51
|
Li C, Cheng Q, Liu J, Wang B, Chen D, Liu Y. Potent growth-inhibitory effect of TRAIL therapy mediated by double-regulated oncolytic adenovirus on osteosarcoma. Mol Cell Biochem 2012; 364:337-44. [PMID: 22354724 DOI: 10.1007/s11010-012-1235-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/13/2012] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) severely threatens the health of young people and understanding on the molecular mechanisms of OS etiology enables gene therapy to become an effective therapeutic modality. However, insufficient expression level of genes using existing vectors limits the clinical application of gene therapy for OS. To solve the problem, we developed an oncolytic adenoviral vector, OAT, which can selectively and efficiently replicate in OS cells to enhance the expression of transferred genes. We demonstrated that OAT-mediated TRAIL expression is significantly elevated after infection of OS cells than replication-incompetent Ad5 vector. Increased antitumor capacity was observed in OS cells after OAT-TRAIL treatment both in vitro and in vivo. In normal cells, adenoviral replication, TRAIL expression and growth-inhibiting effect were quite limited when OAT-TRAIL was administrated, showing a high biosafety of this oncolytic adenoviral vector. Collectively, we generated an efficient and promising expression vector for OS gene therapy.
Collapse
Affiliation(s)
- Chunbao Li
- Department of Orthopaedic Surgery, General Hospital of People's Liberation Army, Beijing 100853, China
| | | | | | | | | | | |
Collapse
|
52
|
Jen EY, Poindexter NJ, Farnsworth ES, Grimm EA. IL-2 regulates the expression of the tumor suppressor IL-24 in melanoma cells. Melanoma Res 2012; 22:19-29. [PMID: 22027907 PMCID: PMC3253989 DOI: 10.1097/cmr.0b013e32834d2506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melanoma is notoriously resistant to chemotherapy, but variable responses to biotherapies, including the IFNs and IL-2, provide intriguing avenues for further study. Systemic IL-2 treatment has provided significant clinical benefit in a minority of patients with metastatic melanoma, leading to long-term survival in a few cases. We hypothesize that one previously unidentified mechanism of effective IL-2 therapy is through direct upregulation of the tumor suppressor IL-24 in melanoma tumor cells resulting in growth suppression. In this study, five melanoma cell lines were treated with high dose recombinant human IL-2. Three (A375, WM1341, WM793) showed statistically significant increases in IL-24 protein; two (WM35, MeWo) remained negative for IL-24 message and protein. This increase was abolished by preincubating with anti-IL-2 antibody or blocking with antibodies against the IL-2 receptor chains. These IL-2 responsive melanoma cell lines expressed IL-2Rβ and IL-2Rγ mRNA. The IL-2Rβγ complex was functional, as measured by IL-2-induced signal transducers and activators of transcription activation as well as IL-15 signaling through its shared receptor complex. IL-24 upregulation was observed in response to either IL-2 or IL-15. Cell growth was significantly decreased by treatment of IL-24-positive cells with IL-2 or IL-15, whereas no effect was seen in negative cells. Incubating the IL-24 inducible-cells with anti-IL-24 antibody as well as transfecting with IL-24 small interfering RNA effectively reversed the growth suppression seen with IL-2. Thus, we have shown that one mechanism of clinically effective IL-2 therapy may be the direct action of IL-2 on a biologically distinct subset of melanoma cells leading to upregulation of the tumor suppressor IL-24.
Collapse
Affiliation(s)
- Emily Y. Jen
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Nancy J. Poindexter
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Melanoma Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Elizabeth S. Farnsworth
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Elizabeth A. Grimm
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Melanoma Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
53
|
MDA-7/IL-24 Expression and Its Relation with Clinicopathologic Factors in Lung Adenocarcinomas of 3 cm or Less in Diameter. ACTA ACUST UNITED AC 2012. [DOI: 10.6058/jlc.2012.11.2.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Chai L, Liu S, Mao Q, Wang D, Li X, Zheng X, Xia H. A novel conditionally replicating adenoviral vector with dual expression of IL-24 and arresten inserted in E1 and the region between E4 and fiber for improved melanoma therapy. Cancer Gene Ther 2011; 19:247-54. [DOI: 10.1038/cgt.2011.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
55
|
AAV8 vector expressing IL24 efficiently suppresses tumor growth mediated by specific mechanisms in MLL/AF4-positive ALL model mice. Blood 2011; 119:64-71. [PMID: 22025528 DOI: 10.1182/blood-2011-05-354050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mixed-lineage leukemia (MLL)/AF4-positive acute lymphoblastic leukemia (ALL) is a common type of leukemia in infants, which is associated with a high relapse rate and poor prognosis. IL24 selectively induces apoptosis in cancer cells and exerts immunomodulatory and antiangiogenic effects. We examined the effects of adeno-associated virus type 8 (AAV8) vector-mediated muscle-directed systemic gene therapy in MLL/AF4-positive ALL using IL24. In a series of in vitro studies, we examined the effects of AAV8-IL24-transduced C2C12 cell-conditioned medium. We also examined the effects of AAV8-IL24 in MLL/AF4 transgenic mice. The results revealed the effects of AAV8-IL24 in MLL/AF4-positive ALL both in vitro and in vivo. With regard to the mechanism of therapy using AAV8-IL24 in MLL/AF4-positive ALL, we demonstrated the antiangiogenicity and effects on the ER stress pathway and unreported pathways through inhibition of S100A6 and HOXA9, which is specific to MLL/AF4-positive ALL. Inhibition of S100A6 by IL24 was dependent on TNF-α and induced acetylation of p53 followed by activation of the caspase 8-caspase 3 apoptotic pathway. Inhibition of HOXA9 by IL24, which was independent of TNF-α, induced MEIS1 activation followed by activation of the caspase 8-caspase 3 apoptotic pathway. Thus, gene therapy using AAV8-IL24 is a promising treatment for MLL/AF4-positive ALL.
Collapse
|
56
|
Paul S, Kim SJ, Park HW, Lee SY, An YR, Oh MJ, Jung JW, Ryu JC, Hwang SY. Impact of miRNA deregulation on mRNA expression profiles in response to environmental toxicant, nonylphenol. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Zerbini LF, Tamura RE, Correa RG, Czibere A, Cordeiro J, Bhasin M, Simabuco FM, Wang Y, Gu X, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA. Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy. PLoS One 2011; 6:e24285. [PMID: 21931671 PMCID: PMC3171406 DOI: 10.1371/journal.pone.0024285] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/05/2011] [Indexed: 01/04/2023] Open
Abstract
Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID) with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD) 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.
Collapse
Affiliation(s)
- Luiz F Zerbini
- Medical Biochemistry Division, Faculty of Health Sciences, International Center for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Adenovirus-mediated human interleukin 24 (MDA-7/IL-24) selectively suppresses proliferation and induces apoptosis in keloid fibroblasts. Ann Plast Surg 2011; 66:660-6. [PMID: 21042181 DOI: 10.1097/sap.0b013e3181e05039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Keloids are fibroproliferative dermal lesions characterized by the proliferation of fibroblasts and the formation of excess scar tissue, for which no effective treatment exists. We transfected a replication-incompetent adenovirus vector expressing green fluorescent protein and interleukin-24 gene (Ad-GFP/IL-24) into keloid fibroblasts (KF) and normal dermal fibroblasts (NDF) in vitro to investigate the suppression effects by observation on cell lines growth, apoptosis, mitosis cycle, etc. The expression of GFP and IL-24 mRNA confirmed that Ad-GFP/IL-24 was transfected into KF and NDF successfully. The expression level of secreting IL-24 protein detected by enzyme-linked immunosorbent assay in Ad-GFP/IL-24-treated KF and PBS-treated NDF was higher than controls; treatment with Ad-GFP/IL-24 in KF induced growth suppression (71.83% ± 6.67%, P < 0.05 to 9.79% ± 3.34%, P < 0.01), apoptosis (24.2% ± 3.08% to 66.51% ± 5.29%, P < 0.01) and increased the percentage of the G2/M phase (42.26% ± 6.44%, P < 0.01) in KF but not in NDF. The data showed that the exogenous IL-24 gene could selectively inhibit human KF proliferation and induce significant apoptosis.
Collapse
|
59
|
Splice variants of mda-7/IL-24 differentially affect survival and induce apoptosis in U2OS cells. Cytokine 2011; 56:272-81. [PMID: 21843952 DOI: 10.1016/j.cyto.2011.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.
Collapse
|
60
|
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2011; 127:701-21.e1-70. [PMID: 21377040 DOI: 10.1016/j.jaci.2010.11.050] [Citation(s) in RCA: 553] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
Abstract
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 2011; 286:16606-14. [PMID: 21454583 DOI: 10.1074/jbc.m111.227611] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma.
Collapse
Affiliation(s)
- Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | |
Collapse
|
62
|
Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee SG, Park MA, Yacoub A, Rahmani M, Emdad L, Dmitriev IP, Wang XY, Sarkar D, Grant S, Dent P, Curiel DT, Fisher PB. mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 2011; 21:381-91. [PMID: 20926331 DOI: 10.1016/j.cytogfr.2010.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
Collapse
Affiliation(s)
- Rupesh Dash
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sahoo A, Lee CG, Jash A, Son JS, Kim G, Kwon HK, So JS, Im SH. Stat6 and c-Jun Mediate Th2 Cell-Specific IL-24 Gene Expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:4098-109. [DOI: 10.4049/jimmunol.1002620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
64
|
Eulitt PJ, Park MA, Hossein H, Cruikshanks N, Yang C, Dmitriev IP, Yacoub A, Curiel DT, Fisher PB, Dent P. Enhancing mda-7/IL-24 therapy in renal carcinoma cells by inhibiting multiple protective signaling pathways using sorafenib and by Ad.5/3 gene delivery. Cancer Biol Ther 2010; 10:1290-305. [PMID: 20948318 DOI: 10.4161/cbt.10.12.13497] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have determined whether an adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7, more effectively infects and kills renal carcinoma cells (RCCs) compared to a serotype 5 virus, Ad.5-mda-7. RCCs are a tumor cell type that generally does not express the receptor for the type 5 adenovirus; the coxsackie and adenovirus receptor (CAR). Ad.5/3-mda-7 infected RCCs to a much greater degree than Ad.5-mda-7. MDA-7/IL-24 protein secreted from Ad.5/3-mda-7-infected RCCs induced MDA-7/IL-24 expression and promoted apoptosis in uninfected "bystander" RCCs. MDA-7/IL-24 killed both infected and bystander RCCs via CD95 activation. Knockdown of intracellular MDA-7/IL-24 in uninfected RCCs blocked the lethal effects of conditioned media. Infection of RCC tumors in one flank, with Ad.5/3-mda-7, suppressed growth of infected tumors and reduced the growth rate of uninfected tumors implanted on the opposite flank. The toxicity of the serotype 5/3 recombinant adenovirus to express MDA-7/IL-24 was enhanced by combined molecular or small molecule inhibition of MEK1/2 and PI3K; inhibition of mTOR, PI3K and MEK1/2; or use of the multi-kinase inhibitor sorafenib. In RCCs, combined inhibition of cytoprotective cell signaling pathways enhanced the MDA-7/IL-24-induction of CD95 activation, with greater mitochondrial dysfunction due to loss of MCL-1 and BCL-XL expression, and tumor cell death. Treatment of RCC tumors in vivo with sorafenib also enhanced Ad.5/3-mda-7 toxicity and prolonged animal survival. Future combinations of these approaches hold promise for developing a more effective therapy for kidney cancer.
Collapse
Affiliation(s)
- Patrick J Eulitt
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, 401 College St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Park MA, Hamed HA, Mitchell C, Cruickshanks N, Dash R, Allegood J, Dmitriev IP, Tye G, Ogretmen B, Spiegel S, Yacoub A, Grant S, Curiel DT, Fisher PB, Dent P. A serotype 5/3 adenovirus expressing MDA-7/IL-24 infects renal carcinoma cells and promotes toxicity of agents that increase ROS and ceramide levels. Mol Pharmacol 2010; 79:368-80. [PMID: 21119025 DOI: 10.1124/mol.110.069484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Agents that generate reactive oxygen species (ROS) are recognized to enhance MDA-7/IL-24 lethality. The present studies focused on clarifying how such agents enhanced MDA-7/IL-24 toxicity in renal cell carcinoma cells (RCCs). Infection of RCCs with a tropism-modified serotype 5/3 adenovirus expressing MDA-7/IL-24 (Ad.5/3-mda-7) caused plasma membrane clustering of CD95 and CD95 association with pro-caspase 8, effects that were enhanced by combined exposure to 17-N-allylamino-17-demethoxygeldanamycin (17AAG), As(2)O(3), or fenretinide and that correlated with enhanced cell killing. Knockdown of CD95 or expression of cellular FADD (Fas-associated protein with death domain)-like interleukin-1β-converting enzyme inhibitory protein, short form (c-FLIP-s) blocked enhanced killing. Inhibition of ROS generation, elevated cytosolic Ca(2+), or de novo ceramide synthesis blocked Ad.5/3-mda-7 ± agent-induced CD95 activation and the enhancement of apoptosis. Ad.5/3-mda-7 increased ceramide levels in a PERK-dependent fashion that were responsible for elevated cytosolic Ca(2+) levels that promoted ROS generation; 17AAG did not further enhance cytokine-induced ceramide generation. In vivo, infection of RCC tumors with Ad.5/3-mda-7 suppressed the growth of infected tumors that was enhanced by exposure to 17AAG. Our data indicate that in RCCs, Ad.5/3-mda-7-induced ceramide generation plays a central role in tumor cell killing and inhibition of multiple signaling pathways may have utility in promoting MDA-7/IL-24 lethality in renal cancer.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Wang XY, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broaddus WC, Young HF, Lesniak MS, Grant S, Curiel DT, Fisher PB. The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 2010; 128:375-84. [PMID: 20732354 PMCID: PMC2947573 DOI: 10.1016/j.pharmthera.2010.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/02/2010] [Indexed: 02/09/2023]
Abstract
The cytokine melanoma differentiation associated gene 7 (mda-7) was identified by subtractive hybridization as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, was classified as a member of the interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and rapid cell death. In addition, MDA-7/IL-24 has been noted to radiosensitize tumor cells which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress and suppress protein translation. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, strongly arguing that MDA-7/IL-24 could have significant therapeutic value. This review describes what is presently known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
Collapse
Affiliation(s)
- Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel paradigms for cancer therapy. Oncogene 2010; 30:1-20. [DOI: 10.1038/onc.2010.460] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Xue XB, Xiao CW, Zhang H, Lu AG, Gao W, Zhou ZQ, Guo XL, Zhong MA, Yang Y, Wang CJ. Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines. World J Gastroenterol 2010; 16:4677-84. [PMID: 20872968 PMCID: PMC2951518 DOI: 10.3748/wjg.v16.i37.4677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of oncolytic adenovirus SG600-IL24 and replication-incompetent adenovirus Ad.IL-24 on hepatocellular carcinoma (HCC) cell lines and normal liver cell line.
METHODS: HCC cell lines (HepG2, Hep3B and MHCC97L) and normal liver cell line (L02) with a different p53 status were infected with SG600-IL24 and Ad.IL-24, respectively. Melanoma differentiation-associated (MDA)-7/interleukin (IL)-24 mRNA and protein expressions in infected cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blotting, respectively. Apoptosis of HCC cells and normal liver cells was detected by cytometric assay with Hoechst33258 staining. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate proliferation of HCC cells and normal liver cells, and cell cycle was assayed by flow cytometry.
RESULTS: RT-PCR, ELISA and Western blotting showed that the exogenous MDA-7/IL-24 gene was highly expressed in cells infected with SG600-IL24. MTT indicated that SG600-IL24 could suppress the growth of HepG2, Hep3B, MHCC97L, with an inhibition rate of 75% ± 2.5%, 85% ± 2.0%, 72% ± 1.8%, respectively (P < 0.01), promote the apoptosis of HepG2, Hep3B, MHCC97L, with an apoptosis rate of 56.59% ± 4.0%, 78.36% ± 3.5%, 43.39% ± 2.5%, respectively (P < 0.01), and block the HCC cell lines in the G2/M phase with a blocking rate of 35.4% ± 4.2%, 47.3% ± 6.2%, 42% ± 5.0%, respectively (P < 0.01) but not the normal liver cell line in a p53-independent manner.
CONCLUSION: SG600-IL24 can selectively suppress the proliferation and apoptosis of HCC cell lines in vitro but not normal liver cell line L02 in a p53-independent manner. Compared with Ad.IL-24, SG600-IL24 can significantly enhance the antitumor activity in HCC cell lines.
Collapse
|
69
|
Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broaddus WC, Young HF, Lesniak M, Grant S, Curiel DT, Fisher PB. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anticancer Drugs 2010; 21:725-31. [PMID: 20613485 PMCID: PMC2915543 DOI: 10.1097/cad.0b013e32833cfbe1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The novel cytokine melanoma differentiation associated gene-7 (mda-7) was identified by subtractive hybridization in the mid-1990s as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared with non-transformed cells. On the basis of conserved structure, chromosomal location and cytokine-like properties, MDA-7, has now been classified as a member of the expanding interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have shown that the expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in the corresponding equivalent non-transformed cells, causes their growth arrest and ultimately cell death. In addition, MDA-7/IL-24 has been noted to be a radiosensitizing cytokine, which is partly because of the generation of reactive oxygen species and ceramide that cause endoplasmic reticulum stress. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 [Ad.mda-7 (INGN-241)] was safe and had measurable tumoricidal effects in over 40% of patients, which strongly argues that MDA-7/IL-24 may have significant therapeutic value. This review describes what is known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
Collapse
Affiliation(s)
- Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, 23298-0035, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Trivella DBB, Ferreira-Júnior JR, Dumoutier L, Renauld JC, Polikarpov I. Structure and function of interleukin-22 and other members of the interleukin-10 family. Cell Mol Life Sci 2010; 67:2909-35. [PMID: 20454917 PMCID: PMC11115847 DOI: 10.1007/s00018-010-0380-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 12/30/2022]
Abstract
The IL-10 family of cytokines is comprised of IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and IFN-lambdas (IL-28A, IL-28B, and IL-29). The IL-10 family members bind to shared class II cytokine receptor chains that associate in various combinations in heterodimeric complexes. Upon interleukin/receptor complex formation, these proteins switch on the Jak/STAT pathway and elicit pleiotropic biological responses whose variety sharply contrasts with their structural similarities. IL-10 family members are involved in several human diseases and health conditions and hence their structural analyses may provide valuable information to design specific therapeutic strategies. In this review, we describe the human interleukin-10 family of cytokines, focusing on their structures and functions, with particular attention given to IL-22 and IL-10. We report on the recently published structures of IL-10 cytokine family members and their complexes with cognate transmembrane and soluble receptors as well as on interleukin physiology and physiopathology.
Collapse
Affiliation(s)
- Daniela Barretto Barbosa Trivella
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 Brazil
| | - José Ribamar Ferreira-Júnior
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP CEP 03828-000 Brazil
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- Experimental Medicine Unit, Christian de Duve Institute, Universite’ Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- Experimental Medicine Unit, Christian de Duve Institute, Universite’ Catholique de Louvain, Brussels, Belgium
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 Brazil
| |
Collapse
|
71
|
Patani N, Douglas-Jones A, Mansel R, Jiang W, Mokbel K. Tumour suppressor function of MDA-7/IL-24 in human breast cancer. Cancer Cell Int 2010; 10:29. [PMID: 20735832 PMCID: PMC2936285 DOI: 10.1186/1475-2867-10-29] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022] Open
Abstract
Introduction Melanoma differentiation associated gene-7 (MDA-7), also known as interleukin (IL)-24, is a tumour suppressor gene associated with differentiation, growth and apoptosis. However, the mechanisms underlying its anti-neoplastic activity, tumour-specificity and efficacy across a spectrum of human cancers have yet to be fully elucidated. In this study, the biological impact of MDA-7 on the behavior of breast cancer (BC) cells is evaluated. Furthermore, mRNA expression of MDA-7 is assessed in a cohort of women with BC and correlated with established pathological parameters and clinical outcome. Methods The human BC cell line MDA MB-231 was used to evaluate the in-vitro impact of recombinant human (rh)-MDA-7 on cell growth and motility, using a growth assay, wounding assay and electric cell impedance sensing (ECIS). Localisation of MDA-7 in mammary tissues was assessed with standard immuno-histochemical methodology. BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, MDA-7 transcript levels were determined using real-time quantitative PCR. Transcript levels were analyzed against tumour size, grade, oestrogen receptor (ER) status, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Exposure to rh-MDA-7 significantly reduced wound closure rates for human BC cells in-vitro. The ECIS model demonstrated a significantly reduced motility and migration following rh-MDA-7 treatment (p = 0.024). Exposure to rh-MDA-7 was only found to exert a marginal effect on growth. Immuno-histochemical staining of human breast tissues revealed substantially greater MDA-7 positivity in normal compared to cancer cells. Significantly lower MDA-7 transcript levels were identified in those predicted to have a poorer prognosis by the NPI (p = 0.049) and those with node positive tumours. Significantly lower expression was also noted in tumours from patients who died of BC compared to those who remained disease free (p = 0.035). Low levels of MDA-7 were significantly correlated with a shorter disease free survival (mean = 121.7 vs. 140.4 months, p = 0.0287) on Kaplan-Meier survival analysis. Conclusion MDA-7 significantly inhibits the motility and migration of human BC cells in-vitro. MDA-7 expression is substantially reduced in malignant breast tissue and low transcript levels are significantly associated with unfavourable pathological parameters, including nodal positivity; and adverse clinical outcomes including poor prognosis and shorter disease free survival. MDA-7 offers utility as a prognostic marker and potential for future therapeutic strategies.
Collapse
Affiliation(s)
- Neill Patani
- Department of Breast Surgery, The London Breast Institute, The Princess Grace Hospital, 42-52 Nottingham Place, W1U-5NY, London, UK.
| | | | | | | | | |
Collapse
|
72
|
Yu X, Xia W, Zhang T, Wang H, Xie Y, Yang J, Miao J. Enhanced cytotoxicity of IL-24 gene-modified dendritic cells co-cultured with cytokine-induced killer cells to hepatocellular carcinoma cells. Int J Hematol 2010; 92:276-82. [PMID: 20697855 DOI: 10.1007/s12185-010-0654-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/21/2010] [Indexed: 12/29/2022]
Abstract
As a novel human cytokine found recently, IL-24 could selectively kill tumor cells by multiple ways. Dendritic cells (DCs) are the major antigen-presenting cells. Recent studies have revealed that IL-24 can promote the antigen-presenting function of DCs. In this study, we evaluated the antitumor effect and mechanism of co-cultured cytokine-induced killer (CIK) cells and autologous DCs modified with IL-24 gene on hepatocellular carcinoma (HCC) cells. DCs and CIK cells were prepared routinely from human peripheral blood mononuclear cells. Recombinant adenovirus AdVGFP/IL-24 (Ad-IL24) was constructed expressing IL-24. IL-24 gene was transduced into DCs via Ad-IL24, the cells obtained were named DC-IL-24. We demonstrated that the expression rates of CD80, CD83, CD1a, HLA-DR, CD40, CXCR4 on DC-IL-24 were significantly increased compared with those of the control group. DC-IL-24 produced markedly higher levels of IL-24, IL-12 and TNF-alpha as compared with those of DCs. On comparison with non-transfected DCs co-cultured with CIK cells, transfected DCs co-cultured with CIK cells had a significant higher lytic activity against SMMC7721 cells, a HCC cell line.
Collapse
Affiliation(s)
- Xin Yu
- Blood Transfusion Research Institute, Wuxi Red Cross Blood Center, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Enhanced cytotoxicity of IL-24 gene-modified dendritic cells co-cultured with cytokine-induced killer cells to hepatocellular carcinoma cells. Int J Hematol 2010. [PMID: 20697855 DOI: 10.1007/s12185-010-0654-1.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
As a novel human cytokine found recently, IL-24 could selectively kill tumor cells by multiple ways. Dendritic cells (DCs) are the major antigen-presenting cells. Recent studies have revealed that IL-24 can promote the antigen-presenting function of DCs. In this study, we evaluated the antitumor effect and mechanism of co-cultured cytokine-induced killer (CIK) cells and autologous DCs modified with IL-24 gene on hepatocellular carcinoma (HCC) cells. DCs and CIK cells were prepared routinely from human peripheral blood mononuclear cells. Recombinant adenovirus AdVGFP/IL-24 (Ad-IL24) was constructed expressing IL-24. IL-24 gene was transduced into DCs via Ad-IL24, the cells obtained were named DC-IL-24. We demonstrated that the expression rates of CD80, CD83, CD1a, HLA-DR, CD40, CXCR4 on DC-IL-24 were significantly increased compared with those of the control group. DC-IL-24 produced markedly higher levels of IL-24, IL-12 and TNF-alpha as compared with those of DCs. On comparison with non-transfected DCs co-cultured with CIK cells, transfected DCs co-cultured with CIK cells had a significant higher lytic activity against SMMC7721 cells, a HCC cell line.
Collapse
|
74
|
Fan JK, Wei N, Ding M, Gu JF, Liu XR, Li BH, Qi R, Huang WD, Li YH, Xiong XQ, Wang J, Li RS, Liu XY. Targeting Gene-ViroTherapy for prostate cancer by DD3-driven oncolytic virus-harboring interleukin-24 gene. Int J Cancer 2010; 127:707-17. [PMID: 19950222 DOI: 10.1002/ijc.25069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in Western male population. Previous studies have demonstrated that differential display code 3 (DD3 or DD3(PCA3)) is one of the most PCa-specific genes; therefore, it has been used as a clinical diagnostic marker for PCa. In this study, we constructed an oncolytic adenovirus Ad.DD3-E1A by using the minimal DD3 promoter to replace the native viral promoter of E1A gene. In addition, Ad.DD3-E1A was armed with therapeutic gene IL-24 to enhance its antitumor activity. The resulting adenovirus, Ad.DD3-E1A-IL-24, demonstrated PCa specificity and excellent antitumor effect. Further analyses on its antitumor mechanism revealed that it has the capacity to induce apoptosis in PCa cells and inhibit angiogenesis. These results suggest that Ad.DD3-E1A-IL-24 is a promising antitumor agent that may be able to be used in the future as a treatment for PCa.
Collapse
Affiliation(s)
- Jun Kai Fan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Hamed HA, Yacoub A, Park MA, Eulitt PJ, Dash R, Sarkar D, Dmitriev IP, Lesniak MS, Shah K, Grant S, Curiel DT, Fisher PB, Dent P. Inhibition of multiple protective signaling pathways and Ad.5/3 delivery enhances mda-7/IL-24 therapy of malignant glioma. Mol Ther 2010; 18:1130-1142. [PMID: 20179672 PMCID: PMC2889737 DOI: 10.1038/mt.2010.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/30/2010] [Indexed: 11/09/2022] Open
Abstract
We have explored the mechanism by which inhibition of multiple cytoprotective cell-signaling pathways enhance melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) toxicity toward invasive primary human glioblastoma multiforme (GBM) cells, and whether improving adenoviral infectivity/delivery of mda-7/IL-24 enhances therapeutic outcome in animals containing orthotopic xenografted GBM cells. The toxicity of a serotype 5 recombinant adenovirus to express MDA-7/IL-24 (Ad.5-mda-7) was enhanced by combined molecular or small molecule inhibition of mitogen-activated extracellular regulated kinase (MEK)1/2 and phosphatidyl inositol 3-kinase (PI3K) or AKT; inhibition of mammalian target of rapamycin (mTOR) and MEK1/2; and the HSP90 inhibitor 17AAG. Molecular inhibition of mTOR/PI3K/MEK1 signaling in vivo also enhanced Ad.5-mda-7 toxicity. In GBM cells of diverse genetic backgrounds, inhibition of cytoprotective cell-signaling pathways enhanced MDA-7/IL-24-induced autophagy, mitochondrial dysfunction and tumor cell death. Due partly to insufficient adenovirus serotype 5 gene delivery this therapeutic approach has shown limited success in GBM. To address this problem, we employed a recombinant adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7. Ad.5/3-mda-7 more effectively infected and killed GBM cells in vitro and in vivo than Ad.5-mda-7. Future combinations of these approaches hold promise for developing an effective therapy for GBM.
Collapse
Affiliation(s)
- Hossein A Hamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Adly Yacoub
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Margaret A Park
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Patrick J Eulitt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rupesh Dash
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Igor P Dmitriev
- Division of Human Gene Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Khalid Shah
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Grant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; Department of Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - David T Curiel
- Division of Human Gene Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
76
|
Pei DS, Zheng JN. Oncolytic adenoviruses expressing interleukin: a novel antitumour approach. Expert Opin Biol Ther 2010; 10:917-26. [DOI: 10.1517/14712598.2010.481668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
77
|
Hamed HA, Yacoub A, Park MA, Eulitt P, Sarkar D, Dimitrie IP, Chen CS, Grant S, Curiel DT, Fisher PB, Dent P. OSU-03012 enhances Ad.7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biol Ther 2010; 9:526-36. [PMID: 20107314 DOI: 10.4161/cbt.9.7.11116] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The present studies focused on determining whether the autophagy-inducing drug OSU-03012 (AR-12) could enhance the toxicity of recombinant adenoviral delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) in glioblastoma multiforme (GBM) cells. The toxicity of a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7) was enhanced by OSU-03012 in a diverse panel of primary human GBM cells. The enhanced toxicity correlated with reduced ERK1/2 phosphorylation and expression of MCL-1 and BCL-XL, and was blocked by molecular activation of ERK1/2 and by inhibition of the intrinsic, but not the extrinsic, apoptosis pathway. Both OSU-03012 and expression of MDA-7/IL-24 increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) that correlated with increased levels of autophagy and expression of dominant negative PERK blocked autophagy induction and tumor cell death. Knockdown of ATG5 or Beclin1 suppressed OSU-03012 enhanced MDA-7/IL-24-induced autophagy and blocked the lethal interaction between the two agents. Ad.mda-7-infected GBM cells secreted MDA-7/IL-24 into the growth media and this conditioned media induced expression of MDA-7/IL-24 in uninfected GBM cells. OSU-03012 interacted with conditioned media to kill GBM cells and knockdown of MDA-7/IL-24 in these cells suppressed tumor cell killing. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
Collapse
Affiliation(s)
- Hossein A Hamed
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 401 College St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer Gene Ther 2010; 17:447-56. [PMID: 20150932 DOI: 10.1038/cgt.2009.91] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy is being examined as a potential strategy for treating prostate cancer. Serotype 5 adenovirus (Ad.5) is routinely used as a vector for transgene delivery. However, the infectivity of Ad.5 is dependent on Coxsackie-adenovirus receptors (CARs); many tumor types show a reduction in this receptor in vivo, thereby limiting therapeutic gene transduction. Serotype chimerism is one approach to circumvent CAR deficiency; this strategy is used to generate an Ad.5/3-recombinant Ad that infects cancer cells through Ad.3 receptors in a CAR-independent manner. In this report, the enhanced transgene delivery and efficacy of Ad.5/3-recombinant virus was evaluated using an effective wide-spectrum anticancer therapeutic melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24). Our data show that in low CAR human prostate cancer cells (PC-3), a recombinant Ad.5/3 virus delivering mda-7/IL-24 (Ad.5/3-mda-7) is more efficacious than an Ad.5 virus encoding mda-7/IL-24 (Ad.5-mda-7) in infecting tumor cells, expressing MDA-7/IL-24 protein, inducing cancer-specific apoptosis, inhibiting in vivo tumor growth and exerting an antitumor 'bystander' effect in a nude mouse xenograft model. Considering the fact that Ad.5-mda-7 has shown significant objective responses in a phase I clinical trial for solid tumors, Ad.5/3-mda-7 is predicted to exert enhanced therapeutic benefit in patients with prostate cancer.
Collapse
|
79
|
Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, Ogretmen B, Dash R, Sarkar D, Broaddus WC, Grant S, Curiel DT, Fisher PB, Dent P. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 2010; 70:1120-9. [PMID: 20103619 DOI: 10.1158/0008-5472.can-09-4043] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R-like endoplasmic reticulum kinase (PERK), Ca(++) elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca(++) induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7-killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca(2+), and ROS, which in turn promote glioma cell autophagy and cell death.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry and Molecular Biology, VCU Institute of Molecular Medicine, Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Sauane M, Su ZZ, Dash R, Liu X, Norris JS, Sarkar D, Lee SG, Allegood JC, Dent P, Spiegel S, Fisher PB. Ceramide plays a prominent role in MDA-7/IL-24-induced cancer-specific apoptosis. J Cell Physiol 2010; 222:546-55. [PMID: 19937735 DOI: 10.1002/jcp.21969] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) uniquely displays broad cancer-specific apoptosis-inducing activity through induction of endoplasmic reticulum (ER) stress. We hypothesize that ceramide, a promoter of apoptosis, might contribute to mda-7/IL-24 induction of apoptosis. Ad.mda-7-infected tumor cells, but not normal cells, showed increased ceramide accumulation. Infection with Ad.mda-7 induced a marked increase in various ceramides (C16, C24, C24:1) selectively in prostate cancer cells. Inhibiting the enzyme serine palmitoyltransferase (SPT) using the potent SPT inhibitor myriocin (ISP1), impaired mda-7/IL-24-induced apoptosis and ceramide production, suggesting that ceramide formation caused by Ad.mda-7 occurs through de novo synthesis of ceramide and that ceramide is required for mda-7/IL-24-induced cell death. Fumonisin B1 (FB1) elevated ceramide formation as well as apoptosis induced by Ad.mda-7, suggesting that ceramide formation may also occur through the salvage pathway. Additionally, Ad.mda-7 infection enhanced expression of acid sphingomyelinase (ASMase) with a concomitant increase in ASMase activity and decreased sphingomyelin in cancer cells. ASMase silencing by RNA interference inhibited the decreased cell viability and ceramide formation after Ad.mda-7 infection. Ad.mda-7 activated protein phosphatase 2A (PP2A) and promoted dephosphorylation of the anti-apoptotic molecule BCL-2, a downstream ceramide-mediated pathway of mda-7/IL-24 action. Pretreatment of cells with FB1 or ISP-1 abolished the induction of ER stress markers (BiP/GRP78, GADD153 and pospho-eIF2alpha) triggered by Ad.mda-7 infection indicating that ceramide mediates ER stress induction by Ad.mda-7. Additionally, recombinant MDA-7/IL-24 protein induced cancer-specific production of ceramide. These studies define ceramide as a key mediator of an ER stress pathway that may underlie mda-7/IL-24 induction of cancer-specific killing.
Collapse
Affiliation(s)
- Moira Sauane
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Ramesh R, Ioannides CG, Roth JA, Chada S. Adenovirus-mediated interleukin (IL)-24 immunotherapy for cancer. Methods Mol Biol 2010; 651:241-70. [PMID: 20686970 DOI: 10.1007/978-1-60761-786-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interleukin-24 (IL-24) is a member of the IL-10 cytokine family. IL-24, also known as melanoma differentiation associated gene 7 (mda-7), is a unique cytokine in that it has cytokine properties and functions as a novel tumor suppressor gene. Studies by us and other investigators using viral and non-viral vectors have demonstrated IL-24 overexpression in human cancer cells inhibited tumor growth both in vitro and in vivo. A majority of these studies using immunodeficient animal models have focused on demonstrating the direct anticancer properties of IL-24. Very few studies have focused on studying the immunotherapeutic properties of IL-24 despite it being reported to function as a Th1 cytokine. A phase I clinical trial using an adenovirus vector expressing IL-24 (Ad-IL24/INGN241) reported Ad-IL24 treatment of cancer patients resulted in changes in cytokines and T cells. However, well-designed and detailed preclinical studies to support the clinical findings are warranted. Demonstrating immune modulation by IL-24 will provide a rationale for developing IL-24-based immunotherapeutic approaches for cancer treatment.In the present chapter, we provide experimental details for conducting IL-24-based immunotherapy studies. As it is not possible for the authors to cover all of the information the authors recommend reading other immunology-based literature and procedures for a better understanding of conducting preclinical studies.
Collapse
Affiliation(s)
- Rajagopal Ramesh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas of M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
82
|
XUE JF, LIU XH, HE Q, XUE ZG, HU YJ, LI Z, YANG JL, GAO T, PAN Q, LONG ZG, WU LQ, XIA K, LIANG DS, XIA JH. In vitro Efficacy of mda-7 Gene for Hepatocellular Carcinoma Gene Therapy Mediated by Human Ribosomal DNA Targeting Vector*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Yacoub A, Liu R, Park MA, Hamed HA, Dash R, Schramm DN, Sarkar D, Dimitriev IP, Bell JK, Grant S, Farrell NP, Curiel DT, Fisher PB, Dent P. Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharmacol 2009; 77:298-310. [PMID: 19910452 DOI: 10.1124/mol.109.061820] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a unique interleukin (IL)-10 family cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which recombinant adenoviral delivery of MDA-7/IL-24 inhibits cell survival of human ovarian carcinoma cells. Expression of MDA-7/IL-24 induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor2alpha (eIF2alpha). In a PERK-dependent fashion, MDA-7/IL-24 reduced ERK1/2 and AKT phosphorylation and activated c-Jun NH(2)-terminal kinase (JNK) 1/2 and p38 mitogen-activated protein kinase (MAPK). MDA-7/IL-24 reduced MCL-1 and BCL-XL and increased BAX levels via PERK signaling; cell-killing was mediated via the intrinsic pathway, and cell killing was primarily necrotic as judged using Annexin V/propidium iodide staining. Inhibition of p38 MAPK and JNK1/2 abolished MDA-7/IL-24 toxicity and blocked BAX and BAK activation, whereas activation of mitogen-activated extracellular-regulated kinase (MEK) 1/2 or AKT suppressed enhanced killing and JNK1/2 activation. MEK1/2 signaling increased expression of the MDA-7/IL-24 and PERK chaperone BiP/78-kDa glucose regulated protein (GRP78), and overexpression of BiP/GRP78 suppressed MDA-7/IL-24 toxicity. MDA-7/IL-24-induced LC3-green fluorescent protein vesicularization and processing of LC3; and knockdown of ATG5 suppressed MDA-7/IL-24-mediated toxicity. MDA-7/IL-24 and cisplatin interacted in a greater than additive fashion to kill tumor cells that was dependent on a further elevation of JNK1/2 activity and recruitment of the extrinsic CD95 pathway. MDA-7/IL-24 toxicity was enhanced in a weak additive fashion by paclitaxel; paclitaxel enhanced MDA-7/IL-24 + cisplatin lethality in a greater than additive fashion via BAX. Collectively, our data demonstrate that MDA-7/IL-24 induces an endoplasmic reticulum stress response that activates multiple proapoptotic pathways, culminating in decreased ovarian tumor cell survival.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ma Y, Chen H, Wang Q, Luo F, Yan J, Zhang XL. IL-24 protects againstSalmonella typhimuriuminfection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8+T cells. Eur J Immunol 2009; 39:3357-68. [DOI: 10.1002/eji.200939678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
85
|
Yang C, Tong Y, Ni W, Liu J, Xu W, Li L, Liu X, Meng H, Qian W. Inhibition of autophagy induced by overexpression of mda-7/interleukin-24 strongly augments the antileukemia activity in vitro and in vivo. Cancer Gene Ther 2009; 17:109-19. [PMID: 19730452 DOI: 10.1038/cgt.2009.57] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel candidate of tumor suppressor that can selectively induce apoptosis experimentally in a spectrum of human cancer cells including leukemia cells. However, a recent study suggests that mda-7/IL-24 promotes the survival of chronic lymphocytic leukemia B-cells. In this study, we showed that mda-7/IL-24 was constitutively expressed in leukemia cell lines and primary acute myeloid leukemia samples. Using a conditionally replicating adenovirus expressing mda-7/IL-24 (ZD55-IL-24), we showed that enforced expression of mda-7/IL-24 in leukemia cells induced autophagy, which was triggered by the upregulation of Beclin-1. Immunofluorescence and coimmunoprecipitation studies suggested that mda-7/IL-24 protein interacts with Beclin-1. Class III PI3K/Beclin-1 complex was shown involved in the mda-7/IL-24-induced autophagy. Moreover, autophagy inhibition by phosphatidylinositol 3-kinase inhibitor, wortmannin, resulted in a reduced Beclin-1 expression and autophagosome formation associated with significantly enhanced cell death. Importantly, the combination of ZD55-IL-24 with wortmannin elicited a strongly enhanced antileukemia efficacy in established leukemia xenografts. These results suggest that mda-7/IL-24-induced autophagy in leukemia cells may provide survival advantage and mda-7/IL-24 combined with agents that disrupt autophagy is a promising new strategy for the treatment of leukemia.
Collapse
Affiliation(s)
- C Yang
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. THE JOURNAL OF IMMUNOLOGY 2009; 183:687-95. [PMID: 19535621 DOI: 10.4049/jimmunol.0804169] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-24 is a member of the IL-10 family of cytokines. In this study, we investigated IL-24 expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD), and characterized the molecular mechanisms responsible for IL-24 expression in human colonic subepithelial myofibroblasts (SEMFs). IL-24 expression in the IBD mucosa was evaluated by immunohistochemical methods. IL-24 mRNA and protein expression was determined by real-time PCR and ELISA, respectively. AP-1 and C/EBP DNA-binding activity and IL-24 promoter activity were assessed by EMSA analysis and a reporter gene assay, respectively. IL-24 mRNA expression was significantly elevated in active lesions from patients who have ulcerative colitis and Crohn's disease. Colonic SEMFs were identified as a major source of IL-24 in the mucosa. IL-1beta, but not IL-17A, TNF-alpha, or IFN-gamma, significantly enhanced IL-24 mRNA and protein expression in isolated colonic SEMFs. The IL-1beta-induced IL-24 mRNA expression was mediated by the activation of the transcription factors, AP-1 and C/EBP-beta. Induction of IL-24 mRNA stabilization was also involved in the effects of IL-1beta. IL-24 induced JAK1/STAT-3 phosphorylation and SOCS3 expression in HT-29 colonic epithelial cells. IL-24 did not modulate the proliferation of HT-29 cells, but significantly increased the mRNA expression of membrane-bound mucins (MUC1, MUC3, and MUC4). IL-24 derived from colonic SEMFs acts on colonic epithelial cells to elicit JAK1/STAT-3 activation and the expression of SOCS3 and mucins, supporting their suppressive effects on mucosal inflammation in IBD.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
87
|
Park MA, Walker T, Martin AP, Allegood J, Vozhilla N, Emdad L, Sarkar D, Rahmani M, Graf M, Yacoub A, Koumenis C, Spiegel S, Curiel DT, Voelkel-Johnson C, Grant S, Fisher PB, Dent P. MDA-7/IL-24-induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK-dependent mechanism. Mol Cancer Ther 2009; 8:1280-91. [PMID: 19417161 DOI: 10.1158/1535-7163.mct-09-0073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7-induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal-regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH(2)-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7-induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R-like endoplasmic reticulum kinase that correlated with reduced c-jun NH(2)-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal-regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying MDA-7/IL-24. Acta Pharmacol Sin 2009; 30:467-77. [PMID: 19270721 DOI: 10.1038/aps.2009.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM The aim of this study was to creatively implement a novel chemo-gene-virotherapeutic strategy and further strengthen the antitumor effect in cancer cells by the combined use of ZD55-IL-24 and cisplatin. METHODS ZD55-IL-24 is an oncolytic adenovirus that harbors interleukin 24 (IL-24), which has a strong antitumor effect and was identified and evaluated by PCR, RT-PCR, and Western blot analysis. Enhancement of cancer cell death using a combination of ZD55-IL-24 and cisplatin was assessed in several cancer cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cytopathic effect (CPE) assay. Apoptosis induction by treatment with ZD55-IL-24 and/or cisplatin was detected in BEL7404 and SMMC7721 by morphological evaluation, apoptotic cell staining, and flow cytometry analysis. In addition, negative effects on normal cells were evaluated in the L-02 cell line using the MTT assay, the CPE assay, morphological evaluation, apoptotic cell staining, and flow cytometry analysis. RESULTS The combination of ZD55-IL-24 and cisplatin, which is superior to ZD55-IL-24, cisplatin, and ZD55-EGFP, as well as ZD55-EGFP plus cisplatin, resulted in a significantly increased effect. Most importantly, conjugation of ZD55-IL-24 with cisplatin had toxic effects equal to that of cisplatin and did not have overlapping toxicities in normal cells. CONCLUSION This study showed that ZD55-IL-24 conjugated with cisplatin exhibited a remarkably increased cytotoxic and apoptosis-inducing effect in cancer cells and significantly reduced the toxicity in normal cells through the use of a reduced dose.
Collapse
|
89
|
Monticone M, Biollo E, Maffei M, Donadini A, Romeo F, Storlazzi CT, Giaretti W, Castagnola P. Gene expression deregulation by KRAS G12D and G12V in a BRAF V600E context. Mol Cancer 2008; 7:92. [PMID: 19087308 PMCID: PMC2615043 DOI: 10.1186/1476-4598-7-92] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/16/2008] [Indexed: 12/15/2022] Open
Abstract
Background KRAS and BRAF mutations appear of relevance in the genesis and progression of several solid tumor types but the co-occurrence and interaction of these mutations have not yet been fully elucidated. Using a microsatellite stable (MSS) colorectal cancer (CRC) cell line (Colo741) having mutated BRAF and KRASWT, we also aimed to investigate the KRAS-BRAF interaction. Gene expression profiles for control KRASWT, KRASG12V and KRASG12D transfected cells were obtained after cell clone selection and RT-PCR screening. Extensive qPCR was performed to confirm microarray data. Results We found that the KRASG12V state deregulated several genes associated to cell cycle, apoptosis and nitrogen metabolism. These findings indicated a reduced survival and proliferation with respect to the KRASWT state. The KRASG12D state was, instead, characterized by several other distinct functional changes as for example those related to chromatin organization and cell-cell adhesion without affecting apoptosis related genes. Conclusion These data predict that the G12D mutation may be more likely selected in a BRAF mutated context. At the same time, the presence of the KRASG12V mutation in the cells escaping apoptosis and inducing angiogenesis via IL8 may confer a more aggressive phenotype. The present results get along with the observations that CRCs with G12V are associated with a worse prognosis with respect to the WT and G12D states and may help identifying novel CRC pathways and biomarkers of clinical relevance.
Collapse
|
90
|
Zheng M, Bocangel D, Ramesh R, Ekmekcioglu S, Poindexter N, Grimm EA, Chada S. Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells. Mol Cancer Ther 2008; 7:3842-51. [PMID: 19056673 DOI: 10.1158/1535-7163.mct-08-0516] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma is the most malignant of skin cancers, highly resistant to chemotherapy and radiotherapy. Temozolomide, a promising new derivative of dacarbazine, is currently being tested for treatment of metastatic melanoma. Resistance to alkylating agents such as temozolomide correlates with increased expression of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Interleukin-24 (IL-24; mda-7) is a tumor suppressor cytokine that selectively inhibits tumor cell growth by inducing apoptosis and cell cycle arrest in melanoma cell lines and solid tumors. This tumor-selective activity has been observed in multiple preclinical animal models and in clinical trials. In this study, we analyzed the ability of Ad-IL-24 and its protein product, IL-24, to overcome temozolomide resistance in human melanoma cells. We have shown that Ad-IL-24 via exogenous IL-24 protein induces combinatorial synergy of temozolomide-induced cell killing in temozolomide-resistant melanoma cells by inhibition of MGMT. Neutralizing antibodies against IL-24 or its receptors significantly blocked the apoptotic activity of IL-24 + MGMT treatment. We show that accumulation of functional p53 is essential for IL-24-induced down-regulation of MGMT. Using either MGMT small interfering RNA, p53 small interfering RNA, or a p53 dominant-negative mutant to block MGMT protein expression resulted in increased sensitization to temozolomide. However, MGMT blockade in combination with IL-24 + temozolomide resulted in loss of combinatorial synergy, indicating that MGMT expression is required for the reversal of temozolomide resistance in melanoma cells. This study shows that IL-24 can play a significant role in overcoming temozolomide resistance and that the clinical efficacy of temozolomide may be improved by using a biochemotherapy combination with IL-24.
Collapse
Affiliation(s)
- Mingzhong Zheng
- Introgen Therapeutics, 2250 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Pan X, Sheng W, Zhu Q, Xie Y, Ye Z, Xiang J, Li D, Yang J. Inhibition of pancreatic carcinoma growth by adenovirus-mediated human interleukin-24 expression in animal model. Cancer Biother Radiopharm 2008; 23:425-34. [PMID: 18771346 DOI: 10.1089/cbr.2008.0461] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-24 (IL-24) has been shown to be a tumor-suppressor gene and the protein product found to be constitutively expressed by melanocytes, nerve cells, and some primary melanomas. The potential effect of adenovirus (AdV)-mediated IL-24 gene therapy was explored on human pancreatic carcinoma by using a pancreatic carcinoma cell line, patu8988. A recombinant adenovirus, AdVGFP/IL-24, expressing the marker, green fluorescent protein (GFP), and the tumor-suppressor gene, IL-24, was constructed. AdVGFP/IL-24 treatment of pancreatic carcinoma cells in vitro significantly induced pancreatic carcinoma cell cytotoxicity and apoptosis, compared with AdVGFP without IL-24 expression. In nude mice bearing patu8988 tumors, intratumoral injections of AdVGFP/IL-24 significantly inhibited pancreatic carcinoma growth. In addition, the molecular mechanism of tumor suppression was elucidated by downregulating the expression of vascular endothelial growth factor, CD34, and Bcl-2, as well as inhibiting tumor angiogenesis. Therefore, AdVGFP/IL-24 has the potential to serve as a novel tool for pancreatic carcinoma gene therapy.
Collapse
Affiliation(s)
- Xinting Pan
- Department of General Surgery, First Hospital Affiliated to Soochow University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Wang C, Xue X, Yi J, Wu Z, Chen K, Zheng J, Ji W, Yu Y. Replication-incompetent adenovirus vector-mediated MDA-7/IL-24 selectively induces growth suppression and apoptosis of hepatoma cell Line SMMC-7721. ACTA ACUST UNITED AC 2008; 28:80-3. [PMID: 18278464 DOI: 10.1007/s11596-008-0120-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Indexed: 10/19/2022]
Abstract
In order to investigate the effect of replication-incompetent adenovirus vector expressing MDA-7/IL-24 on tumor growth and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721 and normal liver cell line L02, the recombinant replication-incompetent Ad.mda-7 virus vector was constructed and infected into the HCC cell line SMMC-7721 and normal liver cell line L02. RT-PCR was performed to examine the expression of MDA-7 mRNA. The concentrations of MDA-7/IL-4 in culture supernatants were determined by using ELISA. MTT and Hoechst staining assay were applied to observe the inhibitory and killing effects of MDA-7 on the HCC cells. By using flow cytometry, the apoptosis, cell cycle and proliferation of SMMC-7721 and L02 cells were measured. The results showed recombinant replication-incompetent virus expressing MDA-7/IL-24 was constructed successfully, and RT-PCR revealed that it could mediate the high expression of the exogenous gene MDA-7/IL-24 in SMMC-7721 and L02 cells. The expression of MDA-7/IL-24 proteins in the culture supernatant was detectable by ELISA. Ad.mda-7 infection induced apoptosis and growth suppression in SMMC-7721 cells and an increased percentage of HCC cells in the G2/M phase of the cell cycle, but not in L02 cells. It was concluded that mda-7/IL-24 gene, mediated with replication-incompetent adenovirus vector, could selectively induce growth suppression and apoptosis in HCC cell line SMMC-7721 but without any toxic side-effect on normal liver line L02.
Collapse
Affiliation(s)
- Congjun Wang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Sahoo A, Jung YM, Kwon HK, Yi HJ, Lee S, Chang S, Park ZY, Hwang KC, Im SH. A novel splicing variant of mouse interleukin (IL)-24 antagonizes IL-24-induced apoptosis. J Biol Chem 2008; 283:28860-72. [PMID: 18708357 PMCID: PMC2662000 DOI: 10.1074/jbc.m802510200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/17/2008] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing of mRNA enables functionally diverse protein isoforms to be expressed from a single gene, allowing transcriptome diversification. Interleukin (IL)-24/MDA-7 is a member of the IL-10 gene family, and FISP (IL-4-induced secreted protein), its murine homologue, is selectively expressed and secreted by T helper 2 lymphocytes. A novel splice variant of mouse IL-24/FISP, designated FISP-sp, lacks 29 nucleotides from the 5'-end of exon 4 of FISP. The level of FISP-sp expression is 10% of the level of total primary FISP transcription. Unlike FISP, FISP-sp does not induce growth inhibition and apoptosis. FISP-sp is exclusively localized in endoplasmic reticulum, and its expression is up-regulated by endoplasmic reticulum stress. Our results suggest that the novel splicing variant FISP-sp dimerizes with FISP and blocks its secretion and inhibits FISP-induced apoptosis in vivo.
Collapse
Affiliation(s)
- Anupama Sahoo
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Eager R, Harle L, Nemunaitis J. Ad-MDA-7; INGN 241: a review of preclinical and clinical experience. Expert Opin Biol Ther 2008; 8:1633-43. [DOI: 10.1517/14712598.8.10.1633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
95
|
Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen X, Yang J. Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm 2008; 23:310-20. [PMID: 18593364 DOI: 10.1089/cbr.2007.0453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that interleukin-24 (IL-24; mda-7) as a novel tumor suppressor gene has tumor-suppressive activity against a broad spectrum of human cancers. However, the therapeutic effect of the recombinant human IL-24 (rhIL-24) protein purified from prokaryotic cells on human lung cancers has not been reported. In this study, we cloned the human gene coding for IL-24 from lipopolysaccharide-activated human peripheral blood mononuclear cells (PBMCs) by reverse-transcriptase polymerase chain reaction and constructed an expression vector pBV220-IL-24. We then transfected Escherichia coli DH5alpha with pBV220-IL-24. The soluble rhIL-24 was obtained from purified insoluble inclusion bodies of transfected cells by a denaturing and renaturing process. We demonstrated that the purified soluble rhIL-24 protein with 18.5 kappaDa was capable of (1) inducing in vitro apoptosis of A549 lung carcinoma cells; (2) activating PBMCs to secrete cytokines such as IL-6, tumor necrosis factor-alpha, and interferon-gamma; (3) inhibiting the formation of blood capillaries on chicken embryonic allantois and in vivo tumor angiogenesis; and (4) inhibiting A549 lung tumor cell growth in vitro and in vivo. Therefore, our results indicate its potent suppressive effect on human lung carcinoma cell line and warrant its further investigation for therapeutic application against human lung cancer.
Collapse
Affiliation(s)
- Yufeng Xie
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
96
|
Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci U S A 2008; 105:9763-8. [PMID: 18599461 DOI: 10.1073/pnas.0804089105] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A noteworthy aspect of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) as a cancer therapeutic is its ability to selectively kill cancer cells without harming normal cells. Intracellular MDA-7/IL-24 protein, generated from an adenovirus expressing mda-7/IL-24 (Ad.mda-7), induces cancer-specific apoptosis by inducing an endoplasmic reticulum (ER) stress response. Secreted MDA-7/IL-24 protein, generated from cells infected with Ad.mda-7, induces growth inhibition and apoptosis in surrounding noninfected cancer cells but not in normal cells, thus exerting an anti-tumor "bystander" effect. The present studies reveal a provocative finding that recombinant MDA-7/IL-24 protein can robustly induce expression of endogenous mda-7/IL-24, which generates the signaling events necessary for bystander killing. To evaluate the mechanism underlying this positive autocrine feedback loop, we show that MDA-7/IL-24 protein induces stabilization of its own mRNA without activating its promoter. Furthermore, this posttranscriptional effect depends on de novo protein synthesis. As a consequence of this autocrine feedback loop MDA-7/IL-24 protein induces sustained ER stress as evidenced by expression of ER stress markers (BiP/GRP78, GRP94, GADD153, and phospho-eIF2alpha) and reactive oxygen species production, indicating that both intracellular and secreted proteins activate similar signaling pathways to induce apoptosis. Thus, our results clarify the molecular mechanism by which secreted MDA-7/IL-24 protein (generated from Ad.mda-7-infected cells) exerts cancer-specific killing.
Collapse
|
97
|
Dong CY, Zhang F, Duan YJ, Yang BX, Lin YM, Ma XT. mda-7/IL-24 inhibits the proliferation of hematopoietic malignancies in vitro and in vivo. Exp Hematol 2008; 36:938-46. [PMID: 18468766 DOI: 10.1016/j.exphem.2008.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) has been consistently shown to exert growth inhibitory effects on various tumor types. However, the majority of these reports were limited to solid tumors. The purpose of this study was to investigate the antitumor activity of mda-7/IL-24 and the underlying mechanism in hematopoietic malignancies. MATERIALS AND METHODS We determined the expression of mda-7/IL24 and its heterodimeric receptors in hematopoietic tumor cell lines and then stably transfected mda-7/IL-24 into K562 (leukemia) and Namalwa (lymphoma) cell lines to assess the effects of mda-7/IL-24 on cell proliferation, cell cycle, apoptosis, colony-forming ability, and tumor growth in vivo. Microarray analysis was performed to determine the genes that were differentially regulated by mda-7/IL-24 in K562 cells. RESULTS Expression of mda-7/IL-24 or its intact receptor pairs was not detected in the 11 cell lines tested. Ectopic expression of mda-7/IL-24 induced significant (p < 0.05) inhibition of cell growth and colony formation in both K562 and Namalwa cells, and the growth inhibition in K562 cells was associated with G(0)/G(1) cell-cycle arrest. Results of in vivo studies showed good correlation with in vitro inhibition of tumor cell proliferation in both the cell lines. We also showed that the increase in p21(WAF-1) and BCCIP and decrease in cdk6, smurf2, and phosphorylated pRb, which are regulators of cell-cycle progression, might account for G(0)/G(1) cell-cycle arrest in K562 cells. CONCLUSIONS The present study demonstrated for the first time the potential antitumor activity of mda-7/IL-24 in chronic myelogenous leukemia and lymphoma.
Collapse
Affiliation(s)
- Cheng-Ya Dong
- State Key Laboratory for Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | | | | | | | | | | |
Collapse
|
98
|
Yacoub A, Park MA, Gupta P, Rahmani M, Zhang G, Hamed H, Hanna D, Sarkar D, Lebedeva IV, Emdad L, Sauane M, Vozhilla N, Spiegel S, Koumenis C, Graf M, Curiel DT, Grant S, Fisher PB, Dent P. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther 2008; 7:297-313. [PMID: 18281515 DOI: 10.1158/1535-7163.mct-07-2166] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R-like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK-/- cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B-dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methyladenine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yacoub A, Gupta P, Park MA, Rhamani M, Hamed H, Hanna D, Zhang G, Sarkar D, Lebedeva IV, Emdad L, Koumenis C, Curiel DT, Grant S, Fisher PB, Dent P. Regulation of GST-MDA-7 toxicity in human glioblastoma cells by ERBB1, ERK1/2, PI3K, and JNK1-3 pathway signaling. Mol Cancer Ther 2008; 7:314-29. [PMID: 18281516 DOI: 10.1158/1535-7163.mct-07-2150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present studies defined the biological effects of a GST fusion protein of melanoma differentiation-associated gene-7 (mda-7), GST-MDA-7 (1 and 30 nmol/L), on cell survival and cell signaling in primary human glioma cells in vitro. GST-MDA-7, in a dose- and time-dependent fashion killed glioma cells with diverse genetic characteristics; 1 nmol/L caused arrest without death, whereas 30 nmol/L caused arrest and killing after exposure. Combined inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT function was required to enhance 1 nmol/L GST-MDA-7 lethality in all cell types, whereas combined activation of MEK1 and AKT was required to suppress 30 nmol/L GST-MDA-7 lethality; both effects are mediated in part by modulating c-Jun NH(2)-terminal kinase (JNK) 1-3 activity. The geldanamycin 17AAG inhibited AKT and ERK1/2 in GBM cells and enhanced GST-MDA-7 lethality. JNK1-3 signaling promoted BAX activation and mitochondrial dysfunction. In GBM6 cells, GST-MDA-7 (30 nmol/L) transiently activated p38 mitogen-activated protein kinase, which was modestly protective against JNK1-3-induced toxicity, whereas GST-MDA-7 (300 nmol/L) caused prolonged intense p38 mitogen-activated protein kinase activation, which promoted cell death. In GBM12 cells that express full-length mutant activated ERBB1, inhibition of ERBB1 did not modify GST-MDA-7 lethality; however, in U118 established glioma cells, stable overexpression of wild-type ERBB1 and/or truncated active ERBB1vIII suppressed GST-MDA-7 lethality. Our data argue that combined inhibition of ERK1/2 and AKT function, regardless of genetic background, promotes MDA-7 lethality in human primary human glioma cells via JNK1-3 signaling and is likely to represent a more ubiquitous approach to enhancing MDA-7 toxicity in this cell type than inhibition of ERBB1 function.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Sarkar D, Su ZZ, Park ES, Vozhilla N, Dent P, Curiel DT, Fisher PB. A cancer terminator virus eradicates both primary and distant human melanomas. Cancer Gene Ther 2008; 15:293-302. [PMID: 18323853 DOI: 10.1038/cgt.2008.14] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prognosis and response to conventional therapies of malignant melanoma inversely correlate with disease progression. With increasing thickness, melanomas acquire metastatic potential and become inherently resistant to radiotherapy and chemotherapy. These harsh realities mandate the design of improved therapeutic modalities, especially those targeting metastases. To develop an approach to effectively treat this aggressive disease, we constructed a conditionally replication-competent adenovirus in which expression of the adenoviral E1A gene, necessary for replication, is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/IL-24 in the E3 region of the adenovirus (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV). This CTV produces large quantities of MDA-7/IL-24 protein as a function of adenovirus replication uniquely in cancer cells. Infection of Ad.PEG-E1A-mda-7 (CTV) in normal human immortal melanocytes and human melanoma cells demonstrates cancer cell-selective adenoviral replication, mda-7/IL-24 expression, growth inhibition and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 CTV into xenografts derived from MeWo human metastatic melanoma cells in athymic nude mice completely eliminated not only primary treated tumors but also distant non-treated tumors (established in the opposite flank), thereby implementing a cure. These provocative findings advocate potential therapeutic applications of this novel virus for treating patients with advanced melanomas with metastases.
Collapse
Affiliation(s)
- D Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|