticity, neuronal circuit function and behavior, followed by targeted treatment strategies are discussed.
Collapse
Affiliation(s)
- Constance L Smith-Hicks
- Neurology, Kennedy Krieger Institute Baltimore, MD, USA ; Neurology, Johns Hopkins School of Medicine Baltimore, MD, USA
| |
Collapse
|
83
|
Warrier V, Baron-Cohen S, Chakrabarti B. Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism 2013; 4:48. [PMID: 24321478 PMCID: PMC3903107 DOI: 10.1186/2040-2392-4-48] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Autism spectrum conditions (ASC) are associated with deficits in social interaction and communication, alongside repetitive, restricted, and stereotyped behavior. ASC is highly heritable. The gamma-aminobutyric acid (GABA)-ergic system has been associated consistently with atypicalities in autism, in both genetic association and expression studies. A key component of the GABA-ergic system is encoded by the GABRB3 gene, which has been previously implicated both in ASC and in individual differences in empathy. METHODS In this study, 45 genotyped single nucleotide polymorphisms (SNPs) within GABRB3 were tested for association with Asperger syndrome (AS), and related quantitative traits measured through the following tests: the Empathy Quotient (EQ), the Autism Spectrum Quotient (AQ), the Systemizing Quotient-Revised (SQ-R), the Embedded Figures Test (EFT), the Reading the Mind in the Eyes Test (RMET), and the Mental Rotation Test (MRT). Two-loci, three-loci, four-loci haplotype analyses, and one seven-loci haplotype analysis were also performed in the AS case-control sample. RESULTS Three SNPs (rs7180158, rs7165604, rs12593579) were significantly associated with AS, and two SNPs (rs9806546, rs11636966) were significantly associated with EQ. Two SNP-SNP pairs, rs12438141-rs1035751 and rs12438141-rs7179514, showed significant association with variation in the EFT scores. One SNP-SNP pair, rs7174437-rs1863455, was significantly associated with variation in the MRT scores. Additionally, a few haplotypes, including a 19 kb genomic region that formed a linkage disequilibrium (LD) block in our sample and contained several nominally significant SNPs, were found to be significantly associated with AS. CONCLUSION The current study confirms the role of GABRB3 as an important candidate gene in both ASC and normative variation in related endophenotypes.
Collapse
Affiliation(s)
- Varun Warrier
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Cambridgeshire, UK.
| | | | | |
Collapse
|
84
|
Sesarini CV, Costa L, Naymark M, Grañana N, Cajal AR, García Coto M, Pallia RC, Argibay PF. Evidence for interaction between markers in GABA(A) receptor subunit genes in an Argentinean autism spectrum disorder population. Autism Res 2013; 7:162-6. [PMID: 24249596 DOI: 10.1002/aur.1353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 10/15/2013] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) can be conceptualized as a genetic dysfunction that disrupts development and function of brain circuits mediating social cognition and language. At least some forms of ASD may be associated with high level of excitation in neural circuits, and gamma-aminobutyric acid (GABA) has been implicated in its etiology. Single-nucleotide polymorphisms (SNP) located within the GABA receptor (GABAR) subunit genes GABRA1, GABRG2, GABRB3, and GABRD were screened. A hundred and thirty-six Argentinean ASD patients and 150 controls were studied, and the contribution of the SNPs in the etiology of ASD was evaluated independently and/or through gene-gene interaction using multifactor dimensionality reduction (MDR) method. From the 18 SNP studied, 11 were not present in our Argentinean population (patients and controls) and 1 SNP had minor allele frequency < 0.1%. For the remaining six SNPs, none provided statistical significant association with ASD when considering allelic or genotypic frequencies. Non-significant association with ASD was found for the haplotype analysis. MDR identified evidence for synergy between markers in GABRB3 (chromosome 15) and GABRD (chromosome 1), suggesting potential gene-gene interaction across chromosomes associated with increased risk for autism (testing balanced accuracy: 0.6081 and cross-validation consistency: 10/10, P < 0.001). Considering our Argentinean ASD sample, it can be inferred that GABRB3 would be involved in the etiology of autism through interaction with GABRD. These results support the hypothesis that GABAR subunit genes are involved in autism, most likely via complex gene-gene interactions.
Collapse
Affiliation(s)
- Carla V Sesarini
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), CABA, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Copy number variation findings among 50 children and adolescents with autism spectrum disorder. Psychiatr Genet 2013; 23:61-9. [PMID: 23277134 DOI: 10.1097/ypg.0b013e32835d718b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopment disorders with a complex genetic aetiology. The aim of this study was to identify copy number variations (CNVs) with a clinical significance for ASD. MATERIALS AND METHODS Array-based comparative genomic hybridization was applied to detect CNVs in a clinically well-characterized population of 50 children and adolescents with ASD. RESULTS Nine CNVs with predicted clinical significance were identified among eight individuals (detection rate 16%). Three of the CNVs are recurrently associated with ASDs (15q11.2q13.1) or have been identified in ASD populations [3p14.2 and t(8;12)(p23.1;p13.31)]. The remaining regions (15q11.2, 10q21.1, Xp22.2, 16p13.3 and 22q13.1) have not been reported previously as candidate genes for ASD. CONCLUSION This study identified five novel CNVs among the individuals. The causal relationship between identified CNVs and the ASD phenotype is not fully established. However, the genes involved are associated with ASD and/or other neuropsychiatric disorders, or implicated in synaptic and neuronal activity, thus suggesting clinical significance. Further identification of ASD-associated CNVs is required, together with a broad clinical characterization of affected individuals to identify genotype-phenotype correlations.
Collapse
|
86
|
Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 2013; 6:19. [PMID: 23935565 PMCID: PMC3733014 DOI: 10.3389/fnmol.2013.00019] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/16/2013] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment.
Collapse
Affiliation(s)
- Hyejung Won
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Won Mah
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| |
Collapse
|
87
|
Kang JQ, Barnes G. A common susceptibility factor of both autism and epilepsy: functional deficiency of GABA A receptors. J Autism Dev Disord 2013; 43:68-79. [PMID: 22555366 DOI: 10.1007/s10803-012-1543-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism and epilepsy are common childhood neurological disorders with a great heterogeneity of clinical phenotypes as well as risk factors. There is a high co-morbidity of autism and epilepsy. The neuropathology of autism and epilepsy has similar histology implicating the processes of neurogenesis, neural migration, programmed cell death, and neurite outgrowth. Genetic advances have identified multiple molecules that participate in neural development, brain network connectivity, and synaptic function which are involved in the pathogenesis of autism and epilepsy. Mutations in GABA(A) receptor subunit have been frequently associated with epilepsy, autism, and other neuropsychiatric disorders. In this paper, we address the hypothesis that functional deficiency of GABAergic signaling is a potential common molecular mechanism underpinning the co-morbidity of autism and epilepsy.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, 465 21st Ave, Nashville, TN 37232-8552, USA.
| | | |
Collapse
|
88
|
Zafeiriou DI, Ververi A, Dafoulis V, Kalyva E, Vargiami E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:327-366. [PMID: 23650212 DOI: 10.1002/ajmg.b.32152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD.
Collapse
|
89
|
Foss-Feig JH, Tadin D, Schauder KB, Cascio CJ. A substantial and unexpected enhancement of motion perception in autism. J Neurosci 2013; 33:8243-9. [PMID: 23658163 PMCID: PMC3726259 DOI: 10.1523/jneurosci.1608-12.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 03/23/2013] [Accepted: 04/01/2013] [Indexed: 01/12/2023] Open
Abstract
Atypical perceptual processing in autism spectrum disorder (ASD) is well documented. In addition, growing evidence supports the hypothesis that an excitatory/inhibitory neurochemical imbalance might underlie ASD. Here we investigated putative behavioral consequences of the excitatory/inhibitory imbalance in the context of visual motion perception. As stimulus size increases, typical observers exhibit marked impairments in perceiving motion of high-contrast stimuli. This result, termed "spatial suppression," is believed to reflect inhibitory motion-processing mechanisms. Motion processing is also affected by gain control, an inhibitory mechanism that underlies saturation of neural responses at high contrast. Motivated by these behavioral correlates of inhibitory function, we investigated motion perception in human children with ASD (n = 20) and typical development (n = 26). At high contrast, both groups exhibited similar impairments in motion perception with increasing stimulus size, revealing no apparent differences in spatial suppression. However, there was a substantial enhancement of motion perception in ASD: children with ASD exhibited a consistent twofold improvement in perceiving motion. Hypothesizing that this enhancement might indicate abnormal weakening of response gain control, we repeated our measurements at low contrast, where the effects of gain control should be negligible. At low contrast, we indeed found no group differences in motion discrimination thresholds. These low-contrast results, however, revealed weaker spatial suppression in ASD, suggesting the possibility that gain control abnormalities in ASD might have masked spatial suppression differences at high contrast. Overall, we report a pattern of motion perception abnormalities in ASD that includes substantial enhancements at high contrast and is consistent with an underlying excitatory/inhibitory imbalance.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychology and Human Development, and Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | | | |
Collapse
|
90
|
Mendez MA, Horder J, Myers J, Coghlan S, Stokes P, Erritzoe D, Howes O, Lingford-Hughes A, Murphy D, Nutt D. The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology 2013; 68:195-201. [PMID: 22546616 PMCID: PMC4489617 DOI: 10.1016/j.neuropharm.2012.04.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
GABA (gamma-amino-butyric-acid) is the primary inhibitory neurotransmitter in the human brain. It has been proposed that the symptoms of autism spectrum disorders (ASDs) are the result of deficient GABA neurotransmission, possibly including reduced expression of GABAA receptors. However, this hypothesis has not been directly tested in living adults with ASD. In this preliminary investigation, we used Positron Emission Tomography (PET) with the benzodiazepine receptor PET ligand [(11)C]Ro15-4513 to measure α1 and α5 subtypes of the GABAA receptor levels in the brain of three adult males with well-characterized high-functioning ASD compared with three healthy matched volunteers. We found significantly lower [(11)C]Ro15-4513 binding throughout the brain of participants with ASD (p < 0.0001) compared with controls. Planned region of interest analyses also revealed significant reductions in two limbic brain regions, namely the amygdala and nucleus accumbens bilaterally. Further analysis suggested that these results were driven by lower levels of the GABAA α5 subtype. These results provide initial evidence of a GABAA α5 deficit in ASD and support further investigations of the GABA system in this disorder. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Maria Andreina Mendez
- King’s College London, Department of Forensic and Neurodevelopmental, Sciences, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, United Kingdom
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, UK W12 0NN
| | - Jamie Horder
- King’s College London, Department of Forensic and Neurodevelopmental, Sciences, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Jim Myers
- Psychopharmacology Unit, School of Social and Community Medicine, University of Bristol, BF1, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Suzanne Coghlan
- King’s College London, Department of Forensic and Neurodevelopmental, Sciences, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Paul Stokes
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, UK W12 0NN
| | - David Erritzoe
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, UK W12 0NN
| | - Oliver Howes
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Du Cane Road, London, UK W12 0NN
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, UK W12 0NN
| | - Declan Murphy
- King’s College London, Department of Forensic and Neurodevelopmental, Sciences, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, United Kingdom
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, UK W12 0NN
| |
Collapse
|
91
|
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that results in behavioral, social and communication impairments. ASD has a substantial genetic component, with 88-95% trait concordance among monozygotic twins. Efforts to elucidate the causes of ASD have uncovered hundreds of susceptibility loci and candidate genes. However, owing to its polygenic nature and clinical heterogeneity, only a few of these markers represent clear targets for further analyses. In the present study, we used the linkage structure associated with published genetic markers of ASD to simultaneously improve candidate gene detection while providing a means of prioritizing markers of common genetic variation in ASD. We first mined the literature for linkage and association studies of single-nucleotide polymorphisms, copy-number variations and multi-allelic markers in Autism Genetic Resource Exchange (AGRE) families. From markers that reached genome-wide significance, we calculated male-specific genetic distances, in light of the observed strong male bias in ASD. Four of 67 autism-implicated regions, 3p26.1, 3p26.3, 3q25-27 and 5p15, were enriched with differentially expressed genes in blood and brain from individuals with ASD. Of 30 genes differentially expressed across multiple expression data sets, 21 were within 10 cM of an autism-implicated locus. Among them, CNTN4, CADPS2, SUMF1, SLC9A9, NTRK3 have been previously implicated in autism, whereas others have been implicated in neurological disorders comorbid with ASD. This work leverages the rich multimodal genomic information collected on AGRE families to present an efficient integrative strategy for prioritizing autism candidates and improving our understanding of the relationships among the vast collection of past genetic studies.
Collapse
|
92
|
Zeidán-Chuliá F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BHN, Noda M, Moreira JCF. Exploring the Multifactorial Nature of Autism Through Computational Systems Biology: Calcium and the Rho GTPase RAC1 Under the Spotlight. Neuromolecular Med 2013; 15:364-83. [DOI: 10.1007/s12017-013-8224-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/16/2013] [Indexed: 01/08/2023]
|
93
|
Shah CR, Forsberg CG, Kang JQ, Veenstra-VanderWeele J. Letting a typical mouse judge whether mouse social interactions are atypical. Autism Res 2013; 6:212-20. [PMID: 23436806 DOI: 10.1002/aur.1280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/21/2013] [Indexed: 01/08/2023]
Abstract
Diagnosis of an autism spectrum disorder (ASD) requires a qualitative assessment of social aptitude: one person judging whether another person interacts in a "typical" way. We hypothesized that mice could be used to make a similar judgment if they prefer "typical" over "atypical" social interactions with mouse models relevant to ASD. We used wild-type C57BL/6 (B6) mice as "judges" and evaluated their preference for a chamber containing a "typical" (B6 or 129S6) or an "atypical" mouse. For our atypical mouse stimuli, we chose two inbred strains with well-documented social phenotypes (BTBR and BALB/c), as well a mutant line with abnormal social behavior and seizures (Gabrb3 +/-). Overall, we observed a stimulus by time interaction (P < 0.0001), with B6 mice preferring the typical mouse chamber during the last 10 min of the 30-min test. For two of the individual stimulus pairings, we observed a similar chamber by time interaction (BALB/c vs. 129S6, P = 0.0007; Gabrb3 +/- vs. 129S6, P = 0.033). For the third stimulus pairing, we found a trend for preference of the typical mouse across time (BTBR vs. B6, P = 0.051). We repeated the experiments using 129S6 mice as judges and found a significant overall interaction (P = 0.034), but only one stimulus pairing reached significance on its own (BALB/c vs. 129S6, P = 0.0021). These data suggest that a characteristic pattern of exploration in B6 mice can distinguish some socially atypical animals from controls.
Collapse
Affiliation(s)
- Charisma R Shah
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
94
|
Rojas DC, Singel D, Steinmetz S, Hepburn S, Brown MS. Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage 2013; 86:28-34. [PMID: 23370056 DOI: 10.1016/j.neuroimage.2013.01.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/29/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022] Open
Abstract
Imbalanced levels of excitation and inhibition (E/I) have been proposed to account for various behavioral and electrophysiological phenotypes in autism. Although proton magnetic resonance spectroscopy ((1)H-MRS) studies have been published on various metabolite levels in autism, including glutamate, the major excitatory neurotransmitter, few (1)H-MRS studies have yet been conducted the major inhibitory neurotransmitter GABA. Seventeen individuals with autism spectrum disorders (ASD) participated in a single-voxel, point resolved spectroscopy (PRESS) study conducted on a 3T magnet. Data were also acquired on 14 unaffected siblings of children with autism, and 17 age- and gender-matched healthy control subjects. GABA concentration was measured along with Creatine (Cr) in a single voxel aligned with the auditory cortex in the perisylvian region of the left hemisphere. The ratio of GABA to Cr was significantly lower in the ASD group than the control subjects. Siblings also exhibited lower GABA/Cr ratios compared to controls. Cr concentration did not differ between groups. The volumes of gray matter, white matter and CSF did not differ between groups in the whole brain or within the spectroscopy voxel. Reduced auditory GABA concentration in ASD is consistent with one previous MRS study of GABA concentration in the frontal lobe in autism, suggesting that multiple neocortical areas may be involved. Lower GABA levels are consistent with theories of ASD as a disorder involving impaired inhibitory neurotransmission and E/I imbalance. The reduction in unaffected siblings suggests that it may be a heritable biomarker, or endophenotype, of autism.
Collapse
Affiliation(s)
- Donald C Rojas
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA; Colorado Translational Research Imaging Center, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA.
| | - Debra Singel
- Department of Radiology, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA; Colorado Translational Research Imaging Center, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA
| | - Sarah Steinmetz
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA
| | - Susan Hepburn
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA; JFK Partners, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA
| | - Mark S Brown
- Department of Radiology, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA; Colorado Translational Research Imaging Center, University of Colorado Denver Anschutz Medical Campus, 13001 E. 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
95
|
Said CP, Egan RD, Minshew NJ, Behrmann M, Heeger DJ. Normal binocular rivalry in autism: implications for the excitation/inhibition imbalance hypothesis. Vision Res 2013; 77:59-66. [PMID: 23200868 PMCID: PMC3538943 DOI: 10.1016/j.visres.2012.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022]
Abstract
Autism is characterized by disruption in multiple dimensions of perception, emotion, language and social cognition. Many hypotheses for the underlying neurophysiological basis have been proposed. Among these is the excitation/inhibition (E/I) imbalance hypothesis, which states that levels of cortical excitation and inhibition are disrupted in autism. We tested this theory in the visual system, because vision is one of the better understood systems in neuroscience, and because the E/I imbalance theory has been proposed to explain hypersensitivity to sensory stimuli in autism. We conducted two experiments on binocular rivalry, a well-studied psychophysical phenomenon that depends critically on excitation and inhibition levels in cortex. Using a computational model, we made specific predictions about how imbalances in excitation and inhibition levels would affect perception during two aspects of binocular rivalry: mixed perception (Experiment 1) and traveling waves (Experiment 2). We found no significant differences in either of these phenomena between high-functioning adults with autism and controls, and no evidence for a relationship between these measurements and the severity of autism. These results do not conclusively rule out an excitation/inhibition imbalance in the visual system of those with autism, but they suggest that such an imbalance, if it exists, is likely to be small in magnitude.
Collapse
|
96
|
Maloney SE, Rieger MA, Dougherty JD. Identifying essential cell types and circuits in autism spectrum disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:61-96. [PMID: 24290383 DOI: 10.1016/b978-0-12-418700-9.00003-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is highly genetic in its etiology, with potentially hundreds of genes contributing to risk. Despite this heterogeneity, these disparate genetic lesions may result in the disruption of a limited number of key cell types or circuits-information which could be leveraged for the design of therapeutic interventions. While hypotheses for cellular disruptions can be identified by postmortem anatomical analysis and expression studies of ASD risk genes, testing these hypotheses requires the use of animal models. In this review, we explore the existing evidence supporting the contribution of different cell types to ASD, specifically focusing on rodent studies disrupting serotonergic, GABAergic, cerebellar, and striatal cell types, with particular attention to studies of the sufficiency of specific cellular disruptions to generate ASD-related behavioral abnormalities. This evidence suggests multiple cellular routes can create features of the disorder, though it is currently unclear if these cell types converge on a final common circuit. We hope that in the future, systematic studies of cellular sufficiency and genetic interaction will help to classify patients into groups by type of cellular disruptions which suggest tractable therapeutic targets.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
97
|
Neubert G, von Au K, Drossel K, Tzschach A, Horn D, Nickel R, Kaindl AM. Angelman syndrome and severe infections in a patient with de novo 15q11.2-q13.1 deletion and maternally inherited 2q21.3 microdeletion. Gene 2012; 512:453-5. [PMID: 23124039 DOI: 10.1016/j.gene.2012.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11-q13 (about 70-90%), but can also be caused by paternal uniparental disomy of chromosome 15q11-q13 (3-7%), an imprinting defect (2-4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5Mb-deletion of chromosome 15q11.2-q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~364kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2-q13.1 deletion contains genes critical for Prader-Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.
Collapse
Affiliation(s)
- Gerda Neubert
- Department of Pediatric Neurology, Charité, Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
Autism spectrum disorder in a girl with a de novo x;19 balanced translocation. Case Rep Genet 2012; 2012:578018. [PMID: 23074688 PMCID: PMC3447256 DOI: 10.1155/2012/578018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/05/2012] [Indexed: 11/17/2022] Open
Abstract
Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.
Collapse
|
99
|
Jiao Y, Chen R, Ke X, Cheng L, Chu K, Lu Z, Herskovits EH. Single nucleotide polymorphisms predict symptom severity of autism spectrum disorder. J Autism Dev Disord 2012; 42:971-83. [PMID: 21786105 DOI: 10.1007/s10803-011-1327-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs) can predict symptom severity of autism spectrum disorder (ASD). We divided 118 ASD children into a mild/moderate autism group (n = 65) and a severe autism group (n = 53), based on the Childhood Autism Rating Scale (CARS). For each child, we obtained 29 SNPs of 9 ASD-related genes. To generate predictive models, we employed three machine-learning techniques: decision stumps (DSs), alternating decision trees (ADTrees), and FlexTrees. DS and FlexTree generated modestly better classifiers, with accuracy = 67%, sensitivity = 0.88 and specificity = 0.42. The SNP rs878960 in GABRB3 was selected by all models, and was related associated with CARS assessment. Our results suggest that SNPs have the potential to offer accurate classification of ASD symptom severity.
Collapse
Affiliation(s)
- Yun Jiao
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
100
|
Schwartzer JJ, Koenig CM, Berman RF. Using mouse models of autism spectrum disorders to study the neurotoxicology of gene-environment interactions. Neurotoxicol Teratol 2012; 36:17-35. [PMID: 23010509 DOI: 10.1016/j.ntt.2012.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
To better study the role of genetics in autism, mouse models have been developed which mimic the genetics of specific autism spectrum and related disorders. These models have facilitated research on the role genetic susceptibility factors in the pathogenesis of autism in the absence of environmental factors. Inbred mouse strains have been similarly studied to assess the role of environmental agents on neurodevelopment, typically without the complications of genetic heterogeneity of the human population. What has not been as actively pursued, however, is the methodical study of the interaction between these factors (e.g., gene and environmental interactions in neurodevelopment). This review suggests that a genetic predisposition paired with exposure to environmental toxicants plays an important role in the etiology of neurodevelopmental disorders including autism, and may contribute to the largely unexplained rise in the number of children diagnosed with autism worldwide. Specifically, descriptions of the major mouse models of autism and toxic mechanisms of prevalent environmental chemicals are provided followed by a discussion of current and future research strategies to evaluate the role of gene and environment interactions in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Davis, CA 95618, United States.
| | | | | |
Collapse
|