51
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
52
|
Sarter M, Lustig C, Taylor SF. Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology 2010; 62:1544-53. [PMID: 21156184 DOI: 10.1016/j.neuropharm.2010.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/31/2010] [Accepted: 12/01/2010] [Indexed: 12/27/2022]
Abstract
Effective treatment of the cognitive symptoms of schizophrenia has remained an elusive goal. Despite the intense focus on treatments acting at or via cholinergic mechanisms, little remains known about the dynamic cholinergic abnormalities that contribute to the manifestation of the cognitive symptoms in patients. Evidence from basic neuroscientific and psychopharmacological investigations assists in proposing detailed cholinergic mechanisms and treatment targets for enhancement of attentional performance. Dynamic, cognitive performance-dependent abnormalities in cholinergic activity have been observed in animal models of the disorder and serve to further refine such proposals. Finally, the potential usefulness of individual groups of cholinergic drugs and important issues concerning the interactions between pro-cholinergic and antipsychotic treatments are addressed. The limited evidence available from patient studies and animal models indicates pressing research needs in order to guide the development of cholinergic treatments of the cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4032 East Hall, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
53
|
Muzzio IA, Kentros C, Kandel E. What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. J Physiol 2009; 587:2837-54. [PMID: 19525568 DOI: 10.1113/jphysiol.2009.172445] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The hippocampus is critically involved in storing explicit memory such as memory for space. A defining feature of explicit memory storage is that it requires attention both for encoding and retrieval. Whereas, a great deal is now known about the mechanisms of storage, the mechanisms whereby attention modulates the encoding and retrieval of space and other hippocampus-dependent memory representations are not known. In this review we discuss recent studies, including our own, which show on the cellular level that attention is critical for the stabilization of spatial and reward-associated odour representations. Our findings support the view that in the hippocampus attention selects the reference frame for task-relevant information. This mechanism is in part mediated by dopamine acting through D1/D5 receptors and involves an increase in neuronal synchronization in the gamma band frequency. We propose that synchronous activity leads to enhancements in synaptic strength that mediate the stabilization of hippocampal representations.
Collapse
Affiliation(s)
- Isabel A Muzzio
- Psychology Department, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19143, USA
| | | | | |
Collapse
|
54
|
Sarter M, Parikh V, Howe WM. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol 2009; 78:658-67. [PMID: 19406107 DOI: 10.1016/j.bcp.2009.04.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/14/2009] [Accepted: 04/16/2009] [Indexed: 01/04/2023]
Abstract
The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA.
| | | | | |
Collapse
|
55
|
Abstract
The construct of attention has many facets that have been examined in human and animal research and in healthy and psychiatrically disordered conditions. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) group concluded that control of attention-the processes that guide selection of task-relevant inputs-is particularly impaired in schizophrenia and could profit from further work with refined measurement tools. Thus, nominations for cognitive tasks that provide discrete measures of control of attention were sought and were then evaluated at the third CNTRICS meeting for their promise for future use in treatment development. This article describes the 5 nominated measures and their strengths and weaknesses for cognitive neuroscience work relevant to treatment development. Two paradigms, Guided Search and the Distractor Condition Sustained Attention Task, were viewed as having the greatest immediate promise for development into tools for treatment research in schizophrenia and are described in more detail by their nominators.
Collapse
Affiliation(s)
- Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 300 UCLA Medical Plaza, Room 2240, Los Angeles, CA 90095-6968,Department of Psychology, University of California, Los Angeles,To whom correspondence should be addressed; tel: 310-825-0036, fax: 310-206-3651, e-mail:
| | - Steven J. Luck
- Center for Mind and Brain, University of California, Davis,Department of Psychology, University of California, Davis
| | - Cindy Lustig
- Department of Psychology, University of Michigan
| | | |
Collapse
|
56
|
A neurocognitive animal model dissociating between acute illness and remission periods of schizophrenia. Psychopharmacology (Berl) 2009; 202:237-58. [PMID: 18618100 PMCID: PMC2719245 DOI: 10.1007/s00213-008-1216-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/26/2008] [Indexed: 12/11/2022]
Abstract
RATIONALE The development and validation of animal models of the cognitive impairments of schizophrenia have remained challenging subjects. OBJECTIVE We review evidence from a series of experiments concerning an animal model that dissociates between the disruption of attentional capacities during acute illness periods and the cognitive load-dependent impairments that characterize periods of remission. The model focuses on the long-term attentional consequences of an escalating-dosing pretreatment regimen with amphetamine (AMPH). RESULTS Acute illness periods are modeled by the administration of AMPH challenges. Such challenges result in extensive impairments in attentional performance and the "freezing" of performance-associated cortical acetylcholine (ACh) release at pretask levels. During periods of remission (in the absence of AMPH challenges), AMPH-pretreated animals' attentional performance is associated with abnormally high levels of performance-associated cortical ACh release, indicative of the elevated attentional effort required to maintain performance. Furthermore, and corresponding with clinical evidence, attentional performance during remission periods is exquisitely vulnerable to distractors, reflecting impaired top-down control and abnormalities in fronto-mesolimbic-basal forebrain circuitry. Finally, this animal model detects the moderately beneficial cognitive effects of low-dose treatment with haloperidol and clozapine that were observed in clinical studies. CONCLUSIONS The usefulness and limitations of this model for research on the neuronal mechanisms underlying the cognitive impairments in schizophrenia and for drug-finding efforts are discussed.
Collapse
|
57
|
Martinez V, Sarter M. Detection of the moderately beneficial cognitive effects of low-dose treatment with haloperidol or clozapine in an animal model of the attentional impairments of schizophrenia. Neuropsychopharmacology 2008; 33:2635-47. [PMID: 18094665 DOI: 10.1038/sj.npp.1301661] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The absence of effective cognition enhancers for the treatment of patients with schizophrenia limits the validation of animal models and behavioral tests used for drug finding and characterization. However, low doses of haloperidol and clozapine were documented to produce moderately beneficial effects in patients. Therefore, this experiment was designed to determine the attentional effects of such treatments in a repeated-amphetamine (AMPH) animal model. Animals were trained in an operant-sustained attention task and underwent a 40-day pretreatment period with saline or increasing doses (1-10 mg per kg) of AMPH. After regaining baseline performance following 10 days of saline treatment, animals were treated with haloperidol (0.025 mg per kg), clozapine (2.5 mg per kg), or vehicle for 10 days. Furthermore, the effects of AMPH challenges (1.0 mg per kg) were assessed. In AMPH-pretreated animals, the administration of AMPH challenges resulted in the disruption of attentional performance. Treatment with haloperidol and clozapine attenuated the detrimental performance effects of these challenges, with clozapine exhibiting more robust attenuation. Furthermore, clozapine, but not haloperidol, impaired the performance of control animals. In contrast, the performance of AMPH-pretreated animals remained unaffected by clozapine. As this animal model detects the moderately beneficial cognitive effects of haloperidol and clozapine, it may be useful for preclinical research designed to detect and characterize treatments for the cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Vicente Martinez
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
58
|
Parikh V, Sarter M. Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann N Y Acad Sci 2008; 1129:225-35. [PMID: 18591483 DOI: 10.1196/annals.1417.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Contrary to the classic description of acetylcholine (ACh) as a slowly acting neuromodulator that influences arousal states, results from experiments that employed enzyme-selective microelectrodes for the real-time monitoring of ACh release in the cortex of attentional task-performing rats indicate that cholinergic signals manifesting on multiple timescales (seconds, tens of seconds, and minutes) support, and are necessary for, the mediation of defined cognitive operations. Specifically, in the prefrontal cortex, second-based cholinergic signals support the detection of behaviorally significant cues. In contrast to these prefrontal cholinergic transients, performance-associated cholinergic activity that manifested at lower temporal resolution also was observed elsewhere in the cortex. Although tonic cholinergic signal levels were correlated with the amplitudes of cue-evoked cholinergic transients, and the latter with response latencies, the interrelationships and interactions between the multiple cholinergic signaling modes remains unclear. Hypotheses concerning the afferent circuitry contributing to the regulation of second- versus minute-based cholinergic signals are discussed. The discovery of cholinergic transients and their crucial role in cue detection and attentional performance form the basis for new hypotheses about the nature of cholinergic dysfunction in cognitive disorders and offer new targets for the development of treatments for the cognitive symptoms of neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1043, USA
| | | |
Collapse
|
59
|
Kim Y, Vladimirskiy BB, Senn W. Modulating the granularity of category formation by global cortical States. Front Comput Neurosci 2008; 2:1. [PMID: 18946531 PMCID: PMC2525940 DOI: 10.3389/neuro.10.001.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/15/2008] [Indexed: 11/24/2022] Open
Abstract
The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.
Collapse
Affiliation(s)
- Yihwa Kim
- Department of Physiology, University of Bern Switzerland
| | | | | |
Collapse
|
60
|
Kozak R, Martinez V, Young D, Brown H, Bruno JP, Sarter M. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats. Neuropsychopharmacology 2007; 32:2074-86. [PMID: 17299502 DOI: 10.1038/sj.npp.1301352] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impairments in attentional functions and capacities represent core aspects of the cognitive symptoms of schizophrenia. Attentional performance has been demonstrated to depend on the integrity and activity of cortical cholinergic inputs. The neurobiological, behavioral, and cognitive effects of repeated exposure to psychostimulants model important aspects of schizophrenia. In the present experiment, prefrontal acetylcholine (ACh) release was measured in attentional task-performing and non-performing rats pretreated with an escalating dosing regimen of amphetamine (AMPH) and following challenges with AMPH. In non-performing rats, pretreatment with AMPH did not affect the increases in ACh release produced by AMPH-challenges. In contrast, attentional task performance-associated increases in ACh release were attenuated in AMPH-pretreated and AMPH-challenged rats. This effect of repeated AMPH exposure on ACh release was already present before task-onset, suggesting that the loss of cognitive control that characterized these animals' performance was a result of cholinergic dysregulation. The findings indicate that the demonstration of repeated AMPH-induced dysregulation of the prefrontal cholinergic input system depends on interactions between the effects of repeated AMPH exposure and cognitive performance-associated recruitment of this neuronal system. Repeated AMPH-induced disruption of prefrontal cholinergic activity and attentional performance represents a useful model to investigate the cholinergic mechanisms contributing to the cognitive impairments of schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043, USA
| | | | | | | | | | | |
Collapse
|
61
|
Ebner K, Singewald N. Stress-induced release of substance P in the locus coeruleus modulates cortical noradrenaline release. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:73-82. [PMID: 17879086 DOI: 10.1007/s00210-007-0185-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Several lines of evidence implicate the neuropeptide substance P (SP) in the modulation of emotional behavior. Interaction between SP and noradrenergic systems has been proposed to be important in the regulation of stress, depression, and anxiety mechanisms; however, most evidence so far is based on studies in unchallenged and/or anesthetized animals. Thus, by using a dual-probe microdialysis approach in freely moving animals, the aim of the present study was to investigate whether a relevant stressor can trigger the release of SP in the locus coeruleus (LC) and whether and how this response modulates noradrenaline (NA) transmission both in the LC and in the medial prefrontal cortex (mPFC), an important LC terminal region involved in emotional processing. While confirming previous reports that neurokinin 1 receptor (NK1R) antagonists activate cortical noradrenergic transmission under resting conditions, we present evidence that this interaction is opposite during stress challenge. Our results show that exposure to forced swimming considerably enhanced the release of SP and NA in the LC. Administration of a selective NK1R antagonist into the LC potentiated this NA response within the LC but abolished the stress-induced increase in NA release within the mPFC. These findings demonstrate stress-induced increase in endogenous extracellular SP levels within the LC exerting a facilitatory effect on the noradrenergic pathway to the mPFC. The attenuation of stress-induced hyperactivation of this pathway by NK1R antagonists, presumably via enhancing NA and autoinhibition in the LC, may contribute to the therapeutic efficacy of these drugs known to ameliorate symptoms of stress-related disorders.
Collapse
Affiliation(s)
- Karl Ebner
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
62
|
Briand LA, Gritton H, Howe WM, Young DA, Sarter M. Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol 2007; 83:69-91. [PMID: 17681661 PMCID: PMC2080765 DOI: 10.1016/j.pneurobio.2007.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/06/2007] [Accepted: 06/22/2007] [Indexed: 12/19/2022]
Abstract
Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems.
Collapse
Affiliation(s)
- Lisa A Briand
- University of Michigan, Department of Psychology and Neuroscience Program, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|