51
|
Cho HM, Sun W. Control of Mitochondrial Dynamics by Fas-induced Caspase-8 Activation in Hippocampal Neurons. Exp Neurobiol 2015; 24:219-25. [PMID: 26412971 PMCID: PMC4580749 DOI: 10.5607/en.2015.24.3.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
Cells undergo apoptosis mainly via two pathways-the mitochondrial pathway and the cytosolic pathway. It has been well documented that activation of the mitochondrial pathway promotes mitochondrial fragmentation and inhibition of mitochondrial fragmentation partly represses cell death. However, the mitochondrial events following activation of the cytosolic pathway are less understood. In this study, we treated Fas-activating antibody and found mitochondrial fragmentation without cell death in hippocampal primary neurons and HT-22 cell lines. Fas antibody treatment, in fact, promoted rapid activation of caspase-8, while executioner caspase-3 activation was not observed. Furthermore, blockage of caspase-8 efficiently prevented Fas antibody-induced mitochondrial fragmentation. These results suggest that the cytosolic pathway induced by death receptor activation promotes caspase-8-dependent mitochondrial fission.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul 02841, Korea
| |
Collapse
|
52
|
Nagappan AS, Varghese J, James JV, Jacob M. Indomethacin induces endoplasmic reticulum stress, but not apoptosis, in the rat kidney. Eur J Pharmacol 2015; 761:199-205. [DOI: 10.1016/j.ejphar.2015.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
|
53
|
Costa DS, Martino T, Magalhães FC, Justo G, Coelho MG, Barcellos JC, Moura VB, Costa PR, Sabino KC, Dias AG. Synthesis of N-methylarylnitrones derived from alkyloxybenzaldehydes and antineoplastic effect on human cancer cell lines. Bioorg Med Chem 2015; 23:2053-61. [DOI: 10.1016/j.bmc.2015.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/26/2023]
|
54
|
Humbert L, Ghozlan M, Canaff L, Tian J, Lebrun JJ. The leukemia inhibitory factor (LIF) and p21 mediate the TGFβ tumor suppressive effects in human cutaneous melanoma. BMC Cancer 2015; 15:200. [PMID: 25885043 PMCID: PMC4389797 DOI: 10.1186/s12885-015-1177-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/06/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cutaneous melanoma is the most lethal skin cancer and its incidence in developed countries has dramatically increased over the past decades. Localized tumors are easily treated by surgery, but advanced melanomas lack efficient treatment and are associated with very poor outcomes. Thus, understanding the processes underlying melanoma development and progression is critical. The Transforming Growth Factor beta (TGFβ) acts as a potent tumor suppressor in human melanoma, by inhibiting cell growth and preventing cellular migration and invasion. METHODS In this study, we aimed at elucidating the molecular mechanisms underlying TGFβ-mediated tumor suppression. Human cutaneous melanoma cell lines, derived from different patients, were used to assess for cell cycle analysis, apoptosis/caspase activity and cell migration. Techniques involved immunoblotting, immunohistochemistry, real time PCR and luciferase reporter assays. RESULTS We found the leukemia inhibitory factor (LIF) to be strongly up-regulated by TGFβ in melanoma cells, defining LIF as a novel TGFβ downstream target gene in cutaneous melanoma. Interestingly, we also showed that TGFβ-mediated LIF expression is required for TGFβ-induced cell cycle arrest and caspase-mediated apoptosis, as well as for TGFβ-mediated inhibition of cell migration. Moreover, we found that TGFβ-mediated LIF expression leads to activation of transcription of the cell cycle inhibitor p21 in a STAT3-dependent manner, and further showed that p21 is required for TGFβ/LIF-mediated cell cycle arrest and TGFβ-induced gene activation of several pro-apoptotic genes. CONCLUSIONS Together, our results define the LIF/p21 signaling cascade as a novel tumor suppressive-like pathway in melanoma, acting downstream of TGFβ to regulate cell cycle arrest and cell death, further highlight new potential therapeutic strategies for the treatment of cutaneous melanoma.
Collapse
Affiliation(s)
- Laure Humbert
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Mostafa Ghozlan
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Lucie Canaff
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Jun Tian
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
- Department of Medicine, Royal Victoria Hospital, Suite H7.66, 687 Pine Avenue West, H3A 1A1, Montreal, QC, Canada.
| |
Collapse
|
55
|
Rabinovich RA, Drost E, Manning JR, Dunbar DR, Díaz-Ramos M, Lakhdar R, Bastos R, MacNee W. Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls. Respir Res 2015; 16:1. [PMID: 25567521 PMCID: PMC4333166 DOI: 10.1186/s12931-014-0139-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD. METHODS We assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPDL) (FEV1 30 ± 3.6%pred, FFMI 15 ± 0.2 Kg.m(-2)) with patients with COPD and normal FFMI (COPDN) (FEV1 44 ± 5.8%pred, FFMI 19 ± 0.5 Kg.m(-2)) and a group of age and sex matched healthy controls (C) (FEV1 95 ± 3.9%pred, FFMI 20 ± 0.8 Kg.m(-2)) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting. RESULTS A subset of 42 genes was differentially expressed in COPDL in comparison to both COPDN and C (PFP < 0.05; -1.5 ≥ FC ≥ 1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPDL. CONCLUSIONS This study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD.
Collapse
Affiliation(s)
- Roberto A Rabinovich
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Ellen Drost
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Jonathan R Manning
- Centre for Cardiovascular Science, University of Edinburgh, Scotland, UK.
| | - Donald R Dunbar
- Centre for Cardiovascular Science, University of Edinburgh, Scotland, UK.
| | - MaCarmen Díaz-Ramos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Ramzi Lakhdar
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Ricardo Bastos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Ciber de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| | - William MacNee
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| |
Collapse
|
56
|
Role of Cdk1 in the p53-independent abrogation of the postmitotic checkpoint by human papillomavirus E6. J Virol 2014; 89:2553-62. [PMID: 25520504 DOI: 10.1128/jvi.02269-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Specific types of human papillomavirus (HPV) are strongly associated with the development of cervical carcinoma. The HPV E6 oncoprotein from HPV degrades p53 and abrogates cell cycle checkpoints. Nonetheless, functional p53 has been observed in cervical cancer. We have previously identified a p53-independent function of E6 in attenuating the postmitotic G1-like checkpoint that can lead to polyploidy, an early event during cervical carcinogenesis that predisposes cells to aneuploidy. How E6 promotes cell cycle progression in the presence of p53 and its target, p21, remains a mystery. In this study, we examined the expression of cell cycle-related genes in cells expressing wild-type E6 and the mutant that is defective in p53 degradation but competent in abrogating the postmitotic checkpoint. Our results demonstrated an increase in the steady-state levels of G1- and G2-related cyclins/Cdks in E6-expressing keratinocytes. Interestingly, only Cdk1 remained active in E6 mutant-expressing cells while bypassing the postmitotic checkpoint. Furthermore, the downregulation of Cdk1 impaired the ability of both wild-type and mutant E6 to induce polyploidy. Our study thus demonstrated an important role for Cdk1, which binds p21 with lower affinity than Cdk2, in abrogating the postmitotic checkpoint in E6-expressing cells. We further show that E2F1 is important for E6 to upregulate Cdk1. Moreover, reduced nuclear p21 localization was observed in the E6 mutant-expressing cells. These findings shed light on the mechanisms by which HPV induces genomic instability and hold promise for the identification of drug targets. IMPORTANCE HPV infection is strongly associated with the development of cervical carcinoma. HPV encodes an E6 oncoprotein that degrades the tumor suppressor p53 and abrogates cell cycle checkpoints. Nonetheless, functional p53 has been observed in cervical cancer. We have recently demonstrated a p53-independent abrogation of the postmitotic checkpoint by HPV E6 that induces polyploidy. However, the mechanism is not known. In this study, we provide evidence that Cdk1 plays an important role in this process. Previously, Cdk2 was thought to be essential for the G1/S transition, while Cdk1 only compensated its function in the absence of Cdk2. Our studies have demonstrated a novel role of Cdk1 at the postmitotic G1-like checkpoint in the presence of Cdk2. These findings shed light on the mechanisms by which HPV induces genomic instability and hold promise for the identification of drug targets.
Collapse
|
57
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
58
|
Brennan-Laun SE, Li XL, Ezelle HJ, Venkataraman T, Blackshear PJ, Wilson GM, Hassel BA. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response. J Biol Chem 2014; 289:33629-43. [PMID: 25301952 DOI: 10.1074/jbc.m114.589556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and
| | - Xiao-Ling Li
- the Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather J Ezelle
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | | | - Perry J Blackshear
- the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Gerald M Wilson
- From the Marlene and Stewart Greenebaum Cancer Center, Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Bret A Hassel
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| |
Collapse
|
59
|
Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21CDKN1A. Nat Commun 2014; 5:5067. [DOI: 10.1038/ncomms6067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022] Open
|
60
|
Carrillo García C, Riedt T, Li J, Dotten M, Brossart P, Janzen V. Simultaneous deletion of p21Cip1/Waf1 and caspase-3 accelerates proliferation and partially rescues the differentiation defects of caspase-3 deficient hematopoietic stem cells. PLoS One 2014; 9:e109266. [PMID: 25286245 PMCID: PMC4186822 DOI: 10.1371/journal.pone.0109266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Specialized blood cells are generated through the entire life of an organism by differentiation of a small number of hematopoietic stem cells (HSC). There are strictly regulated mechanisms assuring a constant and controlled production of mature blood cells. Although such mechanisms are not completely understood, some factors regulating cell cycle and differentiation have been identified. We have previously shown that Caspase-3 is an important regulator of HSC homeostasis and cytokine responsiveness. p21cip1/waf1 is a known cell cycle regulator, however its role in stem cell homeostasis seems to be limited. Several reports indicate interactions between p21cip1/waf1 and Caspase-3 in a cell type dependent manner. Here we studied the impact of simultaneous depletion of both factors on HSC homeostasis. Depletion of both Caspase-3 and p21cip1/waf1 resulted in an even more pronounced increase in the frequency of hematopoietic stem and progenitor cells. In addition, simultaneous deletion of both genes revealed a further increase of cell proliferation compared to single knock-outs and WT control mice, while apoptosis or self-renewal ability were not affected in any of the genotypes. Upon transplantation, p21cip1/waf1-/- bone marrow did not reveal significant alterations in engraftment of lethally irradiated mice, while Caspase-3 deficient HSPC displayed a significant reduction of blood cell production. However, when both p21cip1/waf1 and Caspase-3 were eliminated this differentiation defect caused by Caspase-3 deficiency was abrogated.
Collapse
Affiliation(s)
- Carmen Carrillo García
- Department of Internal Medicine III, Division of Hematology/Oncology, University of Bonn, Bonn, Germany
| | - Tamara Riedt
- Department of Internal Medicine III, Division of Hematology/Oncology, University of Bonn, Bonn, Germany
| | - Jin Li
- Department of Internal Medicine III, Division of Hematology/Oncology, University of Bonn, Bonn, Germany
| | - Manuela Dotten
- Department of Internal Medicine III, Division of Hematology/Oncology, University of Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Internal Medicine III, Division of Hematology/Oncology, University of Bonn, Bonn, Germany
| | - Viktor Janzen
- Department of Internal Medicine III, Division of Hematology/Oncology, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
61
|
Giovannini C, Baglioni M, Baron Toaldo M, Ventrucci C, D'Adamo S, Cipone M, Chieco P, Gramantieri L, Bolondi L. Notch3 inhibition enhances sorafenib cytotoxic efficacy by promoting GSK3b phosphorylation and p21 down-regulation in hepatocellular carcinoma. Oncotarget 2014; 4:1618-31. [PMID: 24113128 PMCID: PMC3858550 DOI: 10.18632/oncotarget.1221] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sorafenib (Nexavar), a multiple kinase inhibitor, is the only clinically approved drug for patients with advanced HCC. However, its therapeutic success is limited by the emergence of drug resistance. Here we found that p21 and pGSK3βSer9 are major players in the resistance to sorafenib. We recently reported that aberrant Notch3 expression in HCC contributes to doxorubicin resistance in vitro and, therefore, we focused on the mechanisms that associate Notch3 to acquired drug resistance. In this study we first found that Notch3 inhibition significantly increased the apoptosis inducing effect of sorafenib in HCC cells via specific down-regulation of p21 and up-regulation of pGSK3βSer9. Using a mouse xenograft model we further found that Notch3 depletion combined with 21 days of sorafenib treatment exerts a substantial antitumor effect in vivo. Interestingly, we showed that, upon exposure to sorafenib treatment, Notch3 depleted xenografts maintain lower levels of p21 and higher levels of pGSK3βSer9 than control xenografts. Thus, this study demonstrated that inhibition of Notch3 signaling prevents HCC-mediate drug resistance and sensitizes HCC cells to sorafenib. Finally, we validated our in vitro and in vivo results in primary human HCCs showing that Notch3 protein expression positively correlated with p21 protein expression and negatively correlated with pGSK3βSer9 expression. In conclusion, the results presented in this study demonstrated that Notch3 silencing enhances the effect of sorafenib by overcoming drug resistance. Notch3 inhibition in combination with sorafenib can be a promising strategy for treatment of HCC.
Collapse
Affiliation(s)
- Catia Giovannini
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Iwamoto K, Hamada H, Eguchi Y, Okamoto M. Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. PLoS One 2014; 9:e101333. [PMID: 25003668 PMCID: PMC4086823 DOI: 10.1371/journal.pone.0101333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/01/2014] [Indexed: 01/08/2023] Open
Abstract
A massive integrative mathematical model of DNA double-strand break (DSB) generation, DSB repair system, p53 signaling network, and apoptosis induction pathway was constructed to explore the dominant factors of unknown criteria of cell fate decision. In the proposed model, intranuclear reactions were modeled as stochastic processes and cytoplasmic reactions as deterministic processes, and both reaction sets were simulated simultaneously. The simulated results at the single-cell level showed that the model generated several sustained oscillations (pulses) of p53, Mdm2, ATM, and Wip1, and cell-to-cell variability in the number of p53 pulses depended on IR intensity. In cell populations, the model generated damped p53 oscillations, and IR intensity affected the amplitude of the first p53 oscillation. Cells were then subjected to the same IR dose exhibiting apoptosis induction variability. These simulated results are in quantitative agreement with major biological findings observed in human breast cancer epithelial MCF7, NIH3T3, and fibrosarcoma cells, demonstrating that the proposed model was concededly biologically appropriate. Statistical analysis of the simulated results shows that the generation of multiple p53 pulses is a prerequisite for apoptosis induction. Furthermore, cells exhibited considerable individual variability in p53 dynamics, which correlated with intrinsic apoptosis induction. The simulated results based on the proposed model demonstrated that the stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. Applying stochastic simulation to an exploration of intranuclear biochemical reaction processes is indispensable in enhancing the understanding of the dynamic characteristics of biological multi-layered systems of higher organisms.
Collapse
Affiliation(s)
- Kazunari Iwamoto
- Graduate school of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroyuki Hamada
- Department of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Synthetic Systems Biology Research Center, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Yukihiro Eguchi
- Kyushu University Bio-Architecture Center, Kyushu University, Fukuoka, Japan
| | - Masahiro Okamoto
- Department of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Synthetic Systems Biology Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
63
|
Safa M, Mousavizadeh K, Noori S, Pourfathollah A, Zand H. cAMP protects acute promyelocytic leukemia cells from arsenic trioxide-induced caspase-3 activation and apoptosis. Eur J Pharmacol 2014; 736:115-23. [PMID: 24815320 DOI: 10.1016/j.ejphar.2014.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
More recently, arsenic trioxide (ATO), was integrated into acute promyelocytic leukemia (APL) treatment, showing high efficacy and tolerability in patients with both ATRA-sensitive and ATRA-resistant APL. ATO could induce apoptosis at relatively high concentrations (0.5 to 2.0 micromol/L) and partial differentiation at low concentrations (0.1 to 0.5 micromol/L) in leukemic promyelocytes. It is known that cAMP agonists enhance low-dose ATO-induced APL cells differentiation. Less well appreciated was the possible interaction between relatively high-doses of ATO and enhanced levels of cAMP in APL cells. Here, we show that elevation of cAMP levels by forskolin inhibited ATO-mediated apoptosis in APL-derived NB4 cells, and this inhibition could be averted by cell permeable cAMP-dependent protein kinase inhibitor (14-22) amide. Inactivating phosphorylation of the proapoptotic protein Bad at Ser118 and phosphorylation of the CREB proto-oncogene at Ser133 were observed upon elevation of cAMP levels in NB4 cells. Phosphorylation of these PKA target proteins is known to promote cell survival in AML cells. The ability of cAMP to endow the APL cells with survival advantage is of particular importance when cAMP agonists may be considered as adjuncts to APL therapy.
Collapse
Affiliation(s)
- Majid Safa
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kazem Mousavizadeh
- Oncopathology Research Center, and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shekoofeh Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Pourfathollah
- Department of Medical Laboratory Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Zand
- National Institute and Faculty of Nutrition and Food Technology, Department of Molecular Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Alcohol induced hepatic degeneration in a hepatitis C virus core protein transgenic mouse model. Int J Mol Sci 2014; 15:4126-41. [PMID: 24608925 PMCID: PMC3975388 DOI: 10.3390/ijms15034126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/08/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for α-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-β1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-β1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection.
Collapse
|
65
|
Qin K, Ding T, Xiao Y, Ma W, Wang Z, Gao J, Zhao L. Differential responses of neuronal and spermatogenic cells to the doppel cytotoxicity. PLoS One 2013; 8:e82130. [PMID: 24339999 PMCID: PMC3858285 DOI: 10.1371/journal.pone.0082130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/21/2013] [Indexed: 02/02/2023] Open
Abstract
Although structurally and biochemically similar to the cellular prion (PrP(C)), doppel (Dpl) is unique in its biological functions. There are no reports about any neurodegenerative diseases induced by Dpl. However the artificial expression of Dpl in the PrP-deficient mouse brain causes ataxia with Purkinje cell death. Abundant Dpl proteins have been found in testis and depletion of the Dpl gene (Prnd) causes male infertility. Therefore, we hypothesize different regulations of Prnd in the nerve and male productive systems. In this study, by electrophoretic mobility shift assays we have determined that two different sets of transcription factors are involved in regulation of the Prnd promoter in mouse neuronal N2a and GC-1 spermatogenic (spg) cells, i.e., upstream stimulatory factors (USF) in both cells, Brn-3 and Sp1 in GC-1 spg cells, and Sp3 in N2a cells, leading to the expression of Dpl in GC-1 spg but not in N2a cells. We have further defined that, in N2a cells, Dpl induces oxidative stress and apoptosis, which stimulate ataxia-telangiectasia mutated (ATM)-modulating bindings of transcription factors, p53 and p21, to Prnp promoter, resulting the PrP(C) elevation for counteraction of the Dpl cytotoxicity; in contrast, in GC-1 spg cells, phosphorylation of p21 and N-terminal truncated PrP may play roles in the control of Dpl-induced apoptosis, which may benefit the physiological function of Dpl in the male reproduction system.
Collapse
Affiliation(s)
- Kefeng Qin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
- Department of Neurology, University of Chicago, Chicago, Illinois, United States of America
| | - Tianbing Ding
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Yi Xiao
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Wenyu Ma
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Zhen Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Wenzhou Medical University, Wenzhou, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Wenzhou Medical University, Wenzhou, China
| | - Lili Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Wenzhou Medical University, Wenzhou, China
- Department of Neurology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
66
|
Coordination between p21 and DDB2 in the cellular response to UV radiation. PLoS One 2013; 8:e80111. [PMID: 24260342 PMCID: PMC3832521 DOI: 10.1371/journal.pone.0080111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2) promotes apoptosis by mediating p21 degradation after ultraviolet (UV)-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.
Collapse
|
67
|
Vázquez R, Riveiro ME, Mondillo C, Perazzo JC, Vermeulen M, Baldi A, Davio C, Shayo C. Pharmacodynamic study of the 7,8-dihydroxy-4-methylcoumarin-induced selective cytotoxicity toward U-937 leukemic cells versus mature monocytes: cytoplasmic p21(Cip1/WAF1) as resistance factor. Biochem Pharmacol 2013; 86:210-221. [PMID: 23665351 DOI: 10.1016/j.bcp.2013.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 01/04/2023]
Abstract
The development of tumor-selective drugs with low systemic toxicity has always been a major challenge in cancer treatment. Our group previously identified the 7,8-dihydroxy-4-methylcoumarin (DHMC) as a potential chemotherapeutic agent due to its potent, selective anti-proliferative and apoptosis-inducing effects on several cancer cell lines over peripheral blood mononuclear cells. However, there are still no published reports that can explain such selectivity of action. Herein, we addressed this question by using the U-937 promonocytic leukemia cell line, which can be forced to differentiate into a monocyte-like phenotype in vitro. U-937 cells differentiation is dependent on the nuclear expression of p21(Cip1/WAF1), a protein that is absent in immature U-937 cells but present in both the nucleus and the cytoplasm of normal DHMC-resistant monocytes. Considering that induction of differentiation rendered U-937 cells resistant to DHMC, we evaluated the possible causal role of cytoplasmic p21(Cip1/WAF1) in the onset of such resistance by employing U-937 cells stably transfected with a ZnCl2-inducible p21(Cip1/WAF1) variant lacking the nuclear localization signal (U-937/CB6-ΔNLS-p21 cells). Expression of cytoplasmic p21(Cip1/WAF1) did not induce differentiation of the cells but turned them resistant to DHMC through inhibition of JNK, a crucial mediator of DHMC-induced apoptosis in U-937 cells. Sub-acute toxicity evaluation of DHMC in Balb/c mice indicated that DHMC administered intraperitoneally at doses up to 100mg/kg induced no systemic damage. Collectively, our results explain for the first time the selective cytotoxicity of DHMC for tumor cells over normal monocytes, and encourage further in vivo studies on this compound as potential anti-leukemic agent.
Collapse
Affiliation(s)
- Ramiro Vázquez
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental IBYME-CONICET, Vuelta de Obligado 2490 C1428ADN, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Antonov AV, Krestyaninova M, Knight RA, Rodchenkov I, Melino G, Barlev NA. PPISURV: a novel bioinformatics tool for uncovering the hidden role of specific genes in cancer survival outcome. Oncogene 2013; 33:1621-8. [PMID: 23686313 DOI: 10.1038/onc.2013.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/31/2022]
Abstract
Multiple clinical studies have correlated gene expression with survival outcome in cancer on a genome-wide scale. However, in many cases, no obvious correlation between expression of well-known tumour-related genes (that is, p53, p73 and p21) and survival rates of patients has been observed. This can be mainly explained by the complex molecular mechanisms involved in cancer, which mask the clinical relevance of a gene with multiple functions if only gene expression status is considered. As we demonstrate here, in many such cases, the expression of the gene interaction partners (gene 'interactome') correlates significantly with cancer survival and is indicative of the role of that gene in cancer. On the basis of this principle, we have implemented a free online datamining tool (http://www.bioprofiling.de/PPISURV). PPISURV automatically correlates expression of an input gene interactome with survival rates on >40 publicly available clinical expression data sets covering various tumours involving about 8000 patients in total. To derive the query gene interactome, PPISURV employs several public databases including protein-protein interactions, regulatory and signalling pathways and protein post-translational modifications.
Collapse
Affiliation(s)
- A V Antonov
- 1] Toxicology Unit, Hodgkin Building, Medical Research Council, Leicester University, Leicester, UK [2] Molecular Pharmacology Laboratory, Technological University, St-Petersburg, Russia
| | - M Krestyaninova
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
| | - R A Knight
- Toxicology Unit, Hodgkin Building, Medical Research Council, Leicester University, Leicester, UK
| | - I Rodchenkov
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - G Melino
- 1] Toxicology Unit, Hodgkin Building, Medical Research Council, Leicester University, Leicester, UK [2] Molecular Pharmacology Laboratory, Technological University, St-Petersburg, Russia [3] Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, Rome, Italy
| | - N A Barlev
- 1] Molecular Pharmacology Laboratory, Technological University, St-Petersburg, Russia [2] Department of Biochemistry, University of Leicester, Leicester, UK [3] Gene Expression Programme, Institute of Cytology, St-Petersburg, Russia
| |
Collapse
|
69
|
Chuang KH, Lu CS, Kou YR, Wu YL. Cell cycle regulation by glucosamine in human pulmonary epithelial cells. Pulm Pharmacol Ther 2013; 26:195-204. [DOI: 10.1016/j.pupt.2012.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/04/2012] [Accepted: 10/24/2012] [Indexed: 12/26/2022]
|
70
|
WANG YUPING, CHEN JIE, WANG LIN, HUANG YUJI, LENG YE, WANG GUIYING. Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells. Exp Ther Med 2013; 5:1105-1112. [PMID: 23596478 PMCID: PMC3627453 DOI: 10.3892/etm.2013.924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease caused by the oncoprotein BCR-ABL, which exhibits a constitutive tyrosine kinase activity. Imatinib mesylate (IM), an inhibitor of the tyrosine kinase activity of BCR-ABL, has been used as a first-line therapy for CML. However, IM is less effective in the accelerated phase and blastic phases of CML and certain patients develop IM resistance due to the mutation and amplification of the BCR-ABL gene. Fangchinoline, an important chemical constituent from the dried roots of Stephaniae tetrandrae S. Moore, exhibits significant antitumor activity in various types of cancers, including breast, prostate and hepatocellular carcinoma. However, the effects and the underlying mechanisms of fangchinoline in CML remain unclear. In the present study, we identified that fangchinoline inhibits cell proliferation in a dose- and time-dependent manner in K562 cells derived from the blast crisis of CML. Additional experiments revealed that fangchinoline induces cell cycle arrest at the G0/G1 phase and has no effect on apoptosis, which is mediated through the upregulation of cyclin-dependent kinase (CDK)-N1A and MCL-1 mRNA levels, as well as the downregulation of cyclin D2 (CCND2) mRNA levels. These findings suggest the potential of fangchinoline as an effective antitumor agent in CML.
Collapse
Affiliation(s)
- YUPING WANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
- Department of Biochemistry, School of Medicine, Jinggangshan University, Jiangxi 343009
| | - JIE CHEN
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433
| | - LIN WANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
- Department of Endocrinology, East Hospital, Tongji University School of Medcine, Shanghai 200120,
P.R. China
| | - YUJI HUANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
| | - YE LENG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
| | - GUIYING WANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
- Correspondence to: Dr Guiying Wang, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China, E-mail:
| |
Collapse
|
71
|
Lee J, Hoi CSL, Lilja KC, White BS, Lee SE, Shalloway D, Tumbar T. Runx1 and p21 synergistically limit the extent of hair follicle stem cell quiescence in vivo. Proc Natl Acad Sci U S A 2013; 110:4634-9. [PMID: 23487742 PMCID: PMC3606971 DOI: 10.1073/pnas.1213015110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mechanisms of tissue stem cell (SC) quiescence control are important for normal homeostasis and for preventing cancer. Cyclin-dependent kinase inhibitors (CDKis) are known inhibitors of cell cycle progression. We document CDKis expression in vivo during hair follicle stem cell (HFSC) homeostasis and find p21 (cyclin-dependent kinase inhibitor 1a, Cdkn1a), p57, and p15 up-regulated at quiescence onset. p21 appears important for HFSC timely onset of quiescence. Conversely, we find that Runx1 (runt related transcription factor 1), which is known for promoting HFSC proliferation, represses p21, p27, p57, and p15 transcription in HFSC in vivo. Intriguingly, in cell culture, tumors, and normal homeostasis, Runx1 and p21 interplay modulates proliferation in opposing directions under the different conditions. Unexpectedly, Runx1 and p21 synergistically limit the extent of HFSC quiescence in vivo, which antagonizes the role of p21 as a cell cycle inhibitor. Importantly, we find in cultured keratinocytes that Runx1 and p21 bind to the p15 promoter and synergistically repress p15 mRNA transcription, thereby restraining cell cycle arrest. This documents a surprising ability of a CDKi (p21) to act as a direct transcriptional repressor of another CDKi (p15). We unveil a robust in vivo mechanism that enforces quiescence of HFSCs, and a context-dependent role of a CDKi (p21) to limit quiescence of SCs, potentially by directly down-regulating mRNA levels of (an)other CDKi(s).
Collapse
Affiliation(s)
- Jayhun Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | | | | | - Song Eun Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
72
|
Amaru Calzada A, Pedrini O, Finazzi G, Leoni F, Mascagni P, Introna M, Rambaldi A, Golay J. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2V617F myeloproliferative neoplasm patients. Exp Hematol 2013; 41:253-60.e2. [DOI: 10.1016/j.exphem.2012.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
73
|
A functional role of the cyclin-dependent kinase inhibitor 1 (p21(WAF1/CIP1)) for neuronal preconditioning. J Cereb Blood Flow Metab 2013; 33:351-5. [PMID: 23299246 PMCID: PMC3587824 DOI: 10.1038/jcbfm.2012.213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypoxic preconditioning is thought to rely on gene products regulated by hypoxia-inducible factor (HIF)-1. Here, we show that the HIF-1 target gene cyclin-dependent kinase inhibitor 1, p21(WAF1/CIP1), is essential for neuroprotection by hypoxic/aglycemic or erythropoietin preconditioning using wild-type and p21(WAF1/CIP1)-deficient neurons. Furthermore, overexpression of wild-type p21(WAF1/CIP1) or phospho-mutants significantly increased cell death after hypoxia/aglycemia. Moreover, deferoxamine-induced endogenous tolerance did not involve p21(WAF1/CIP1) expression in cortical neurons. Our data suggest that balanced expression and potentially posttranslational regulation of p21(WAF1/CIP1) is required for hypoxic preconditioning.
Collapse
|
74
|
Wu X, Chesoni S, Rondeau G, Tempesta C, Patel R, Charles S, Daginawala N, Zucconi BE, Kishor A, Xu G, Shi Y, Li ML, Irizarry-Barreto P, Welsh J, Wilson GM, Brewer G. Combinatorial mRNA binding by AUF1 and Argonaute 2 controls decay of selected target mRNAs. Nucleic Acids Res 2013; 41:2644-58. [PMID: 23303783 PMCID: PMC3575833 DOI: 10.1093/nar/gks1453] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RNA-binding protein AUF1 binds AU-rich elements in 3′-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs. Recent experiments and bioinformatic analyses suggest this type of co-regulation may be widespread across the transcriptome. Here, we identified mRNA targets of AUF1 from a complex pool of cellular mRNAs and examined a subset of these mRNAs to explore the links between RNA binding and mRNA degradation for both AUF1 and Argonaute 2 (AGO2), which is an essential effector of microRNA-induced gene silencing. Depending on the specific mRNA examined, AUF1 and AGO2 binding is proportional/cooperative, reciprocal/competitive or independent. For most mRNAs in which AUF1 affects their decay rates, mRNA degradation requires AGO2. Thus, AUF1 and AGO2 present mRNA-specific allosteric binding relationships for co-regulation of mRNA degradation.
Collapse
Affiliation(s)
- Xiangyue Wu
- Department of Biochemistry and Molecular Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Suzuki H, Yabuta N, Okada N, Torigata K, Aylon Y, Oren M, Nojima H. Lats2 phosphorylates p21 after UV irradiation and regulates apoptosis. J Cell Sci 2013; 126:4358-68. [DOI: 10.1242/jcs.125815] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lats2 (Large tumor suppressor 2), a member of the conserved AGC Ser/Thr (S/T) kinase family, is a human tumor suppressor gene. Here we show that in response to ultraviolet radiation, Lats2 is phosphorylated by Chk1 at Ser835 (S835), which is located in the kinase domain of Lats2. This phosphorylation enhances Lats2 kinase activity. Subsequently, Lats2 phosphorylates p21 at S146. p21 is a cyclin-dependent kinase (CDK) inhibitor, which not only regulates cell cycle by CDK inhibition but also inhibits apoptosis by binding to procaspase-3 in the cytoplasm. Phosphorylation by Lats2 induces p21 degradation and promotes apoptosis. Accordingly, Lats2 overexpression induces p21 degradation, caspase-3/9 activation and apoptosis. These findings describe a novel Lats2-dependent mechanism for induction of cell death in response to severe DNA damage.
Collapse
|
76
|
Romanov VS, Pospelov VA, Pospelova TV. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. BIOCHEMISTRY (MOSCOW) 2012; 77:575-84. [PMID: 22817456 DOI: 10.1134/s000629791206003x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
p21(Waf1) was identified as a protein suppressing cyclin E/A-CDK2 activity and was originally considered as a negative regulator of the cell cycle and a tumor suppressor. It is now considered that p21(Waf1) has alternative functions, and the view of its role in cellular processes has begun to change. At present, p21(Waf1) is known to be involved in regulation of fundamental cellular programs: cell proliferation, differentiation, migration, senescence, and apoptosis. In fact, it not only exhibits antioncogenic, but also oncogenic properties. This review provides a contemporary understanding of the functions of p21(Waf1) depending on its intracellular localization. On one hand, when in the nucleus, it serves as a negative cell cycle regulator and tumor suppressor, in particular by participating in the launch of a senescence program. On the other hand, when p21(Waf1) is localized in the cytoplasm, it acts as an oncogene by regulating migration, apoptosis, and proliferation.
Collapse
Affiliation(s)
- V S Romanov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St. Petersburg, Russia.
| | | | | |
Collapse
|
77
|
Xu HY, Chen ZW, Li H, Zhou L, Liu F, Lv YY, Liu JC. 12-Deoxyphorbol 13-palmitate mediated cell growth inhibition, G2-M cell cycle arrest and apoptosis in BGC823 cells. Eur J Pharmacol 2012; 700:13-22. [PMID: 23220710 DOI: 10.1016/j.ejphar.2012.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 11/17/2022]
Abstract
The highly toxic monomer 12-deoxyphorbol 13-palmitate (G) was extracted from the roots of Euphorbia fischeriana. Our experimental data confirmed studies showing that 12-deoxyphorbol 13-palmitate had certain antitumor activities. The MTT method, soft agar experiments, and nude mouse tumor experiments proved that 12-deoxyphorbol 13-palmitate inhibited the growth of BGC823 cells. We found that the drug could induce cell cycle arrest at the G2-M checkpoint in BGC823 cells. The compound also induced apoptosis as assayed by Annexin-V-FITC/PI dual labeling, AO/EB dyeing, and caspase-3 and caspase-9 activity. The reduction in expression of cyclin B1 protein and the increased activity of reactive oxygen species were observed in BGC823 cells treated with 12-deoxyphorbol 13-palmitate for 24 h. In addition, we found down-regulation of cdc2/cyclin B, cyclin A and p-chk1 in tumor cells. There was also up-regulation of Bax, p53, p21, and IκB-α and down-regulation of Bcl-2 and NF-κB by WB. Our studies may define a novel mechanism by which 12-deoxyphorbol 13-palmitate inhibits tumor cell growth and induces apoptosis. The results of our current studies provided strong experimental evidence for the use of 12-deoxyphorbol 13-palmitate as a potential preventive and/or therapeutic agent in cancer.
Collapse
Affiliation(s)
- Hui-Yu Xu
- Department of Immunology, Qiqihar Medical University, No. 333 BuKui Street, Qiqihar, Heilongjiang, 161006, PR China.
| | | | | | | | | | | | | |
Collapse
|
78
|
Wang Q, Wu PC, Dong DZ, Ivanova I, Chu E, Zeliadt S, Vesselle H, Wu DY. Polyploidy road to therapy-induced cellular senescence and escape. Int J Cancer 2012; 132:1505-15. [PMID: 22945332 DOI: 10.1002/ijc.27810] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
Therapy-induced cellular senescence (TCS), characterized by prolonged cell cycle arrest, is an in vivo response of human cancers to chemotherapy and radiation. Unfortunately, TCS is reversible for a subset of senescent cells, leading to cellular reproliferation and ultimately tumor progression. This invariable consequence of TCS recapitulates the clinical treatment experience of patients with advanced cancer. We report the findings of a clinicopathological study in patients with locally advanced non-small cell lung cancer demonstrating that marker of in vivo TCS following neoadjuvant therapy prognosticate adverse clinical outcome. In our efforts to elucidate key molecular pathways underlying TCS and cell cycle escape, we have previously shown that the deregulation of mitotic kinase Cdk1 and its downstream effectors are important mediators of survival and cell cycle reentry. We now report that aberrant expression of Cdk1 interferes with apoptosis and promotes the formation of polyploid senescent cells during TCS. These polyploid senescent cells represent important transition states through which escape preferentially occurs. The Cdk1 pathway is in part modulated differentially by p21 and p27 two members of the KIP cyclin-dependent kinase inhibitor family during TCS. Altogether, these studies underscore the importance of TCS in cancer therapeutics.
Collapse
Affiliation(s)
- Qin Wang
- Seattle Institute for Biomedical and Clinical Research, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Hsp70 is a novel posttranscriptional regulator of gene expression that binds and stabilizes selected mRNAs containing AU-rich elements. Mol Cell Biol 2012; 33:71-84. [PMID: 23109422 DOI: 10.1128/mcb.01275-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AU-rich elements (AREs) encoded within many mRNA 3' untranslated regions (3'UTRs) are targets for factors that control transcript longevity and translational efficiency. Hsp70, best known as a protein chaperone with well-defined peptide-refolding properties, is known to interact with ARE-like RNA substrates in vitro. Here, we show that cofactor-free preparations of Hsp70 form direct, high-affinity complexes with ARE substrates based on specific recognition of U-rich sequences by both the ATP- and peptide-binding domains. Suppressing Hsp70 in HeLa cells destabilized an ARE reporter mRNA, indicating a novel ARE-directed mRNA-stabilizing role for this protein. Hsp70 also bound and stabilized endogenous ARE-containing mRNAs encoding vascular endothelial growth factor (VEGF) and Cox-2, which involved a mechanism that was unaffected by an inhibitor of its protein chaperone function. Hsp70 recognition and stabilization of VEGF mRNA was mediated by an ARE-like sequence in the proximal 3'UTR. Finally, stabilization of VEGF mRNA coincided with the accumulation of Hsp70 protein in HL60 promyelocytic leukemia cells recovering from acute thermal stress. We propose that the binding and stabilization of selected ARE-containing mRNAs may contribute to the cytoprotective effects of Hsp70 following cellular stress but may also provide a novel mechanism linking constitutively elevated Hsp70 expression to the development of aggressive neoplastic phenotypes.
Collapse
|
80
|
SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage. EMBO J 2012; 31:4441-52. [PMID: 23092970 DOI: 10.1038/emboj.2012.293] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/08/2012] [Indexed: 11/08/2022] Open
Abstract
Heterogeneous ribonucleoprotein-K (hnRNP-K) is normally ubiquitinated by HDM2 for proteasome-mediated degradation. Under DNA-damage conditions, hnRNP-K is transiently stabilized and serves as a transcriptional co-activator of p53 for cell-cycle arrest. However, how the stability and function of hnRNP-K is regulated remained unknown. Here, we demonstrated that UV-induced SUMOylation of hnRNP-K prevents its ubiquitination for stabilization. Using SUMOylation-defective mutant and purified SUMOylated hnRNP-K, SUMOylation was shown to reduce hnRNP-K's affinity to HDM2 with an increase in that to p53 for p21-mediated cell-cycle arrest. PIAS3 served as a small ubiquitin-related modifier (SUMO) E3 ligase for hnRNP-K in an ATR-dependent manner. During later periods after UV exposure, however, SENP2 removed SUMO from hnRNP-K for its destabilization and in turn for release from cell-cycle arrest. Consistent with the rise-and-fall of both SUMOylation and stability of hnRNP-K, its ability to interact with PIAS3 was inversely correlated to that with SENP2 during the time course after UV exposure. These findings indicate that SUMO modification plays a crucial role in the control of hnRNP-K's function as a p53 co-activator in response to DNA damage by UV.
Collapse
|
81
|
Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress. Genes Cancer 2012; 2:889-99. [PMID: 22593801 DOI: 10.1177/1947601911432495] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/17/2011] [Indexed: 12/26/2022] Open
Abstract
The folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), a metabolic regulator of proliferation, activates p53-dependent G1 arrest and apoptosis in A549 cells. In the present study, we have demonstrated that FDH-induced apoptosis is abrogated upon siRNA knockdown of the p53 downstream target PUMA. Conversely, siRNA knockdown of p21 eliminated FDH-dependent G1 arrest and resulted in an early apoptosis onset. The acceleration of FDH-dependent apoptosis was even more profound in another cell line, HCT116, in which the p21 gene was silenced through homologous recombination (p21(-/-) cells). In contrast to A549 cells, FDH caused G2 instead of G1 arrest in HCT116 p21(+/+) cells; such an arrest was not seen in p21-deficient (HCT116 p21(-/-)) cells. In agreement with the cell cycle regulatory function of p21, its strong accumulation in nuclei was seen upon FDH expression. Interestingly, our study did not reveal DNA damage upon FDH elevation in either cell line, as judged by comet assay and the evaluation of histone H2AX phosphorylation. In both A549 and HCT116 cell lines, FDH induced a strong decrease in the intracellular ATP pool (2-fold and 30-fold, respectively), an indication of a decrease in de novo purine biosynthesis as we previously reported. The underlying mechanism for the drop in ATP was the strong decrease in intracellular 10-formyltetrahydrofolate, a substrate in two reactions of the de novo purine pathway. Overall, we have demonstrated that p21 can activate G1 or G2 arrest in the absence of DNA damage as a response to metabolite deprivation. In the case of FDH-related metabolic alterations, this response delays apoptosis but is not sufficient to prevent cell death.
Collapse
|
82
|
Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O, Shevde LA. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett 2012; 586:3429-34. [PMID: 22858377 DOI: 10.1016/j.febslet.2012.07.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/09/2012] [Accepted: 07/22/2012] [Indexed: 12/22/2022]
Abstract
The expression of Nuclear Protein 1 (NUPR1) is associated with chemoresistance in multiple malignancies. We previously reported that NUPR1 functions as a transcriptional cofactor for the p300-p53 complex and transcriptionally regulates p21 expression. In the present study we investigated the activity of NUPR1 in p53-deficient, triple-negative, inflammatory SUM159 breast cancer cells. Our studies reveal that NUPR1 confers growth benefit and chemoresistance by causing Akt-mediated phosphorylation and subsequent cytoplasmic re-localization of p21 and activation of the anti-apoptotic Bcl-xL protein. Our findings elucidate a NUPR1-PI-3-K/Akt-phospho-p21 axis that functions in p53-negative, inflammatory breast cancer cells to enhance chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Andrew J Vincent
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | | | | | | | | | | | | |
Collapse
|
83
|
Hill R, Madureira PA, Waisman DM, Lee PWK. DNA-PKCS binding to p53 on the p21WAF1/CIP1 promoter blocks transcription resulting in cell death. Oncotarget 2012; 2:1094-108. [PMID: 22190353 PMCID: PMC3282069 DOI: 10.18632/oncotarget.378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key determinant of p53-mediated cell fate following various DNA damage modalities is p21WAF1/CIP1 expression, with elevated p21 expression triggering cell cycle arrest and repressed p21 expression promoting apoptosis. We show that under pro-death DNA damage conditions, the DNA-dependent protein kinase (DNA-PKCS) is recruited to the p21 promoter where it forms a protein complex with p53. The DNA-PKCS-associated p53 displays post-translational modifications that are distinct from those under pro-arrest conditions, ablating p21 transcription and inducing cell death. Inhibition of DNA-PK activity prevents DNA-PKCS binding to p53 on the p21 promoter, restores p21 transcription and significantly reduces cell death. These data demonstrate that DNA-PKCS negatively regulates p21 expression by directly interacting with the p21 transcription machinery via p53, driving the cell towards apoptosis.
Collapse
Affiliation(s)
- Richard Hill
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
84
|
Stress- and Rho-activated ZO-1-associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival. Proc Natl Acad Sci U S A 2012; 109:10897-902. [PMID: 22711822 DOI: 10.1073/pnas.1118822109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A central component of the cellular stress response is p21(WAF1/CIP1), which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1-associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB's activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3'-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival.
Collapse
|
85
|
Wiese C, Rudolph JH, Jakob B, Fink D, Tobias F, Blattner C, Taucher-Scholz G. PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation. DNA Repair (Amst) 2012; 11:511-21. [DOI: 10.1016/j.dnarep.2012.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/04/2012] [Accepted: 02/28/2012] [Indexed: 12/30/2022]
|
86
|
Rosendahl AH, Gundewar C, Said K, Karnevi E, Andersson R. Celecoxib synergizes human pancreatic ductal adenocarcinoma cells to sorafenib-induced growth inhibition. Pancreatology 2012; 12:219-226. [PMID: 22687377 DOI: 10.1016/j.pan.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is frequently associated with aberrant activation of the Ras/Raf/MAPK pathway and cyclooxygenase-2 (COX-2) overexpression. This study evaluated the potential for combining the multikinase inhibitor sorafenib and the specific COX-2 inhibitor celecoxib as therapy in pancreatic ductal adenocarcinoma cells. METHODS BxPC-3, MIAPaCa-2, PANC-1 and AsPC-1 pancreatic adenocarcinoma cells were exposed to sorafenib and celecoxib combined treatment in vitro. Cell viability and various growth promoting and survival signaling pathways were monitored by MTT, flow cytometry and Western blotting. RESULTS Combined treatment with sorafenib and celecoxib synergistically inhibited pancreatic adenocarcinoma cell proliferation. This regimen produced combination index (CI) values between 0.67 and 0.92 for the various cell lines, indicating significant synergistic interactions between sorafenib and celecoxib, which also markedly inhibited the migratory capacity. The growth inhibition was associated with an accumulation of cells in the G(0)/G(1) phase of the cell cycle and induction of apoptosis. These changes were accompanied by a significant reduction of p21(WAF1/Cip1) levels, where celecoxib sensitized the cells to sorafenib-mediated p21(WAF1/Cip1) suppression. CONCLUSION These results suggest that combined treatment with sorafenib and celecoxib synergistically induce growth inhibition and apoptosis in pancreatic adenocarcinoma cells through a process involving p21(WAF1/Cip1) suppression.
Collapse
Affiliation(s)
- Ann H Rosendahl
- Department of Surgery, Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
87
|
Liu WK, Ling YH, Cheung FWK, Che CT. Stellettin A induces endoplasmic reticulum stress in murine B16 melanoma cells. JOURNAL OF NATURAL PRODUCTS 2012; 75:586-590. [PMID: 22439644 DOI: 10.1021/np2008158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Isomalabaricanes are a small class of rearranged triterpenoids obtained from marine sponges. Most of these are cytotoxic to tumor cells, but the underlying mechanism is not clear. In this study, it was demonstrated that stellettin A (1), obtained from Geodia japonica, inhibited the growth of B16F10 murine melanoma cells by the induction of endoplasmic reticulum stress and accumulation of unfolded proteins. Immunoblotting analysis revealed abnormal glycosylation patterns of two melanoma marker proteins, tyrosinase and tyrosinase-related protein 1, and the retention of these proteins in the endoplasmic reticulum. Compound 1 induced the upregulation of the unfolded protein chaperone, glucose-regulated protein 78, in a dose-dependent manner. Increase of autophagosome-associated protein light chain 3 (LC3) in a membrane-bound form (LC3II) and its immunofluorescence co-localization with tyrosinase suggest the possible removal of deglycosylated and unfolded proteins by autophagy of the cells. There was no change in either the expression of the apoptosis marker protein Bcl-2 or the appearance of apoptotic nuclei in 1-treated cells. Taken together, 1 is an endoplasmic reticulum stressor that inhibits the growth of B16 melanoma cells by induction of abnormal protein glycosylation and autophagy.
Collapse
Affiliation(s)
- Wing Keung Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
| | | | | | | |
Collapse
|
88
|
Mahat DB, Brennan-Laun SE, Fialcowitz-White EJ, Kishor A, Ross CR, Pozharskaya T, Rawn JD, Blackshear PJ, Hassel BA, Wilson GM. Coordinated expression of tristetraprolin post-transcriptionally attenuates mitogenic induction of the oncogenic Ser/Thr kinase Pim-1. PLoS One 2012; 7:e33194. [PMID: 22413002 PMCID: PMC3297641 DOI: 10.1371/journal.pone.0033194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/06/2012] [Indexed: 12/27/2022] Open
Abstract
The serine/threonine kinase Pim-1 directs selected signaling events that promote cell growth and survival and is overexpressed in diverse human cancers. Pim-1 expression is tightly controlled through multiple mechanisms, including regulation of mRNA turnover. In several cultured cell models, mitogenic stimulation rapidly induced and stabilized PIM1 mRNA, however, vigorous destabilization 4-6 hours later helped restore basal expression levels. Acceleration of PIM1 mRNA turnover coincided with accumulation of tristetraprolin (TTP), an mRNA-destabilizing protein that targets transcripts containing AU-rich elements. TTP binds PIM1 mRNA in cells, and suppresses its expression by accelerating mRNA decay. Reporter mRNA decay assays localized the TTP-regulated mRNA decay element to a discrete AU-rich sequence in the distal 3'-untranslated region that binds TTP. These data suggest that coordinated stimulation of TTP and PIM1 expression limits the magnitude and duration of PIM1 mRNA accumulation by accelerating its degradation as TTP protein levels increase. Consistent with this model, PIM1 and TTP mRNA levels were well correlated across selected human tissue panels, and PIM1 mRNA was induced to significantly higher levels in mitogen-stimulated fibroblasts from TTP-deficient mice. Together, these data support a model whereby induction of TTP mediates a negative feedback circuit to limit expression of selected mitogen-activated genes.
Collapse
Affiliation(s)
- Dig B. Mahat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brennan-Laun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth J. Fialcowitz-White
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aparna Kishor
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christina R. Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tatyana Pozharskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. David Rawn
- Department of Chemistry, Towson University, Baltimore, Maryland, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, NIEHS-NIH, Research Triangle Park, North Carolina, United States of America
| | - Bret A. Hassel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
89
|
p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011; 6:e20254. [PMID: 21637851 PMCID: PMC3102688 DOI: 10.1371/journal.pone.0020254] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background p21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown. Methodology/Principal Findings We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( = PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis. Conclusions/Significance We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1.
Collapse
|
90
|
Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology 2011; 285:142-51. [PMID: 21565247 DOI: 10.1016/j.tox.2011.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 11/22/2022]
Abstract
Arsenic is a toxic metalloid that exists ubiquitously in the environment, and exhibits carcinogenicity. Conversely, arsenic trioxide (AsTO) has successfully been employed in the treatment of acute promyelocytic leukemia (APL). It has been shown that AsTO efficiently induces apoptosis in the malignant cells of APL in vitro. Although the mechanisms underlying AsTO-induced apoptosis in certain types of cancer cells, such as APL cells, have been delineated, the mechanism underlying AsTO-induced cell death in non-cancer cells remains unknown. In the present study, we examined AsTO-provoked cytotoxicity and cell death mechanism(s) in TM4 Sertoli cells. Exposure of these cells to AsTO generates reactive oxygen species and alters mitochondrial apoptosis, inducing cell death via both caspase-dependent and caspase-independent pathways. AsTO-induced apoptosis was concomitant with the downregulation of p53, phosphorylation of p53 at serine residues, and G2/M cell cycle arrest. Particularly, the interaction of p21 with caspase-3 proteins during AsTO treatment suggested an antiapoptotic role of p21 against genotoxic stresses in TM4 Sertoli cells. However, clinically relevant concentrations of AsTO failed to induce cell death in TM4 Sertoli cells, indicating that these cells could be resistant to cancer treatment. The results presented herein may not represent the actual effect of AsTO on Sertoli cells in vivo. Thus, further studies on the exposure effects of AsTO on the morphology and function of Sertoli cells in animal experiments will provide a more precise knowledge of AsTO cytotoxicity on male reproduction.
Collapse
|
91
|
Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke. J Cereb Blood Flow Metab 2011; 31:1093-106. [PMID: 21063426 PMCID: PMC3070968 DOI: 10.1038/jcbfm.2010.194] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple mechanisms contribute to tissue demise and functional recovery after stroke. We studied the involvement of macrophage migration inhibitory factor (MIF) in cell death and development of neurologic deficits after experimental stroke. Macrophage migration inhibitory factor is upregulated in the brain after cerebral ischemia, and disruption of the Mif gene in mice leads to a smaller infarct volume and better sensory-motor function after transient middle cerebral artery occlusion (tMCAo). In mice subjected to tMCAo, we found that MIF accumulates in neurons of the peri-infarct region, particularly in cortical parvalbumin-positive interneurons. Likewise, in cultured cortical neurons exposed to oxygen and glucose deprivation, MIF levels increase, and inhibition of MIF by (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) protects against cell death. Deletion of MIF in Mif(-/-) mice does not affect interleukin-1β protein levels in the brain and serum after tMCAo. Furthermore, disruption of the Mif gene in mice does not affect CD68, but it is associated with higher galectin-3 immunoreactivity in the brain after tMCAo, suggesting that MIF affects the molecular/cellular composition of the macrophages/microglia response after experimental stroke. We conclude that MIF promotes neuronal death and aggravates neurologic deficits after experimental stroke, which implicates MIF in the pathogenesis of neuronal injury after stroke.
Collapse
|
92
|
Heeg S, Hirt N, Queisser A, Schmieg H, Thaler M, Kunert H, Quante M, Goessel G, von Werder A, Harder J, Beijersbergen R, Blum HE, Nakagawa H, Opitz OG. EGFR overexpression induces activation of telomerase via PI3K/AKT-mediated phosphorylation and transcriptional regulation through Hif1-alpha in a cellular model of oral-esophageal carcinogenesis. Cancer Sci 2010; 102:351-60. [PMID: 21156006 DOI: 10.1111/j.1349-7006.2010.01796.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomerase plays an important role during immortalization and malignant transformation as crucial steps in the development of human cancer. In a cellular model of oral-esophageal carcinogenesis, recapitulating the human disease, immortalization occurred independent of the activation of telomerase but through the recombination-based alternative lengthening of telomeres (ALT). In this stepwise model, additional overexpression of EGFR led to in vitro transformation and activation of telomerase with homogeneous telomere elongation in already immortalized oral squamous epithelial cells (OKF6-D1_dnp53). More interestingly, EGFR overexpression activated the PI3K/AKT pathway. This strongly suggested a role for telomerase in tumor progression in addition to just elongating telomeres and inferring an immortalized state. Therefore, we sought to identify the regulatory mechanisms involved in this activation of telomerase and in vitro transformation induced by EGFR. In the present study we demonstrate that telomerase expression and activity are induced through both direct phosphorylation of hTERT by phospho-AKT as well as PI3K-dependent transcriptional regulation involving Hif1-alpha as a key transcription factor. Furthermore, EGFR overexpression enhanced cell cycle progression and proliferation via phosphorylation and translocation of p21. Whereas immortalization was induced by ALT, in vitro transformation was associated with telomerase activation, supporting an additional role for telomerase in tumor progression besides elongating telomeres.
Collapse
Affiliation(s)
- Steffen Heeg
- Department of Medicine, Institute for Molecular Medicine and Cell Research, Tumorzentrum Ludwig Heilmeyer-Comprehensive Cancer Center Freiburg, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Wu YCM, O'Reilly MA. Bcl-X(L) is the primary mediator of p21 protection against hyperoxia-induced cell death. Exp Lung Res 2010; 37:82-91. [PMID: 21128858 DOI: 10.3109/01902148.2010.521617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tight balance between anti- and proapoptotic members of the Bcl-2 family controls cell survival and death. Exposure to hyperoxia shifts this balance towards a prodeath state that ultimately activates Bak- and Bax-dependent cell death. Mechanisms underlying this shift are undefined; however, the cell cycle inhibitor p21 delays the loss of antiapoptotic Mcl-1 and Bcl-X(L), and protects against hyperoxia. Here, H1299 human lung adenocarcinoma cells are used to investigate how these and other members of the Bcl-2 family cooperate with p21 to protect against hyperoxia. Expression of antiapoptotic Mcl-1 and Bcl-X(L), but not Bcl-2 or A1, declined during hyperoxia, whereas proapoptotic Bak, but not Bax, increased. Conditional overexpression of p21 selectively delayed the loss of Mcl-1 and Bcl-X(L), without affecting expression of the other members. siRNA knockdown of Mcl-1 and Bcl-X(L) sensitized cells to hyperoxia, but only the loss of Bcl-X(L) ablated the protective effects of p21. Conversely, overexpression of Mcl-1 and Bcl-X(L) protected against hyperoxia, but only Bcl-X(L) bound Bak and Bax. Altogether, these data suggest that Bcl-X(L) is the primary mediator by which p21 protects against hyperoxia-induced Bak/Bax-dependent cell death.
Collapse
Affiliation(s)
- Yu-Chieh M Wu
- Department of Biomedical Genetics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
94
|
Bartolomé F, Muñoz Ú, Esteras N, Alquezar C, Collado A, Bermejo-Pareja F, Martín-Requero Á. Simvastatin overcomes the resistance to serum withdrawal-induced apoptosis of lymphocytes from Alzheimer's disease patients. Cell Mol Life Sci 2010; 67:4257-68. [PMID: 20614159 PMCID: PMC11115769 DOI: 10.1007/s00018-010-0443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Statins may exert beneficial effects on Alzheimer's disease (AD) patients. Based on the antineoplastic and apoptotic effects of statins in a number of cell types, we hypothesized that statins may be able to protect neurons by controlling the regulation of cell cycle and/or apoptosis. A growing body of evidence indicates that neurodegeneration involves the cell-cycle activation in postmitotic neurons. Failure of cell-cycle control is not restricted to neurons in AD patients, but occurs in peripheral cells as well. For these reasons, we studied the role of simvastatin (SIM) on cell survival/death in lymphoblasts from AD patients. We report here that SIM induces apoptosis in AD lymphoblasts deprived of serum. SIM interacts with PI3K/Akt and ERK1/2 signaling pathways thereby decreasing the serum withdrawal-enhanced levels of the CDK inhibitor p21(Cip1) (p21) and restoring the vulnerability of AD cells to trophic factor deprivation.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Úrsula Muñoz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Present Address: Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029 USA
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maéztu 9, 28040 Madrid, Spain
| | - Andrea Collado
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Félix Bermejo-Pareja
- Hospital Doce de Octubre, Avda de Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Avda de Córdoba s/n, 28041 Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Ramiro de Maéztu 9, 28040 Madrid, Spain
| |
Collapse
|
95
|
p21 does not protect cancer cells from apoptosis induced by nongenotoxic p53 activation. Oncogene 2010; 30:346-55. [PMID: 20871630 DOI: 10.1038/onc.2010.413] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
p21(Waf1/Cip1) is a p53 transcription target implicated in both major functions of the tumor suppressor--cell cycle arrest and apoptosis. It is a potent inhibitor of the key cyclin-dependent kinases (CDK1-4), and has been thought to be the main mediator of p53-dependent G1 and G2 arrest. However, an increasing body of information suggests that in addition to its cell-cycle inhibitory activity, p21 can affect p53-dependent apoptosis. These data have been obtained from experiments in which p53 is activated primarily by genotoxic stress. In this study, we use the selective MDM2 antagonist, nutlin-3a, as a nongenotoxic p53 activator and show that the cell-cycle arrest function of p21 is dependent on the cellular context. In most cancer cell lines, p53-dependent p21 induction is essential for cell-cycle arrest, but in some, p21 is dispensable. Depletion of p21 did not increase the apoptotic response to nutlin-3a in all seven cancer cell lines tested and p21 overexpression did not protect apoptosis-sensitive lines from death. p21 was found to mediate nutlin-induced p53-dependent downregulation of another antiapoptotic protein, survivin, without significantly affecting the apoptotic outcome. Taken together our results suggest that p21 induction does not affect the apoptotic response to nongenotoxic p53 activation.
Collapse
|
96
|
Tichý A, Vávrová J, Pejchal J, Rezácová M. Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response. ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 53:13-7. [PMID: 20608227 DOI: 10.14712/18059694.2016.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ataxia-telangiectasia mutated kinase (ATM) is a DNA damage-inducible protein kinase, which phosphorylates plethora of substrates participating in DNA damage response. ATM significance for the cell faith is undeniable, since it regulates DNA repair, cell-cycle progress, and apoptosis. Here we describe its main signalling targets and discuss its importance in DNA repair as well as novel findings linked to this key regulatory enzyme in the terms of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Ales Tichý
- University of Defence in Brno, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
97
|
Kashkar H. X-linked Inhibitor of Apoptosis: A Chemoresistance Factor or a Hollow Promise: Fig. 1. Clin Cancer Res 2010; 16:4496-502. [DOI: 10.1158/1078-0432.ccr-10-1664] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Khwaja SS, Liu H, Tong C, Jin F, Pear WS, van Deursen J, Bram RJ. HIV-1 Rev-binding protein accelerates cellular uptake of iron to drive Notch-induced T cell leukemogenesis in mice. J Clin Invest 2010; 120:2537-48. [PMID: 20516639 DOI: 10.1172/jci41277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 04/19/2010] [Indexed: 12/22/2022] Open
Abstract
Somatic activating mutations in Notch1 contribute to the pathogenesis of T cell acute lymphoblastic lymphoma (T-ALL), but how activated Notch1 signaling exerts this oncogenic effect is not completely understood. Here we identify HIV-1 Rev-binding protein (Hrb), a component of the clathrin-mediated endocytosis machinery, as a critical mediator of Notch-induced T-ALL development in mice. Hrb was found to be a direct transcriptional target of Notch1, and Hrb loss reduced the incidence or delayed the onset of T-ALL in mouse models in which activated Notch1 signaling either contributes to or drives leukemogenesis. Consistent with this observation, Hrb supported survival and proliferation of hematopoietic and T cell precursor cells in vitro. We demonstrated that Hrb accelerated the uptake of transferrin, which was required for upregulation of the T cell protooncogene p21. Indeed, iron-deficient mice developed Notch1-induced T-ALL substantially more slowly than control mice, further supporting a critical role for iron uptake during leukemogenesis. Taken together, these results reveal that Hrb is a critical Notch target gene that mediates lymphoblast transformation and disease progression via its ability to satisfy the enhanced demands of transformed lymphoblasts for iron. Further, our data suggest that Hrb may be targeted to improve current treatment or design novel therapies for human T-ALL patients.
Collapse
Affiliation(s)
- Shariq S Khwaja
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell death has been considered to be the initial event in lung injury and is followed by remodeling processes. When the degree of lung injury is mild, damaged tissue will be repaired normally, whereas excess cell death may lead to irreparable lung damage and remodeling processes. The survival and recovery of epithelial and endothelial cells, and the resolution of inflammatory cells appear to be key for normal tissue repair. We review the recent advances in the understanding of mechanisms of cell death following lung injury in various lung diseases and discuss its regulation by novel strategies. Further understanding of mechanisms of cell death and its regulation may lead to the development of effective treatments against lung injury.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | |
Collapse
|
100
|
Dubourdeau M, Pipy B, Rousseau D. [Roles of PPAR and p21WAF1/CIP1 in monocyte/macrophage differentiation: are circulating monocytes able to proliferate?]. Med Sci (Paris) 2010; 26:481-6. [PMID: 20510146 DOI: 10.1051/medsci/2010265481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Macrophages are involved in the immune and the inflammatory response. The deregulation of their physiological properties is associated with several pathologies such as atherosclerosis and some cancers. Cytokines action on this blood lineage modulates p21WAF1/CIP1 expression. It appears that this protein may play a role in the inflammation regulation through PPAR (peroxysome proliferator-activated receptors) transcription factors, strongly linked to lipid metabolism. It could also be involved in the control of the proliferation of monocytes/macrophages, even if these cells are classically described as devoided of any proliferative capacity.
Collapse
Affiliation(s)
- Marc Dubourdeau
- Ambiotis-Incubateur Midi-Pyrénées, rue Jeanne Marvig, Toulouse, France
| | | | | |
Collapse
|