51
|
Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Rao JS. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 2004; 23:4681-9. [PMID: 15122332 DOI: 10.1038/sj.onc.1207616] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extracellular proteases have been shown to cooperatively influence matrix degradation and tumor cell invasion through proteolytic cascades, with individual proteases having distinct roles in tumor growth, invasion, migration and angiogenesis. Matrix metalloproteases (MMP)-9 and cathepsin B have been shown to participate in the processes of tumor growth, vascularization and invasion of gliomas. In the present study, we used a cytomegalovirus promoter-driven DNA template approach to induce hairpin RNA (hpRNA)-triggered RNA interference (RNAi) to block MMP-9 and cathepsin B gene expression with a single construct. Transfection of a plasmid vector-expressing double-stranded RNA (dsRNA) for MMP-9 and cathepsin B significantly inhibited MMP-9 and cathepsin B expression and reduced the invasive behavior of SNB19, glioblastoma cell line in Matrigel and spheroid invasion models. Downregulation of MMP-9 and cathepsin B using RNAi in SNB19 cells reduced cell-cell interaction of human microvascular endothelial cells, resulting in the disruption of capillary network formation in both in vitro and in vivo models. Direct intratumoral injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B significantly inhibited established glioma tumor growth and invasion in intracranial tumors in vivo. Further intraperitoneal (i.p.) injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B completely regressed pre-established tumors for a long time (4 months) without any indication of these tumor cells. For the first time, these observations demonstrate that the simultaneous RNAi-mediated targeting of MMP-9 and cathepsin B has potential application for the treatment of human gliomas.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cathepsin B/administration & dosage
- Cathepsin B/antagonists & inhibitors
- Cell Division/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Collagen/metabolism
- Down-Regulation
- Drug Combinations
- Gene Expression Regulation, Neoplastic
- Glioblastoma/blood supply
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Injections, Intraperitoneal
- Injections, Intraventricular
- Laminin/metabolism
- Matrix Metalloproteinase 9/administration & dosage
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Nude
- Models, Biological
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neovascularization, Pathologic/genetics
- Proteoglycans/metabolism
- RNA Interference
- Spheroids, Cellular
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sajani S Lakka
- Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois, Peoria, IL 61656, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS. Adenovirus-Mediated Expression of Antisense Urokinase Plasminogen Activator Receptor and Antisense Cathepsin B Inhibits Tumor Growth, Invasion, and Angiogenesis in Gliomas. Cancer Res 2004; 64:4069-77. [PMID: 15205313 DOI: 10.1158/0008-5472.can-04-1243] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown previously that urokinase plasminogen activator receptor (uPAR) and cathepsin B are overexpressed during glioma progression, particularly at the leading edge of the tumor. In the present study, we simultaneously down-regulated uPAR and cathepsin B in SNB19 glioma cell monolayer or SNB19 spheroids using an adenoviral vector carrying antisense uPAR and antisense cathepsin B and a combination of these genes as determined by Western blot analysis. The Ad-uPAR-Cath B-infected cells revealed a marked reduction in tumor growth and invasiveness as compared with the parental and vector controls. In vitro and in vivo angiogenic assays demonstrated inhibition of capillary-like structure formation and microvessel formation after Ad-uPAR-Cath B infection of SNB19 cells when compared with Ad-cytomegalovirus (CMV)-infected or mock-infected controls. Furthermore, using a near infrared fluorescence probe, in vivo imaging for cathepsin B indicated low/undetectable levels of fluorescence after injection of the Ad-uPAR-Cath B construct into pre-established s.c. tumors as compared with Ad-CMV-treated and untreated tumors. The effect with bicistronic construct (Ad-uPAR-Cath B) was much higher than with single (Ad-uPAR/Ad-Cath B) constructs. These results indicate that the down-regulation of cathepsin B and uPAR plays a significant role in inhibiting tumor growth, invasion, and angiogenesis. Hence, the targeting of these two proteases may be a potential therapy for brain tumors and other cancers.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cathepsin B/antagonists & inhibitors
- Cathepsin B/genetics
- Cell Division/genetics
- Cell Movement/genetics
- DNA, Antisense/administration & dosage
- DNA, Antisense/genetics
- Female
- Genetic Therapy/methods
- Glioblastoma/blood supply
- Glioblastoma/genetics
- Glioblastoma/therapy
- Glioblastoma/virology
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Urokinase Plasminogen Activator
- Spheroids, Cellular
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Christopher S Gondi
- Program of Cancer Biology and Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, 61656, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Castino R, Démoz M, Isidoro C. Destination 'lysosome': a target organelle for tumour cell killing? J Mol Recognit 2004; 16:337-48. [PMID: 14523947 DOI: 10.1002/jmr.643] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lysosomes and lysosome-related organelles constitute a system of acid compartments that interconnect the inside of the cell with the extracellular environment via endocytosis, phagocytosis and exocytosis. In recent decades it has been recognized that lysosomes are not just wastebaskets for disposal of unused cellular constituents, but that they are involved in several cellular processes such as post-translational maturation of proteins, degradation of receptors and extracellular release of active enzymes. By complementing the autophagic process, lysosomes actively contribute to the maintenance of cellular homeostasis. Proteolysis by lysosomal cathepsins has been shown to mediate the death signal of cytotoxic drugs and cytokines, as well as the activation of pro-survival factors. Secreted lysosomal cathepsins have been shown to degrade protein components of the extracellular matrix, thus contributing actively to its re-modelling in physiological and pathological processes. The malfunction of lysosomes can, therefore, impact on cell behaviour and fate. Here we review the role of lysosomal hydrolases in several aspects of the malignant phenotype including loss of cell growth control, altered regulation of cell death, acquisition of chemoresistance and of metastatic potential. Based on these observations, the lysosome is proposed as a potential target organelle for the chemotherapy of tumours. We will also present some recent data concerning the technologies for delivering chemotherapeutic drugs to the endosomal-lysosomal compartment and the strategies to improve their efficacy.
Collapse
Affiliation(s)
- Roberta Castino
- Dipartimento di Scienze Mediche, Università degli Studi del Piemonte Orientale 'A Avogadro', Novara, Italy
| | | | | |
Collapse
|
54
|
Bien S, Ritter CA, Gratz M, Sperker B, Sonnemann J, Beck JF, Kroemer HK. Nuclear factor-kappaB mediates up-regulation of cathepsin B by doxorubicin in tumor cells. Mol Pharmacol 2004; 65:1092-102. [PMID: 15102937 DOI: 10.1124/mol.65.5.1092] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anthracyclines such as doxorubicin remain among the most effective agents for the treatment of solid tumors and hematological malignancies. To overcome dose-limiting side effects like cardiotoxicity, an intensive effort has been undertaken to develop promising doxorubicin prodrugs that are specifically activated at the tumor site. One approach is the application of peptide prodrugs of doxorubicin. The enzyme cathepsin B catalyzes the activation of these prodrugs, and hence, the regulation of cathepsin B by antitumor agents could influence the efficacy of peptide prodrugs using this protease. In the present investigation, the effects of doxorubicin on cathepsin B expression in the human cervix carcinoma cell line HeLa were examined. Exposure to doxorubicin induced a time- and dose-dependent up-regulation of cathepsin B expression on mRNA, protein, and activity levels. In the cathepsin B gene promoter region, a potential nuclear factor kappaB (NF-kappaB) binding site could be identified. Pretreatment of HeLa cells with specific NF-kappaB inhibitors abrogated the induction of cathepsin B expression. Doxorubicin-induced degradation of the inhibitory protein IkappaB could be prevented by pretreatment with a specific proteasome inhibitor, resulting in a significant reduction of the doxorubicin-induced cathepsin B expression. Finally, binding of NF-kappaB subunits p50 and p65 to the NF-kappaB binding site in the cathepsin B gene promoter region could be demonstrated by electrophoretic mobility shift assay. In summary, our data clearly indicate that doxorubicin induces cathepsin B expression and activity via NF-kappaB. These findings contribute to a better understanding of tumor targeting with peptide prodrugs and help to define a possible mechanism of doxorubicin toxicity in tumor cells.
Collapse
Affiliation(s)
- Sandra Bien
- Department of Pharmacology, Ernst Moritz Arndt-University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
55
|
Yanamandra N, Gumidyala KV, Waldron KG, Gujrati M, Olivero WC, Dinh DH, Rao JS, Mohanam S. Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 2004; 23:2224-30. [PMID: 14730346 DOI: 10.1038/sj.onc.1207338] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cysteine proteinase cathepsin B has been implicated in tumor progression by virtue of its increased mRNA and protein levels, as well as its localization at the invading front of the tumor. In this study, we examined whether blocking cathepsin B expression in human glioblastoma SNB19 cells affects angiogenesis. Stable transfectants of human glioblastoma cells with a plasmid containing antisense cathepsin B cDNA showed decreased migration rates in wound- and spheroid-migration assays. Analysis showed a reduction in VEGF protein and MMP-9 activity in the cathepsin B antisense cDNA-transfected cells. Regarding angiogenesis in vitro, we found that the conditioned medium of glioblastoma cells with downregulated cathepsin B expression reduced cell-cell interaction of human microvascular endothelial cells, resulting in the disruption of capillary-like network formation. Furthermore, a marked reduction in microvasculature development was seen in an in vivo dorsal air sac assay of glioblastoma cells with downregulated cathepsin B expression. Taken together, these results provide evidence that inhibition of cathepsin B expression can suppress glioblastoma-induced neovascularization.
Collapse
Affiliation(s)
- Niranjan Yanamandra
- Program of Cancer Biology, University of Illinois College of Medicine at Peoria, Peoria, One Illini Drive, Box 1649, IL 61656, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Fischer W, Gustafsson L, Mossberg AK, Gronli J, Mork S, Bjerkvig R, Svanborg C. Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET) Kills Human Glioblastoma Cells in Brain Xenografts by an Apoptosis-Like Mechanism and Prolongs Survival. Cancer Res 2004; 64:2105-12. [PMID: 15026350 DOI: 10.1158/0008-5472.can-03-2661] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.
Collapse
Affiliation(s)
- Walter Fischer
- Institute of Laboratory Medicine, Department of Microbiology, Immunology and Glycobiology, University of Lund, Sölvegatan 23, 223-62 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
57
|
Cavallo-Medved D, Sloane BF. Cell-surface cathepsin B: understanding its functional significance. Curr Top Dev Biol 2003; 54:313-41. [PMID: 12696754 DOI: 10.1016/s0070-2153(03)54013-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Dora Cavallo-Medved
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
58
|
Abstract
The invasive nature of brain-tumour cells makes an important contribution to the ineffectiveness of current treatment modalities, as the remaining tumour cells inevitably infiltrate the surrounding normal brain tissue, which leads to tumour recurrence. Such local invasion remains an important cause of mortality and underscores the need to understand in more detail the mechanisms of tumour invasiveness. Several proteases influence the malignant characteristics of gliomas--could their inhibition prove to be a useful therapeutic strategy?
Collapse
Affiliation(s)
- Jasti S Rao
- Program of Cancer Biology, Department of Neurosurgery, University of Illinois College of Medicine-Peoria, 1 Illini Drive, Peoria, Illinois 61656, USA.
| |
Collapse
|
59
|
Flannery T, Gibson D, Mirakhur M, McQuaid S, Greenan C, Trimble A, Walker B, McCormick D, Johnston PG. The clinical significance of cathepsin S expression in human astrocytomas. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:175-82. [PMID: 12819022 PMCID: PMC1868175 DOI: 10.1016/s0002-9440(10)63641-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early local invasion by astrocytoma cells results in tumor recurrence even after apparent total surgical resection, leading to the poor prognosis associated with malignant astrocytomas. Proteolytic enzymes have been implicated in facilitating tumor cell invasion and the current study was designed to characterize the expression of the cysteine proteinase cathepsin S (CatS) in astrocytomas and examine its potential role in invasion. Immunohistochemical analysis of biopsies demonstrated that CatS was expressed in astrocytoma cells but absent from normal astrocytes, oligodendrocytes, neurones and endothelial cells. Microglial cells and macrophages were also positive. Assays of specific activity in 59 astrocytoma biopsies confirmed CatS expression and in addition demonstrated that the highest levels of activity were expressed in grade IV tumors. CatS activity was also present in astrocytoma cells in vitro and the extracellular levels of activity were highest in cultures derived from grade IV tumors. In vitro invasion assays were carried out using the U251MG cell line and the invasion rate was reduced by up to 61% in the presence of the selective CatS inhibitor 4-Morpholineurea-Leu-HomoPhe-vinylsulphone. We conclude that CatS expression is up-regulated in astrocytoma cells and provide evidence for a potential role for CatS in invasion.
Collapse
Affiliation(s)
- Thomas Flannery
- Oncology Department, Cancer Research Centre, Queen's University Belfast, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Cathepsin B is a papain-family cysteine protease that is normally located in lysosomes, where it is involved in the turnover of proteins and plays various roles in maintaining the normal metabolism of cells. This protease has been implicated in pathological conditions, e.g., tumor progression and arthritis. In disease conditions, increases in the expression of cathepsin B occur at both the gene and protein levels. At the gene level, the altered expression results from gene amplification, elevated transcription, use of alternative promoters and alternative splicing. These molecular changes lead to increased cathepsin B protein levels and in turn redistribution, secretion and increased activity. Here we focus on the molecular regulation of cathepsin B and attendant implications for tumor progression and arthritis. The potential of cathepsin B as a therapeutic target is also discussed.
Collapse
Affiliation(s)
- Shiqing Yan
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | | |
Collapse
|
61
|
Zwicky R, Müntener K, Goldring MB, Baici A. Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes. Biochem J 2002; 367:209-17. [PMID: 12086583 PMCID: PMC1222861 DOI: 10.1042/bj20020210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2002] [Revised: 06/24/2002] [Accepted: 06/27/2002] [Indexed: 11/17/2022]
Abstract
Cathepsin B, a marker of the dedifferentiated chondrocyte phenotype, contributes to cartilage destruction in osteoarthritis and pathological proteolysis in rheumatoid arthritis and cancer. In search of possible means for neutralizing the action of this enzyme, we compared its expression, biosynthesis and distribution in articular chondrocytes and two lines of immortalized human chondrocytes. Native articular chondrocytes in primary culture and the polyclonal T/C-28a2 chondrocyte cell line were similar with respect to the number of endosomes and lysosomes, the distribution of three alternatively spliced cathepsin B mRNA forms, and the cathepsin B activity. In contrast, the clonal C-28/I2 cell line contained four times higher levels of intracellular cathepsin B activity, slightly higher numbers of endosomes and lysosomes, and uniform distribution of all three cathepsin B transcripts and thus resembled subcultured chondrocytes at an early stage of dedifferentiation. Transfection of T/C-28a2 chondrocytes with double-stranded cathepsin B mRNA resulted in inhibition of cathepsin B biosynthesis by up to 70% due to RNA interference, and single-stranded antisense DNAs of various sizes decreased cathepsin B biosynthesis by up to 78%. An antisense oligonucleotide designed to hybridize to the end of cathepsin B's exons 1 and the beginning of exon 3 was successful in specifically inhibiting the mRNA splice variant lacking exon 2. These results indicate that cathepsin B expression and activity may be targeted for gene silencing by RNA interference and antisense DNA in chondrocytes. Furthermore, the differential expression and distribution of cathepsin B and presence of the necessary molecular apparatus for gene silencing in the immortalized human chondrocyte cell lines indicate that they may serve as a useful model for studying the function of relevant enzymes in cartilage pathologies.
Collapse
Affiliation(s)
- Roman Zwicky
- Institute of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
62
|
Glondu M, Liaudet-Coopman E, Derocq D, Platet N, Rochefort H, Garcia M. Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells. Oncogene 2002; 21:5127-34. [PMID: 12140763 DOI: 10.1038/sj.onc.1205657] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Revised: 04/23/2002] [Accepted: 05/10/2002] [Indexed: 11/08/2022]
Abstract
Overexpression of cathepsin-D in primary breast cancer has been associated with rapid development of clinical metastasis. To investigate the role of this protease in breast cancer growth and progression to metastasis, we stably transfected a highly metastatic human breast cancer cell line, MDA-MB-231, with a plasmid containing either the full-length cDNA for cathepsin-D or a 535 bp antisense cathepsin-D cDNA fragment. Clones expressing antisense cathepsin-D cDNA that exhibited a 70-80% reduction in cathepsin-D protein, both intra- and extracellularly compared to controls, were selected for further experiments. These antisense-transfected cells displayed a reduced outgrowth rate when embedded in a Matrigel matrix, formed smaller colonies in soft agar and presented a significantly decreased tumor growth and experimental lung metastasis in nude mice compared with controls. However, manipulating the cathepsin-D level in the antisense cells has no effect on their in vitro invasiveness. These studies demonstrate that cathepsin-D enhances anchorage-independent cell proliferation and subsequently facilitates tumorigenesis and metastasis of breast cancer cells. Our overall results provide the first evidence on the essential role of cathepsin-D in breast cancer, and support the development of a new cathepsin-D-targeted therapy.
Collapse
Affiliation(s)
- Murielle Glondu
- INSERM U540 'Endocrinologie Moléculaire et Cellulaire des Cancers', Université de Montpellier 1, 60 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | |
Collapse
|