51
|
The high-risk HPV E6 oncoprotein preferentially targets phosphorylated nuclear forms of hDlg. Virology 2009; 387:1-4. [PMID: 19307009 DOI: 10.1016/j.virol.2009.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/26/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022]
Abstract
High-risk mucosal HPV E6 oncoproteins target a number of PDZ domain-containing substrates for proteasome mediated degradation. One of these, Discs Large (Dlg), is involved in the regulation of cell polarity and proliferation control. Previous studies had suggested that Dlg when hyperphosphorylated by osmotic shock, or when present in the nucleus could be preferentially targeted by E6. In this study we use phospho-specific antibodies directed against Dlg phosphorylated at residues S158 and S442 to show that these two observations are, in fact, linked. Dlg, when phosphorylated on S158 and S442 by CDK1 or CDK2, shows a preferential nuclear accumulation. However, these forms of Dlg are absent in cells derived from HPV-induced cervical cancers. Upon either proteasome inhibition or siRNA ablation of E6 expression, we see specific rescue of these phosphorylated forms of Dlg. These results demonstrate that nuclear forms of Dlg phosphorylated on its CDK phospho-acceptor sites has enhanced susceptibility to E6-induced degradation and place previous studies on the stress-induced phosphorylation of Dlg into a relevant biological context.
Collapse
|
52
|
Gonzalez-Mariscal L, Tapia R, Huerta M, Lopez-Bayghen E. The Tight Junction Protein ZO-2 Blocks Cell Cycle Progression and Inhibits Cyclin D1 Expression. Ann N Y Acad Sci 2009; 1165:121-5. [DOI: 10.1111/j.1749-6632.2009.04024.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
|
54
|
Narayan R, Gangadharan B, Hantz O, Antrobus R, García A, Dwek RA, Zitzmann N. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. J Proteome Res 2009; 8:118-22. [PMID: 19053806 DOI: 10.1021/pr800562j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first proteomic characterization of the HepaRG cell line, the only cell line that is susceptible to hepatitis B virus (HBV) infection and supports a complete virus life cycle, is reported. Differential analysis of naive and HBV-infected HepaRG cells by two-dimensional gel electrophoresis revealed 19 differentially regulated features, 7 increasing and 12 decreasing with HBV infection. The proteins identified in these features were involved in various cellular pathways including apoptosis, DNA/RNA processing, and hepatocellular impairment. Similar expression changes in a number of the identified proteins have already been reported for other virus systems. Identification of these expression changes is a validation of the proteomics approach and contributes to an understanding of host cellular response to HBV infection.
Collapse
|
55
|
Abstract
The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.
Collapse
Affiliation(s)
- Heather L Howie
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rachel A Katzenellenbogen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Denise A Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
56
|
Abstract
Loss of polarity and disruption of cell junctions are common features of epithelial-derived cancer cells, and mounting evidence indicates that such defects have a direct function in the pathology of cancer. Supporting this idea, results with several different human tumor viruses indicate that their oncogenic potential depends in part on a common ability to inactivate key cell polarity proteins. For example, adenovirus (Ad) type 9 is unique among human Ads by causing exclusively estrogen-dependent mammary tumors in experimental animals and in having E4 region-encoded open reading frame 1 (E4-ORF1) as its primary oncogenic determinant. The 125-residue E4-ORF1 protein consists of two separate protein-interaction elements, one of which defines a PDZ domain-binding motif (PBM) required for E4-ORF1 to induce both cellular transformation in vitro and tumorigenesis in vivo. Most notably, the E4-ORF1 PBM mediates interactions with a selected group of cellular PDZ proteins, three of which include the cell polarity proteins Dlg1, PATJ and ZO-2. Data further indicate that these interactions promote disruption of cell junctions and a loss of cell polarity. In addition, one or more of the E4-ORF1-interacting cell polarity proteins, as well as the cell polarity protein Scribble, are common targets for the high-risk human papillomavirus (HPV) E6 or human T-cell leukemia virus type 1 (HTLV-1) Tax oncoproteins. Underscoring the significance of these observations, in humans, high-risk HPV and HTLV-1 are causative agents for cervical cancer and adult T-cell leukemia, respectively. Consequently, human tumor viruses should serve as powerful tools for deciphering mechanisms whereby disruption of cell junctions and loss of cell polarity contribute to the development of many human cancers. This review article discusses evidence supporting this hypothesis, with an emphasis on the human Ad E4-ORF1 oncoprotein.
Collapse
|
57
|
Thomas M, Narayan N, Pim D, Tomaić V, Massimi P, Nagasaka K, Kranjec C, Gammoh N, Banks L. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 2008; 27:7018-30. [DOI: 10.1038/onc.2008.351] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
58
|
E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway. Virology 2008; 383:78-85. [PMID: 19007961 DOI: 10.1016/j.virol.2008.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/18/2008] [Accepted: 09/25/2008] [Indexed: 11/21/2022]
Abstract
Intra-type genome variations of high risk Human papillomavirus (HPV) have been associated with a differential threat for cervical cancer development. In this work, the effect of HPV18 E6 isolates in Akt/PKB and Mitogen-associated protein kinase (MAPKs) signaling pathways and its implication in cell proliferation were analyzed. E6 from HPV types 16 and 18 are able to bind and promote degradation of Human disc large (hDlg). Our results show that E6 variants differentially modulate hDlg degradation, rebounding in levels of activated PTEN and PKB. HPV18 E6 variants are also able to upregulate phospho-PI3K protein, strongly correlating with activated MAPKs and cell proliferation. Data was supported by the effect of E6 silencing in HPV18-containing HeLa cells, as well as hDlg silencing in the tested cells. Results suggest that HPV18 intra-type variations may derive in differential abilities to activate cell-signaling pathways such as Akt/PKB and MAPKs, directly involved in cell survival and proliferation.
Collapse
|
59
|
Lee M, Vasioukhin V. Cell polarity and cancer--cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 2008; 121:1141-50. [PMID: 18388309 DOI: 10.1242/jcs.016634] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Correct establishment and maintenance of cell polarity is required for the development and homeostasis of all metazoans. Cell-polarity mechanisms are responsible not only for the diversification of cell shapes but also for regulation of the asymmetric cell divisions of stem cells that are crucial for their correct self-renewal and differentiation. Disruption of cell polarity is a hallmark of cancer. Furthermore, recent evidence indicates that loss of cell polarity is intimately involved in cancer: several crucial cell-polarity proteins are known proto-oncogenes or tumor suppressors, basic mechanisms of cell polarity are often targeted by oncogenic signaling pathways, and deregulation of asymmetric cell divisions of stem or progenitor cells may be responsible for abnormal self-renewal and differentiation of cancer stem cells. Data from in vivo and three-dimensional (3D) cell-culture models demonstrate that tissue organization attenuates the phenotypic outcome of oncogenic signaling. We suggest that polarized 3D tissue organization uses cell-cell and cell-substratum adhesion structures to reinforce and maintain the cell polarity of pre-cancerous cells. In this model, polarized 3D tissue organization functions as a non-canonical tumor suppressor that prevents the manifestation of neoplastic features in mutant cells and, ultimately, suppresses tumor development and progression.
Collapse
Affiliation(s)
- Minhui Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., C3-168, Seattle, WA 98109, USA
| | | |
Collapse
|
60
|
Charbonnier S, Stier G, Orfanoudakis G, Kieffer B, Atkinson RA, Travé G. Defining the minimal interacting regions of the tight junction protein MAGI-1 and HPV16 E6 oncoprotein for solution structure studies. Protein Expr Purif 2008; 60:64-73. [DOI: 10.1016/j.pep.2008.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/30/2022]
|
61
|
Mammas IN, Sourvinos G, Giannoudis A, Spandidos DA. Human papilloma virus (HPV) and host cellular interactions. Pathol Oncol Res 2008; 14:345-54. [PMID: 18493868 DOI: 10.1007/s12253-008-9056-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/17/2008] [Indexed: 12/17/2022]
Abstract
Viral-induced carcinogenesis has been attributed to the ability of viral oncoproteins to target and interact with the host cellular proteins. It is generally accepted that Human papilloma virus (HPV) E6 and E7 function as the dominant oncoproteins of 'high-risk' HPVs by altering the function of critical cellular proteins. Initially it was shown that HPV E6 enhances the degradation of p53, while HPV E7 inactivates the function of the retinoblastoma tumor suppressor protein Rb. However, recent studies during the last decade have identified a number of additional host cellular targets of both HPV E6 and E7 that may also play an important role in malignant cellular transformation. In this review we present the interactions of HPV E6 and E7 with the host cellular target proteins. We also present the role of DNA integration in the malignant transformation of the epithelial cell.
Collapse
Affiliation(s)
- Ioannis N Mammas
- Department of Virology, School of Medicine, University of Crete, Heraklion, 71100, Crete, Greece
| | | | | | | |
Collapse
|
62
|
Thomas M, Dasgupta J, Zhang Y, Chen X, Banks L. Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates. Virology 2008; 376:371-8. [PMID: 18452965 DOI: 10.1016/j.virol.2008.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/14/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
Abstract
The E6 oncoproteins of the cancer-associated human papillomaviruses (high-risk HPV types) characteristically have a PDZ-binding motif at their extreme carboxy-termini. However, they interact with only some of the PDZ domain-containing proteins in the human proteome and, despite many of these proteins having multiple PDZ domains, they interact specifically through only one of those domains. Previous work has shown that the exact sequence of the C-terminal PDZ-binding motif of E6 affects substrate selection, and recently we have shown that an E6 residue peripheral to the binding motif also contributes to the specificity of binding. Here we show that substrate specificity of the HPV E6 PDZ binding is modulated both by the amino acid residues upstream of the binding domain and by the non-canonical residues within it. Using this data we have begun to construct a scheme of substrate preferences for E6 proteins from different HPV types.
Collapse
Affiliation(s)
- Miranda Thomas
- Tumour Virology Laboratory, I.C.G.E.B., Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
63
|
Hiller T, Stubenrauch F, Iftner T. Isolation and functional analysis of five HPVE6 variants with respect to p53 degradation. J Med Virol 2008; 80:478-83. [PMID: 18205217 DOI: 10.1002/jmv.21093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Persistent infection with high risk human papillomavirus is a necessary risk factor in the etiology of invasive cervical carcinoma. With regard to molecular details, the best studied types are HPV16 and HPV18 which are found in 70% of cervical cancer worldwide, however factors associated with the progression of individual cervical intraepithelial neoplasias into cancer are still poorly understood. Intratype amino acid variations in the immortalizing and transforming early proteins E6 and E7 were described to be associated with progressive disease and linked to increased viral persistence or progression. One of the key actions of high risk HPVE6 proteins is the inhibition of the function of p53, a tumor suppressor protein, by enhancing its degradation through the ubiquitin pathway. In this study, variants of five HPV type E6 proteins (HPV35, 53, 56, 66, and 70) isolated from patient materials are described and functional analysis of them were done with respect to p53 degradation. Interestingly the E6 protein of HPV type 53, which has no consistent risk classification in the literature showed the highest variability in our study. The analysis of all variants revealed no differences with regard to the degradation ability for p53 compared to the prototype E6 proteins, suggesting that the variants tested revealed no altered functions related to the carcinogenicity of the respective HPV types. It therefore seems more likely that variations in the E6 gene sequence may allow evasion from the hosts immune system, supporting increased viral persistence.
Collapse
Affiliation(s)
- Thomas Hiller
- Sektion Experimentelle Virologie, Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
64
|
Werme K, Wigerius M, Johansson M. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol 2008; 10:696-712. [DOI: 10.1111/j.1462-5822.2007.01076.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
65
|
Töpffer S, Müller-Schiffmann A, Matentzoglu K, Scheffner M, Steger G. Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol 2007; 88:2956-2965. [DOI: 10.1099/vir.0.83123-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The E6 proteins of high-risk genital human papillomaviruses (HPV), such as HPV types 16 and 18, possess a conserved C-terminal PDZ-binding motif, which mediates interaction with some cellular PDZ domain proteins. The binding of E6 usually results in their ubiquitin-mediated degradation. The ability of E6 to bind to PDZ domain proteins correlates with the oncogenic potential. Using a yeast two-hybrid system, GST pull-down experiments and coimmunoprecipitations, we identified the protein tyrosine phosphatase H1 (PTPH1/PTPN3) as a novel target of the PDZ-binding motif of E6 of HPV16 and 18. PTPH1 has been suggested to function as tumour suppressor protein, since mutational analysis revealed somatic mutations in PTPH1 in a minor fraction of various human tumours. We show here that HPV16 E6 accelerated the proteasome-mediated degradation of PTPH1, which required the binding of E6 to the cellular ubiquitin ligase E6-AP and to PTPH1. The endogenous levels of PTPH1 were particularly low in HPV-positive cervical carcinoma cell lines. The reintroduction of the E2 protein into the HPV16-positive cervical carcinoma cell line SiHa, known to lead to a sharp repression of E6 expression and to induce growth suppression, resulted in an increase of the amount of PTPH1. Our data suggest that reducing the level of PTPH1 may contribute to the oncogenic activity of high-risk genital E6 proteins.
Collapse
Affiliation(s)
- Stephanie Töpffer
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| | | | | | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gertrud Steger
- Institute of Virology, University of Cologne, Fürst-Pückler-Strasse 56, 50935 Cologne, Germany
| |
Collapse
|
66
|
Filippova M, Johnson MM, Bautista M, Filippov V, Fodor N, Tungteakkhun SS, Williams K, Duerksen-Hughes PJ. The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol 2007; 81:4116-29. [PMID: 17267478 PMCID: PMC1866154 DOI: 10.1128/jvi.01924-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV-16) has developed numerous ways to modulate host-initiated immune mechanisms. The HPV-16 E6 oncoprotein, for example, can modulate the cellular level, and consequently the activity, of procaspase 8, thus modifying the cellular response to cytokines of the tumor necrosis factor family. E6 from HPV-16, but not E6 from the low-risk types 6b and 11, alters the cellular level of procaspase 8 in a dose-dependent manner. Both the large and small (E6*) isoforms of E6, which originate by way of alternate splicing, can modulate procaspase 8 stability. Intriguingly, although both isoforms bind to procaspase 8, the large isoform accelerates the degradation of procaspase 8 while the small isoform stabilizes it. Binding leads to a change in the ability of procaspase 8 to bind either to itself or to FADD (Fas-associated death domain), with the large version of E6 able to inhibit this binding while the small isoform does not. Consistent with this model, knockdown of the large version of E6 by small interfering RNA leads to increases in the levels of procaspase 8 and its binding to both itself and FADD. Thus, these alternatively spliced isoforms can modulate both the level and the activity of procaspase 8 in opposite directions.
Collapse
Affiliation(s)
- Maria Filippova
- Department of Biochemistry and Microbiology, 11085 Campus Street, 121 Mortensen Hall, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
González-Mariscal L, Lechuga S, Garay E. Role of tight junctions in cell proliferation and cancer. ACTA ACUST UNITED AC 2007; 42:1-57. [PMID: 17502225 DOI: 10.1016/j.proghi.2007.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acquisition of a cancerous phenotype by epithelial cells involves the disruption of intercellular adhesions. The reorganization of the E-cadherin/beta-catenin complex in adherens junctions during cell transformation is widely recognized. Instead the implication of tight junctions (TJs) in this process is starting to be unraveled. The aim of this article is to review the role of TJ proteins in cell proliferation and cancer.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave. Instituto Politécnico Nacional 2508, México, DF 07360, México.
| | | | | |
Collapse
|
68
|
Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS. Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol 2007; 81:3618-26. [PMID: 17267502 PMCID: PMC1866053 DOI: 10.1128/jvi.02044-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus (HPV) E6 oncoprotein targets certain tumor suppressors such as MAGI-1 and SAP97/hDlg for degradation. A short peptide at the C terminus of E6 interacts specifically with the PDZ domains of these tumor suppressors, which is a property unique to high-risk HPVs that are associated with cervical cancer. The detailed recognition mechanisms between HPV E6 and PDZ proteins are unclear. To understand the specific binding of cellular PDZ substrates by HPV E6, we have solved the crystal structures of the complexes containing a peptide from HPV18 E6 bound to three PDZ domains from MAGI-1 and SAP97/Dlg. The complex crystal structures reveal novel features of PDZ peptide recognition that explain why high-risk HPV E6 can specifically target these cellular tumor suppressors for destruction. Moreover, a new peptide-binding loop on these PDZs is identified as interacting with the E6 peptide. Furthermore, we have identified an arginine residue, unique to high-risk HPV E6 but outside the canonical core PDZ recognition motif, that plays an important role in the binding of the PDZs of both MAGI-I and SAP97/Dlg, the mutation of which abolishes E6's ability to degrade the two proteins. Finally, we have identified a dimer form of MAGI-1 PDZ domain 1 in the cocrystal structure with E6 peptide, which may have functional relevance for MAGI-1 activity. In addition to its novel insights into the biochemistry of PDZ interactions, this study is important for understanding HPV-induced oncogenesis; this could provide a basis for developing antiviral and anticancer compounds.
Collapse
Affiliation(s)
- Yi Zhang
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, MCB201, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
69
|
Handa K, Yugawa T, Narisawa-Saito M, Ohno SI, Fujita M, Kiyono T. E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J Virol 2006; 81:1379-89. [PMID: 17121805 PMCID: PMC1797514 DOI: 10.1128/jvi.01712-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers.
Collapse
Affiliation(s)
- Keisuke Handa
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Jeong KW, Kim HZ, Kim S, Kim YS, Choe J. Human papillomavirus type 16 E6 protein interacts with cystic fibrosis transmembrane regulator-associated ligand and promotes E6-associated protein-mediated ubiquitination and proteasomal degradation. Oncogene 2006; 26:487-99. [PMID: 16878151 DOI: 10.1038/sj.onc.1209837] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The PDZ proteins such as hDLG, hScrib and MAGIs function as the membrane-associated protein scaffolds and have been shown to interact with the high-risk human papillomavirus (HPV) E6s. In this report, we identify a Golgi-associated PDZ protein, cystic fibrosis transmembrane regulator-associated ligand (CAL) as a cellular target of HPV16 E6 by the proteomic approach. The carboxy-terminal PDZ-binding motif of HPV16 E6 specifically interacts with the PDZ domain of CAL, and the interaction enhances proteasome-mediated degradation of CAL. HPV16 E6 interacts with CAL more strongly and degrades it better than HPV18 E6 owing to the more compatible PDZ-binding motif. CAL is ubiquitinated by the E6/E6-associated protein (E6AP) complex or by E6AP alone, albeit less efficiently, which indicates that it could be a normal target of E6AP. Although it downregulates CAL at the transcript level, small interfering RNA-induced depletion of HPV16 E6 in Caski cells stabilizes CAL at the protein level, suggesting that HPV16 E6 mediates the proteasomal degradation of CAL in HPV-positive cervical cancer cells. HPV16 E6 may tightly regulate the vesicular trafficking processes by interacting with CAL, and such a modification can contribute to the development of cervical cancer.
Collapse
Affiliation(s)
- K W Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | | | |
Collapse
|
71
|
Garnett TO, Duerksen-Hughes PJ. Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol 2006; 151:2321-35. [PMID: 16862386 PMCID: PMC1751433 DOI: 10.1007/s00705-006-0821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/12/2006] [Indexed: 01/31/2023]
Abstract
The regulation of host-mediated apoptosis by the E6 and E7 oncoproteins has garnered attention because it is believed to be an important strategy employed by high-risk (HR)-human papillomaviruses (HPVs) to evade immune surveillance. Additionally, the revelation that E5 can protect cells from tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis suggests that it may also play a role in undermining host defense mechanisms. Cellular transformation is an unintended consequence of persistent infection by HR-HPVs, and it is therefore likely that the primary function of E5, E6 and E7 is to regulate cell survival throughout the normal viral life cycle in order to ensure viral replication and promote the spread of progeny. The purpose of this article is to review the literature on the regulation of host-mediated apoptosis by E5, E6 and E7 that describes the mechanisms employed by HR-HPVs to persist in the host and create the conditions necessary for cellular transformation.
Collapse
Affiliation(s)
- T O Garnett
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | |
Collapse
|
72
|
Charbonnier S, Zanier K, Masson M, Travé G. Capturing protein-protein complexes at equilibrium: the holdup comparative chromatographic retention assay. Protein Expr Purif 2006; 50:89-101. [PMID: 16884919 DOI: 10.1016/j.pep.2006.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/12/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
The popular pulldown chromatographic assay detects complexes mediated by fusion proteins retained on affinity resin. The main limitation of this method is that it does not analyze complexes at equilibrium but after several washing steps. Consequently, fast-dissociating complexes may remain undetected. Here, we present the holdup assay, based on the principle of comparative chromatographic retention which eliminates the use of washing steps. The assay evaluates fractions of free and bound species at equilibrium. We used human papillomavirus oncoprotein E6, an E6-binding peptide and an E6-binding PDZ domain, to test several protocols utilizing pure proteins or expression extracts. The holdup assay is faster and more informative than the pulldown assay. It detects fast-dissociating complexes and it is also suited for evaluating equilibrium constants. It is potentially adaptable for automated determination of affinity constants and high-throughput analysis of interactions between proteins and other proteins, peptides, nucleic acids, or small regulatory molecules.
Collapse
Affiliation(s)
- Sebastian Charbonnier
- Equipe Oncoprotéines, UMR CNRS 7175-LC1, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brandt, BP 10413, 67412 Illkirch Cedex, France
| | | | | | | |
Collapse
|
73
|
Lichtig H, Algrisi M, Botzer LE, Abadi T, Verbitzky Y, Jackman A, Tommasino M, Zehbe I, Sherman L. HPV16 E6 natural variants exhibit different activities in functional assays relevant to the carcinogenic potential of E6. Virology 2006; 350:216-27. [PMID: 16519914 DOI: 10.1016/j.virol.2006.01.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/09/2006] [Accepted: 01/26/2006] [Indexed: 01/16/2023]
Abstract
Genetic studies have revealed natural amino acid variations within the human papillomavirus (HPV) type 16 E6 oncoprotein. To address the functional significance of E6 polymorphisms, 10 HPV16 E6 variants isolated from cervical lesions of Swedish women were evaluated for their activities in different in vitro and in vivo assays relevant to the carcinogenic potential of E6. Small differences between E6 prototype and variants, and among variants, were observed in transient expression assays that assessed p53 degradation, Bax degradation, and inhibition of p53 transactivation. More variable levels of activities were exhibited by the E6 proteins in assays that evaluated binding to the E6-binding protein (E6BP) or the human discs large protein (hDlg). The E6 prototype expressed moderate to high activity in the above assays. The L83V polymorphism, previously associated with risk for cancer progression in some populations, expressed similar levels of activity as that of the E6 prototype in most functional assays. On the other hand, L83V displayed more efficient degradation of Bax and binding to E6BP, but lower binding to hDlg. Results of this study indicate that naturally occurring amino acid variations in HPV16 E6 can alter activities of the protein important for its carcinogenic potential.
Collapse
Affiliation(s)
- Hava Lichtig
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel, and Thunder Bay Regional Health Sciences Centre, Regional Cancer Care Program, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Hougardy BMT, Maduro JH, van der Zee AGJ, de Groot DJA, van den Heuvel FAJ, de Vries EGE, de Jong S. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis. Int J Cancer 2006; 118:1892-900. [PMID: 16287099 DOI: 10.1002/ijc.21580] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize HPV-positive cervical cancer cell lines to apoptotic stimuli such as rhTRAIL (recombinant human TNF-related apoptosis inducing ligand). In a panel of cervical cancer cell lines, CaSki was highly, HeLa intermediate and SiHa not sensitive to rhTRAIL-induced apoptosis. MG132 strongly sensitized HeLa and SiHa to rhTRAIL-induced apoptosis in a caspase-dependent and time-dependent manner. MG132 massively induced TRAIL receptor DR4 and DR5 membrane expression in HeLa, whereas in SiHa only DR5 membrane expression was upregulated from almost undetectable to high levels. Antagonistic DR4 antibody partially inhibited apoptosis induction by rhTRAIL and MG132 in HeLa but had no effect on apoptosis in SiHa. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in elevated levels of active p53 as demonstrated by p53 small interfering RNA (siRNA) sensitive p21 upregulation. Although p53 siRNA partially inhibited MG132-induced DR5 upregulation in HeLa and SiHa, no effect on rhTRAIL-induced apoptosis was observed. MG132 plus rhTRAIL enhanced caspase 8 and caspase 3 activation and concomitant cleavage of X-linked inhibitor of apoptosis (XIAP), particularly in HeLa. In addition, caspase 9 activation was only observed in HeLa. Downregulation of XIAP using siRNA in combination with rhTRAIL induced high levels of apoptosis in HeLa, whereas MG132 had to be added to the combination of XIAP siRNA plus rhTRAIL to induce apoptosis in SiHa. In conclusion, proteasome inhibition sensitized HPV-positive cervical cancer cell lines to rhTRAIL independent of p53. Our results indicate that not only DR4 and DR5 upregulation but also XIAP inactivation contribute to rhTRAIL sensitization by MG132 in cervical cancer cell lines. Combining proteasome inhibitors with rhTRAIL may be therapeutically useful in cervical cancer treatment.
Collapse
Affiliation(s)
- Brigitte M T Hougardy
- Department of Gynecological Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
75
|
Charbonnier S, Coutouly MA, Kieffer B, Travé G, Atkinson RA. 13C, 15N and 1H resonance assignment of the PDZ1 domain of MAGI-1 using QUASI. JOURNAL OF BIOMOLECULAR NMR 2006; 36 Suppl 1:33. [PMID: 16636753 DOI: 10.1007/s10858-006-0017-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
76
|
Thomas M, Massimi P, Navarro C, Borg JP, Banks L. The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene 2005; 24:6222-30. [PMID: 16103886 DOI: 10.1038/sj.onc.1208757] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The E6 proteins of the high-risk Human papillomaviruses (HPV) types have a well-documented ability to target certain cellular proteins for ubiquitin-mediated degradation via the proteasome. Previous studies have shown that E6 proteins interact differently with different target proteins, and that the viral proteins, depending upon the target, may recruit diverse cellular ubiquitin-protein ligases. In this study, we have examined the abilities of E6 proteins from HPV-16 and HPV-18 to interact with and induce the degradation of two PDZ domain-containing targets, Dlg and hScrib. We have also mapped the binding site of E6 on hScrib and shown that the interaction of E6 with hScrib is distinct from its interactions with other PDZ domain-containing targets. This is reflected in the efficiency with which the two viral E6 proteins can inhibit hScrib's suppression of cell transformation.Dlg and hScrib have complementary activities in the control of epithelial cell polarity and the fact that both are targeted by high-risk HPV E6 proteins underlines their importance. Our finding that they are each targeted differently by HPV-16 and HPV-18 E 6 s suggests that the two viruses are subjected to somewhat different constraints and provides a possible explanation for the apparent redundancy in targeting both parts of this important control mechanism.
Collapse
Affiliation(s)
- Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | |
Collapse
|
77
|
Filippova M, Brown-Bryan TA, Casiano CA, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein can either protect or further sensitize cells to TNF: effect of dose. Cell Death Differ 2005; 12:1622-35. [PMID: 15933739 PMCID: PMC1615884 DOI: 10.1038/sj.cdd.4401678] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High-risk strains of human papillomavirus, including HPV 16, cause human cervical carcinomas, due in part to the activity of their E6 oncogene. E6 interacts with a number of cellular proteins involved in host-initiated apoptotic responses. Paradoxically, literature reports show that E6 can both protect cells from and sensitize cells to tumor necrosis factor (TNF). To examine this apparent contradiction, E6 was transfected into U2OS cells and stable clones were treated with TNF. Intriguingly, clones with a high level of E6 expression displayed an increased sensitivity to TNF by undergoing apoptosis, while those with low expression were resistant. Furthermore, TNF treatment of cells in which the expression of E6 was regulated by the addition of doxycycline demonstrated clearly that while low levels of E6 protect cells from TNF, high levels sensitize cells. Together, these results demonstrate that virus-host interactions can be complex and that both quantitative and qualitative aspects are important in determining outcome.
Collapse
Affiliation(s)
| | | | | | - Penelope J. Duerksen-Hughes
- Corresponding author: Dr. Penelope J. Duerksen-Hughes, Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, 11085 Campus Street, 121 Mortensen Hall, Loma Linda University School of Medicine, Loma Linda, CA 92354, Phone: 909/558-4300 ext 81361, Fax: 909/558-0177, e-mail:
| |
Collapse
|
78
|
Grm HS, Massimi P, Gammoh N, Banks L. Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene 2005; 24:5149-64. [PMID: 15856010 DOI: 10.1038/sj.onc.1208701] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human papillomaviruses are the causative agents of cervical cancer. Previous studies have shown that loss of the viral E2 protein during malignant progression is an important feature of HPV-induced malignancy due to the resulting uncontrolled expression of the viral oncoproteins E6 and E7. We now show however that the viral E2 and E6 proteins are both capable of regulating each other's activity. When coexpressed, E2 and E6 induce marked changes in the pattern of each other's expression, with preferential accumulation in nuclear speckles. The two proteins interact directly, resulting in changes in the substrate specificities of E6 and the biochemical activities of E2. Thus, while E6 efficiently degrades its PDZ domain-containing substrates in the absence of E2, this activity is greatly diminished when E2 is present. Likewise, E2 alone drives both viral DNA replication and viral gene expression. However, in the presence of E6, viral DNA replication is inhibited while the transcriptional activity of E2 is elevated. These studies define a far more complex pattern of interaction between E2 and E6 than was previously thought and redefines the possible consequences of loss of E2 with respect to uncontrolled E6 activity and consequent malignant progression.
Collapse
Affiliation(s)
- Helena Sterlinko Grm
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
79
|
Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol 2004; 78:11451-60. [PMID: 15479788 PMCID: PMC523272 DOI: 10.1128/jvi.78.21.11451-11460.2004] [Citation(s) in RCA: 693] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Karl Münger
- Department of Pathology, Harvard Medical School, 77 Ave. Louis Pasteur, NRB 0958C, Boston, MA 02115-5727, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. Implication of the MAGI‐1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 2004; 19:115-7. [PMID: 15629897 DOI: 10.1096/fj.04-1942fje] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently established the critical role of the lipid phosphatase activity of the PTEN tumor suppressor in stabilizing cell-cell contacts and suppressing invasiveness. To delineate the effector systems involved, we investigated the interaction of PTEN with E-cadherin junctional complexes in kidney and colonic epithelial cell lines. PTEN and the p85 regulatory subunit of phosphatidylinositol 3-OH kinase (PI3K) co-immunoprecipitated with E-cadherin and catenins. By using a yeast two-hybrid assay, we demonstrated that PTEN interacted indirectly with beta-catenin by binding the scaffolding protein MAGI-1b. This model was corroborated in various ways in mammalian cells. Ectopic expression of MAGI-1b potentiated the interaction of PTEN with junctional complexes, promoted E-cadherin-dependent cell-cell aggregation, and reverted the Src-induced invasiveness of kidney MDCKts-src cells. In this model, MAGI-1b slightly decreased the activity of AKT, a downstream effector of PI3K. By using dominant-negative and constitutively active AKT expression vectors, we demonstrated that this kinase was included in the pathways involved in Src-induced destabilization of junctional complexes and was necessary and sufficient to trigger invasiveness. We propose that the recruitment of PTEN at adherens junctions by MAGI-1b and the local down-regulation of phosphatidylinositol-3,4,5-trisphosphate pools and downstream effector systems at the site of cell-cell contacts are focal points for restraining both disruption of junctional complexes and induction of tumor cell invasion.
Collapse
|
81
|
Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev 2004; 18:2269-82. [PMID: 15371341 PMCID: PMC517520 DOI: 10.1101/gad.1214704] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The critical immortalizing activity of the human papillomavirus (HPV) type-16 E6 oncoprotein is to induce expression of hTERT, the catalytic and rate-limiting subunit of telomerase. Additionally, E6 binds to a cellular protein called E6-associated protein (E6-AP) to form an E3 ubiquitin ligase that targets p53 for proteasome-dependent degradation. Although telomerase induction and p53 degradation are separable and distinct functions of E6, binding of E6 to E6-AP strongly correlated with the induction of hTERT. Here, we demonstrate using shRNAs to reduce E6-AP expression that E6-AP is required for E6-mediated telomerase induction. A yeast two-hybrid screen to find new targets of the E6/E6-AP E3 ubiquitin ligase complex identified NFX1. Two isoforms of NFX1 were found: NFX1-123, which coactivated with c-Myc at the hTERT promoter, and NFX1-91, which repressed the hTERT promoter. NFX1-91 was highly ubiquitinated and destabilized in epithelial cells expressing E6. Furthermore, knockdown of NFX1-91 by shRNA resulted in derepression of the endogenous hTERT promoter and elevated levels of telomerase activity. We propose that the induction of telomerase by the HPV-16 E6/E6-AP complex involves targeting of NFX1-91, a newly identified repressor of telomerase, for ubiquitination and degradation.
Collapse
Affiliation(s)
- Lindy Gewin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
82
|
Grm HS, Banks L. Degradation of hDlg and MAGIs by human papillomavirus E6 is E6-AP-independent. J Gen Virol 2004; 85:2815-2819. [PMID: 15448342 DOI: 10.1099/vir.0.80035-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important characteristic of the E6 proteins derived from cancer-associated human papillomaviruses (HPVs) is their ability to target cellular proteins for ubiquitin-mediated degradation. Degradation of the p53 tumour suppressor protein by E6 is known to involve the cellular ubiquitin ligase, E6-AP; however, it is presently not known how E6 targets the Drosophila discs large (Dlg) tumour suppressor and the membrane-associated guanylate kinase inverted (MAGI) family of proteins for degradation. By using an in vitro E6-AP immunodepletion assay, these targets were tested for degradation in a E6-AP-dependent manner. The data showed clearly that E6 can direct the degradation of Dlg and the MAGI family of proteins in the absence of E6-AP in this in vitro system. These results provide compelling evidence for the role of E6-associated ubiquitin ligases other than E6-AP in the degradation of certain E6 targets.
Collapse
Affiliation(s)
- Helena Sterlinko Grm
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
83
|
Massimi P, Gammoh N, Thomas M, Banks L. HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 2004; 23:8033-9. [PMID: 15378012 DOI: 10.1038/sj.onc.1207977] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The high-risk HPV E6 proteins have been shown to direct the degradation of a variety of cellular proteins that contain PDZ domains. Although some of these proteins are involved in regulating processes of cell growth and polarity in Drosophila, little is known about their function in higher eukaryotic epithelial cells. In HPV-containing cells derived from cervical tumours, we find that the patterns of expression of the E6 targets hDlg (discs large), hScrib (Scribble), and MUPP1 are consistent with their being substrates for E6-induced degradation. It is also clear that, in the case of hDlg, E6 is specifically targeting nuclear pools of the protein rather than membrane-bound forms. We have also analysed the activity of a subset of E6 target proteins in the suppression of oncogene-induced cell transformation. Interestingly, Dlg, MAGI-1 and MUPP1 efficiently suppressed cell transformation, while MAGI-2 and MAGI-3 were ineffective in this assay. These results suggest that in the context of HPV-induced transformation Dlg, MAGI-1 and MUPP1 can function as tumour suppressors.
Collapse
Affiliation(s)
- Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste I-34012, Italy
| | | | | | | |
Collapse
|
84
|
Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, Ning T, Basang Z, Zhang C, Ke Y. Human Papillomavirus 16 E6 Oncoprotein Interferences with Insulin Signaling Pathway by Binding to Tuberin. J Biol Chem 2004; 279:35664-70. [PMID: 15175323 DOI: 10.1074/jbc.m403385200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in either TSC1 or TSC2 tumor suppressor gene. TSC1 and TSC2 products, Harmatin and Tuberin, form the functional complex to serve as the negative regulator for insulin-induced phosphorylation of S6 kinase and elF4E-binding protein 1. High-risk human papillomavirus (HPV) infection is the necessary cause for cervical cancer. E6 oncoprotein encoded by HPV plays a pivotal role in carcinogenesis by interference with the host intracellular protein functions. In this study, we show that HPV16 E6 interacts with tumor suppressor gene TSC2 product, Tuberin, and results in the phosphorylation of S6 kinase and S6 even in the absence of insulin. The overexpression of Tuberin overcomes the effect of E6 on S6 kinase phosphorylation. Binding with HPV16 E6 causes the proteasome-mediated degradation of Tuberin. A DILG motif and an ELVG motif located in the carboxyl-terminal of Tuberin are required for E6 binding. In addition, the Tuberin interaction region in E6 has been mapped in the amino-terminal portion of HPV16 E6, which is different from the binding domain with p53. These results provide a possible link between E6-induced oncogenesis and the insulin-stimulated cell proliferation signaling pathway.
Collapse
Affiliation(s)
- Zheming Lu
- Department of Genetics, Beijing Institute for Cancer Research, School of Oncology, Peking University, 1 Da Hong Luo Chang Street, West District, Beijing 100034, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 2004; 279:25729-44. [PMID: 15073179 DOI: 10.1074/jbc.m401172200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of the tumor suppressor p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that E6 can protect cells from tumor necrosis factor-induced apoptosis by binding to the C-terminal end of tumor necrosis factor R1, thus blocking apoptotic signal transduction. In this study, E6 was shown to also protect cells from apoptosis induced via the Fas pathway. Furthermore, use of an inducible E6 expression system demonstrated that this protection is dose-dependent, with higher levels of E6 leading to greater protection. Although E6 suppresses activation of both caspase 3 and caspase 8, it does not affect apoptotic signaling through the mitochondrial pathway. Mammalian two-hybrid and in vitro pull-down assays were then used to demonstrate that E6 binds directly to the death effector domain of Fas-associated death domain (FADD), with deletion and site-directed mutants enabling the localization of the E6-binding site to the N-terminal end of the FADD death effector domain. E6 is produced in two forms as follows: a full-length version of approximately 16 kDa and a smaller version of about half that size corresponding to the N-terminal half of the full-length protein. Pull-down and functional assays demonstrated that the full-length version, but not the small version of E6, was able to bind to FADD and to protect cells from Fas-induced apoptosis. In addition, binding to E6 leads to degradation of FADD, with the loss of cellular FADD proportional to the amount of E6 expressed. These results support a model in which E6-mediated degradation of FADD prevents transmission of apoptotic signals via the Fas pathway.
Collapse
Affiliation(s)
- Maria Filippova
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, California 92354, USA
| | | | | |
Collapse
|
86
|
Oh ST, Longworth MS, Laimins LA. Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol 2004; 78:2620-6. [PMID: 14963169 PMCID: PMC369251 DOI: 10.1128/jvi.78.5.2620-2626.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many important functions have been attributed to the high-risk human papillomavirus (HPV) E6 and E7 proteins, including binding and degradation of p53 as well as interacting with Rb proteins. In contrast, the physiological roles of the low-risk E6 and E7 proteins remain unclear. Previous studies demonstrated that the high-risk E6 and E7 proteins also play roles in the productive life cycle by facilitating the maintenance of viral episomes (J. T. Thomas, W. G. Hubert, M. N. Ruesch, and L. A. Laimins, Proc. Natl. Acad. Sci. USA 96:8449-8454, 1999). In order to determine whether low-risk E6 or E7 is similarly necessary for the stable maintenance of episomes, HPV type 11 (HPV-11) genomes that contained translation termination mutations in E6 or E7 were constructed. Upon transfection into normal human keratinocytes, genomes in which E6 function was abolished were unable to be maintained episomally. Transfection of genomes containing substitution mutations in amino acids conserved in high- and low-risk HPV types suggested that multiple protein domains are involved in this process. Examination of cells transfected with HPV-11 genomes in which E7 function was inhibited were found to exhibit a more complex phenotype. At the second passage following transfection, mutant genomes were maintained as episomes but at significantly reduced levels than in cells transfected with the wild-type HPV-11 genome. Upon further passage in culture, however, the episomal forms of these E7 mutant genomes quickly disappeared. These findings identify important new functions for the low-risk E6 and E7 proteins in the episomal maintenance of low-risk HPV-11 genomes and suggest that they may act in a manner similar to that observed for the high-risk proteins.
Collapse
Affiliation(s)
- Stephen T Oh
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
87
|
Sterlinko Grm H, Weber M, Elston R, McIntosh P, Griffin H, Banks L, Doorbar J. Inhibition of E6-induced degradation of its cellular substrates by novel blocking peptides. J Mol Biol 2004; 335:971-85. [PMID: 14698292 DOI: 10.1016/j.jmb.2003.10.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The E6 oncoprotein derived from the tumour-associated human papillomavirus (HPV) types induces the ubiquitin-mediated degradation of several cellular proteins by conjugating them with the cellular ubiquitin ligase E6-AP. This is a HECT domain-containing ligase that was originally identified through its involvement in the E6-mediated degradation of the cellular tumour suppressor protein p53. Here we have investigated, in more detail, the nature of the E6/E6-AP interaction using binding peptides isolated from an E6-specific library. The selected peptides were either predicted or shown to have an alpha-helical core resembling the E6-binding motif on E6-AP, as well as amino acid alterations that increased their affinity for E6. These peptides were potent inhibitors of the E6/E6-AP interaction. Further analysis of the effects of these peptides on the ability of E6 to direct the proteolytic degradation of its various substrates, including p53, Dlg and the MAGI family of proteins, as well as using E6-AP immunodepletion, revealed striking differences in the mechanism by which E6 targets its cellular substrates for degradation. These results suggest that the site on E6 bound by E6-AP is also most likely occupied by other, as yet unidentified, ubiquitin ligases.
Collapse
Affiliation(s)
- Helena Sterlinko Grm
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
88
|
Cooper B, Schneider S, Bohl J, Jiang YH, Beaudet A, Vande Pol S. Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology 2003; 306:87-99. [PMID: 12620801 DOI: 10.1016/s0042-6822(02)00012-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
E6 oncoproteins from human papillomavirus type 16 (16E6) and Bovine Papillomavirus type 1 (BE6) bind to leucine rich peptides (called charged leucine, LXXLL, or signature peptides) found on target cellular proteins. BE6 and 16E6 both bind the product of the UBE3A gene called E6AP on a charged leucine peptide, LQELL. E6AP is an E3 ubiquitin ligase that together with 16E6 interacts with p53 to target p53 degradation. Although both BE6 and 16E6 bind the LQELL peptide of E6AP, only 16E6 acts as an adapter to then bring p53 to E6AP. In order to determine how E6 proteins function as adapters, 16E6, p53, and E6AP were expressed in yeast, and were shown to form a tri-molecular complex. 16E6 mutants were selected that retained interactions with E6AP yet were defective for interaction with p53. Such 16E6 mutations were typically within the amino-terminus of 16E6. Through the use of E6AP null cells, transfected E6AP was shown to be necessary and sufficient for the degradation of p53 in the presence of 16E6. However, the interaction of 16E6 with E6AP was complex. While BE6 interacts only with the LQELL motif of E6AP, an intact LQELL motif is not necessary either for interaction of 16E6 with E6AP or for p53 degradation. In addition, 16E6 mutants that fail to bind the LQELL motif of E6AP can support p53 degradation. These results indicate that 16E6 may have multiple modes of interaction with E6AP and that assembly of p53 containing complexes for targeted degradation by E6AP may occur in more than one way. These results have implications for potential targeting of the interaction of 16E6 and E6AP in the therapy of HPV-induced cancer.
Collapse
Affiliation(s)
- Brooke Cooper
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
89
|
Pim D, Thomas M, Banks L. Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins. Oncogene 2002; 21:8140-8. [PMID: 12444549 DOI: 10.1038/sj.onc.1206026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 09/04/2002] [Accepted: 09/04/2002] [Indexed: 01/20/2023]
Abstract
The ability of HPV E6 oncoproteins to induce the degradation of PDZ domain-containing MAGUK proteins correlates with their malignant potential. We previously showed that the HPV-6 E6 protein, when provided with the PDZ-binding domain from HPV-18 E6, acquires the ability to bind the Discs Large (Dlg) tumour suppressor and target it for degradation. Based on this finding we have extended this analysis to E6 proteins from a variety of different papillomavirus types. Cloning a PDZ-binding sequence onto the C-terminus of E6 proteins derived from low-risk mucosal, and low and high-risk cutaneous papillomavirus types, enables them to bind Dlg and a second MAGUK family member, MAGI-1. This renders the mucosally-derived low-risk chimaeric HPV E6 proteins capable of targeting Dlg for degradation, but they are unable to induce significant levels of degradation of MAGI-1. In contrast, none of the E6 proteins derived from cutaneous papillomavirus types induce significant degradation of either MAGI-1 or Dlg when provided with a PDZ-binding domain. These results demonstrate significant differences, both between mucosal and cutaneous HPV E6 proteins and in the pathways required for Dlg and MAGI-1 degradation.
Collapse
Affiliation(s)
- David Pim
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano-99, I-34012, Trieste, Italy.
| | | | | |
Collapse
|
90
|
Srivenugopal KS, Ali-Osman F. The DNA repair protein, O(6)-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 2002; 21:5940-5. [PMID: 12185595 DOI: 10.1038/sj.onc.1205762] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 06/05/2002] [Accepted: 06/14/2002] [Indexed: 01/01/2023]
Abstract
We have previously shown that O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects tissues against toxic and carcinogenic effects of alkylating agents, is degraded through ubiquitination-dependent proteolysis. Here, we investigated the role of the human papillomavirus (HPV) E6 protein in MGMT degradation. In three pairs of isogenic human tumor cell lines in which a member of each pair expressed the E6 protein through stable transfection (HCT116/HCT116-E6, MCF7/MCF7-E6, and RKO/RKO-E6), we found a consistent 40-55% reduction in the MGMT protein level and its activity in all E6-expressing cells compared with the parent cells (P=<0.05). E6 expression did not, however, alter the levels of MGMT mRNA. Addition of the recombinant MGMT (rMGMT) protein to extracts of HCT116/E6 cells resulted in the binding of E6 to MGMT. Further, the purified E6 protein promoted the degradation of rMGMT in rabbit reticulocyte lysates. Immunoprecipitation assays showed the presence of a ternary protein complex between MGMT, E6, and the cellular ubiquitin-ligase E6-associated protein (E6-AP). Transient transfection of the p53-null H1299 lung tumor cells with an E6 construct also down-regulated the MGMT. The MGMT protein also showed structural features that are compatible for interaction with the E6, and E6-AP components. Collectively, these data suggest that the oncogenic E6 proteins enhance the ubiquitin-dependent proteolysis of MGMT.
Collapse
Affiliation(s)
- Kalkunte S Srivenugopal
- Section of Molecular Therapeutics, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston 77030-4009, USA.
| | | |
Collapse
|
91
|
Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L, Banks L. Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002; 21:5088-96. [PMID: 12140759 DOI: 10.1038/sj.onc.1205668] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 05/01/2002] [Accepted: 05/10/2002] [Indexed: 01/11/2023]
Abstract
The E6 proteins from the high-risk human papillomavirus (HPV) types have previously been shown to target a number of PDZ domain-containing proteins for proteasome-mediated degradation. These include the hDlg tumour suppressor and the MAGI-1 protein. In this study we show that high-risk HPV E6 proteins also target the related MAGI-2 and MAGI-3 proteins for degradation. Moreover, we show that the interaction is specific to one PDZ domain, and that co-expression of this domain can protect each of the full-length MAGI proteins from E6-mediated degradation. These data provide clear indicators for the potential design of compounds that could specifically inhibit the interaction of oncogenic HPV E6 proteins with an important class of target proteins.
Collapse
Affiliation(s)
- Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
92
|
Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 2002; 277:21730-9. [PMID: 11934887 DOI: 10.1074/jbc.m200113200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that transfection of HPV 16 E6 into the tumor necrosis factor (TNF)-sensitive LM cell line protects expressing cells from TNF-induced apoptosis in a p53-independent manner, and the purpose of this study was to determine the molecular mechanism underlying this protection. Caspase 3 and caspase 8 activation were significantly reduced in E6-expressing cells, indicating that E6 acts early in the TNF apoptotic pathway. In fact, E6 binds directly to TNF R1, as shown both by co-immunoprecipitation and mammalian two-hybrid approaches. E6 requires the same C-terminal portion of TNF R1 for binding as does TNF R1-associated death domain, and TNF R1/TNF R1-associated death domain interactions are decreased in the presence of E6. HA-E6 also blocked cell death triggered by transfection of the death domain of TNF R1. Together, these results provide strong support for a model in which HPV E6 binding to TNF R1 interferes with formation of the death-inducing signaling complex and thus with transduction of proapoptotic signals. They also demonstrate that HPV, like several other viruses, has developed a method for evading the TNF-mediated host immune response.
Collapse
Affiliation(s)
- Maria Filippova
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, Loma Linda University School of Medicine, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
93
|
Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001; 20:7874-87. [PMID: 11753670 DOI: 10.1038/sj.onc.1204869] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The human papillomavirus (HPV) E6 protein is one of three oncoproteins encoded by the virus. It has long been recognized as a potent oncogene and is intimately associated with the events that result in the malignant conversion of virally infected cells. In order to understand the mechanisms by which E6 contributes to the development of human malignancy many laboratories have focused their attention on identifying the cellular proteins with which E6 interacts. In this review we discuss these interactions in the light of their respective contributions to the malignant progression of HPV transformed cells.
Collapse
Affiliation(s)
- F Mantovani
- International Centre for Genetic Engineering and Biotechnology Padriciano 99, I-34012 Trieste, Italy
| | | |
Collapse
|