51
|
Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci U S A 2009; 106:13260-5. [PMID: 19651603 DOI: 10.1073/pnas.0906770106] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adenovirus early region 1A (E1A) oncoprotein mediates cell transformation by deregulating host cellular processes and activating viral gene expression by recruitment of cellular proteins that include cyclic-AMP response element binding (CREB) binding protein (CBP)/p300 and the retinoblastoma protein (pRb). While E1A is capable of independent interaction with CBP/p300 or pRb, simultaneous binding of both proteins is required for maximal biological activity. To obtain insights into the mechanism by which E1A hijacks the cellular transcription machinery by competing with essential transcription factors for binding to CBP/p300, we have determined the structure of the complex between the transcriptional adaptor zinc finger-2 (TAZ2) domain of CBP and the conserved region-1 (CR1) domain of E1A. The E1A CR1 domain is unstructured in the free state and upon binding folds into a local helical structure mediated by an extensive network of intermolecular hydrophobic contacts. By NMR titrations, we show that E1A efficiently competes with the N-terminal transactivation domain of p53 for binding to TAZ2 and that pRb interacts with E1A at 2 independent sites located in CR1 and CR2. We show that pRb and the CBP TAZ2 domain can bind simultaneously to the CR1 site of E1A to form a ternary complex and propose a structural model for the pRb:E1A:CBP complex on the basis of published x-ray data for homologous binary complexes. These observations reveal the molecular basis by which E1A inhibits p53-mediated transcriptional activation and provide a rationale for the efficiency of cellular transformation by the adenoviral E1A oncoprotein.
Collapse
|
52
|
Prion expression is activated by Adenovirus 5 infection and affects the adenoviral cycle in human cells. Virology 2009; 385:343-50. [PMID: 19138779 DOI: 10.1016/j.virol.2008.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/29/2008] [Accepted: 12/04/2008] [Indexed: 01/01/2023]
Abstract
The prion protein is a cell surface glycoprotein whose physiological role remains elusive, while its implication in transmissible spongiform encephalopathies (TSEs) has been demonstrated. Multiple interactions between the prion protein and viruses have been described: viruses can act as co-factors in TSEs and life cycles of different viruses have been found to be controlled by prion modulation. We present data showing that human Adenovirus 5 induces prion expression. Inactivated Adenovirus did not alter prion transcription, while variants encoding for early products did, suggesting that the prion is stimulated by an early adenoviral function. Down-regulation of the prion through RNA interference showed that the prion controls adenovirus replication and expression. These data suggest that the prion protein could play a role in the defense strategy mounted by the host during viral infection, in a cell autonomous manner. These results have implications for the study of the prion protein and of associated TSEs.
Collapse
|
53
|
Shimwell NJ, Martin A, Bruton RK, Blackford AN, Sedgwick GG, Gallimore PH, Turnell AS, Grand RJA. Adenovirus 5 E1A is responsible for increased expression of insulin receptor substrate 4 in established adenovirus 5-transformed cell lines and interacts with IRS components activating the PI3 kinase/Akt signalling pathway. Oncogene 2008; 28:686-97. [DOI: 10.1038/onc.2008.417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
54
|
Cha EJ, Oh BC, Wee HJ, Chi XZ, Goh YM, Lee KS, Ito Y, Bae SC. E1A physically interacts with RUNX3 and inhibits its transactivation activity. J Cell Biochem 2008; 105:236-44. [PMID: 18570183 DOI: 10.1002/jcb.21818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adenoviral gene, termed early region 1A (E1A), is crucial for transformation and has been used very effectively as a tool to determine the molecular mechanisms that underlie the basis of cellular transformation. pRb, p107, p130, p300/CBP, p400, TRRAP, and CtBP were identified to be E1A-binding proteins and their roles in cellular transformation have been established. Although the major function of E1A is considered to be the regulation of gene expression that is critical for differentiation and cell cycle exit, one of the most significant questions relating to E1A transformation is how E1A mediates this regulation. RUNX3 is a transcription factor that was first described as a gastric cancer tumor suppressor but is now known to be involved in many different cancers. Exogenous expression of RUNX3 strongly inhibits the growth of cells. Here, we show that the adenovirus oncoprotein E1A interacts with RUNX3 in vitro and in vivo. RUNX3 interacts with the N-terminus (amino acids 2-29) of E1A, which is known to interact with p300/CBP, p400, and TRRAP. E1A interacts directly with the Runt domain of RUNX3 but does not interfere with CBFbeta-RUNX3 interactions. In addition, E1A inhibits the transactivation activity of RUNX3 on the p21(WAF1/CIP1) promoter. Consistent with these observations, the growth inhibition induced by RUNX3 is reduced by E1A. These results demonstrate that E1A specifically binds to RUNX3 and inactivates its transactivation activity. We propose that one of the mechanisms for the oncogenic activity of E1A is the inhibition of RUNX3, similar to that of RB and p300/CBP.
Collapse
Affiliation(s)
- Eun-Jeong Cha
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Ulasov IV, Tyler MA, Rivera AA, Nettlebeck DM, Douglas JT, Lesniak MS. Evaluation of E1A double mutant oncolytic adenovectors in anti-glioma gene therapy. J Med Virol 2008; 80:1595-603. [PMID: 18649343 DOI: 10.1002/jmv.21264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Malignant glioma, in particular glioblastoma multiforme (GBM), represents one of the most devastating cancers currently known and existing treatment regimens do little to change patient prognosis. Conditionally replicating adenoviral vectors (CRAds) represent attractive experimental anti-cancer agents with potential for clinical application. However, early protein products of the wild type adenovirus backbone--such as E1A--limit CRAds' replicative specificity. In this study, we evaluated the oncolytic potency and specificity of CRAds in which p300/CPB and/or pRb binding capacities of E1A were ablated to reduce non-specific replicative cytolysis. In vitro cytopathic assays, quantitative PCR analysis, Western blot, and flow cytometry studies demonstrate the superior anti-glioma efficacy of a double-mutated CRAd, Ad2/24CMV, which harbors mutations that reduce E1A binding to p300/CPB and pRb. When compared to its single-mutated and wild type counterparts, Ad2/24CMV demonstrated attenuated replication and cytotoxicity in representative normal human brain while displaying enhanced replicative cytotoxicity in malignant glioma. These results have implications for the development of double-mutated CRAd vectors for enhanced GBM therapy.
Collapse
Affiliation(s)
- Ilya V Ulasov
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
56
|
Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology 2008; 5:76. [PMID: 18702816 PMCID: PMC2533353 DOI: 10.1186/1742-4690-5-76] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 12/22/2022] Open
Abstract
The Tax1 oncoprotein encoded by Human T-lymphotropic virus type I is a major determinant of viral persistence and pathogenesis. Tax1 affects a wide variety of cellular signalling pathways leading to transcriptional activation, proliferation and ultimately transformation. To carry out these functions, Tax1 interacts with and modulates activity of a number of cellular proteins. In this review, we summarize the present knowledge of the Tax1 interactome and propose a rationale for the broad range of cellular proteins identified so far.
Collapse
Affiliation(s)
- Mathieu Boxus
- University Academia Wallonie-Europe, Molecular and Cellular Biology at FUSAGx, Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
57
|
Identification of a second CtBP binding site in adenovirus type 5 E1A conserved region 3. J Virol 2008; 82:8476-86. [PMID: 18524818 DOI: 10.1128/jvi.00248-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-terminal binding protein (CtBP) binds to adenovirus early region 1A (AdE1A) through a highly conserved PXDLS motif close to the C terminus. We now have demonstrated that CtBP1 also interacts directly with the transcriptional activation domain (conserved region 3 [CR3]) of adenovirus type 5 E1A (Ad5E1A) and requires the integrity of the entire CR3 region for optimal binding. The interaction appears to be at least partially mediated through a sequence ((161)RRNTGDP(167)) very similar to a recently characterized novel CtBP binding motif in ZNF217 as well as other regions of CR3. Using reporter assays, we further demonstrated that CtBP1 represses Ad5E1A CR3-dependent transcriptional activation. Ad5E1A also appears to be recruited to the E-cadherin promoter through its interaction with CtBP. Significantly, Ad5E1A, CtBP1, and ZNF217 form a stable complex which requires CR3 and the PLDLS motif. It has been shown that Ad513SE1A, containing the CR3 region, is able to overcome the transcriptional repressor activity of a ZNF217 polypeptide fragment in a GAL4 reporter assay through recruitment of CtBP1. These results suggest a hitherto-unsuspected complexity in the association of Ad5E1A with CtBP, with the interaction resulting in transcriptional activation by recruitment of CR3-bound factors to CtBP1-containing complexes.
Collapse
|
58
|
Robinson CM, Shariati F, Gillaspy AF, Dyer DW, Chodosh J. Genomic and bioinformatics analysis of human adenovirus type 37: new insights into corneal tropism. BMC Genomics 2008; 9:213. [PMID: 18471294 PMCID: PMC2397415 DOI: 10.1186/1471-2164-9-213] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 05/09/2008] [Indexed: 01/22/2023] Open
Abstract
Background Human adenovirus type 37 (HAdV-37) is a major etiologic agent of epidemic keratoconjunctivitis, a common and severe eye infection associated with long-term visual morbidity due to persistent corneal inflammation. While HAdV-37 has been known for over 20 years as an important cause, the complete genome sequence of this serotype has yet to be reported. A detailed bioinformatics analysis of the genome sequence of HAdV-37 is extremely important to understanding its unique pathogenicity in the eye. Results We sequenced and annotated the complete genome of HAdV-37, and performed genomic and bioinformatics comparisons with other HAdVs to identify differences that might underlie the unique corneal tropism of HAdV-37. Global pairwise genome alignment with HAdV-9, a human species D adenovirus not associated with corneal infection, revealed areas of non-conserved sequence principally in genes for the virus fiber (site of host cell binding), penton (host cell internalization signal), hexon (principal viral capsid structural protein), and E3 (site of several genes that mediate evasion of the host immune system). Phylogenetic analysis revealed close similarities between predicted proteins from HAdV-37 of species D and HAdVs from species B and E. However, virtual 2D gel analyses of predicted viral proteins uncovered unexpected differences in pI and/or size of specific proteins thought to be highly similar by phylogenetics. Conclusion This genomic and bioinformatics analysis of the HAdV-37 genome provides a valuable tool for understanding the corneal tropism of this clinically important virus. Although disparities between HAdV-37 and other HAdV within species D in genes encoding structural and host receptor-binding proteins were to some extent expected, differences in the E3 region suggest as yet unknown roles for this area of the genome. The whole genome comparisons and virtual 2D gel analyses reported herein suggest potent areas for future studies.
Collapse
Affiliation(s)
- Christopher M Robinson
- Molecular Pathogenesis of Eye Infection Research Center, Dean A. McGee Eye Institute, 608 Stanton L, Young Blvd., Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
59
|
Green M, Panesar NK, Loewenstein PM. The transcription-repression domain of the adenovirus E1A oncoprotein targets p300 at the promoter. Oncogene 2008; 27:4446-55. [PMID: 18408753 DOI: 10.1038/onc.2008.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extensive mutational/functional analysis of the transcription-repression domain encoded in the N-terminal 80 amino acids of the adenovirus E1A 243R oncoprotein suggests a model for the molecular mechanism of E1A repression: E1A accesses transcriptional co-activators such as p300 on specific promoters and then interacts with TBP to disrupt the TBP-TATA complex. In support of this model, as reported here, a basal core promoter activated by tethering p300 is repressible by E1A at the promoter level as shown by chromatin immunoprecipitation (ChIP) analysis. Sequestration of p300 by E1A does not play a significant role, as indicated by dose-response measurements. Furthermore, when the core promoter is transcriptionally activated by tethering activation domains of several transcription factors that can recruit p300 (p65, MyoD, cMyb and TFE3), transcription is repressible by E1A. However, when the core promoter is activated by factors not known to recruit p300 (USF1 and USF2), transcription is resistant to E1A repression. Finally, tethering p300 to the non-repressible adenovirus major late promoter (MLP) renders it repressible by E1A. ChIP analysis shows that E1A occupies the repressed MLP. These findings provide support for the hypothesis that p300 can serve as a scaffold for the E1A repression domain to access specific cellular gene promoters involved in growth regulation.
Collapse
Affiliation(s)
- M Green
- Institute for Molecular Virology, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | | | |
Collapse
|
60
|
Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol 2008; 82:7252-63. [PMID: 18385237 DOI: 10.1128/jvi.00104-08] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
61
|
Koehler-Hansner K, Flore O, Opalka B, Hengge UR. Interaction of Adenovirus E1A with the HHV8 Promoter of Latent Genes: E1A Proteins are Able to Activate the HHV-8 LANAp in MV3 Reporter Cells. Open Virol J 2008; 2:61-8. [PMID: 19440465 PMCID: PMC2678816 DOI: 10.2174/1874357900802010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, body cavity-based lymphoma, and Castleman's disease. Adenoviral (Ad) E1A proteins regulate the activity of cellular and viral promoters/enhancers and transcription factors and can suppress tumorigenicity of human cancers. As (i) HHV-8 and Ad may co-exist in immunocompromised patients and (ii) E1A might be considered as therapeutic transgene for HHV-8-associated neoplasms we investigated whether the promoter of the latency-associated nuclear antigen (LANAp) controlling expression of vCyclin, vFLIP, and LANA proteins required for latent type infection is regulated by E1A. Transfection experiments in MV3 melanoma cells revealed activation of the LANAp by Ad5 E1A constructs containing an intact N terminus (aa 1-119). In particular, an Ad12 E1A mutant, Spm2, lacking six consecutive alanine residues in the "spacer" region activated the HHV-8 promoter about 15-fold compared to vector controls. In summary, we report the activation of the LANAp by E1A as a novel interaction of E1A with a viral promoter. These data may have relevance for the management of viral infections in immunocompromised patients. A role for E1A as a therapeutic in this context remains to be defined.
Collapse
Affiliation(s)
- Karin Koehler-Hansner
- Department of Internal Medicine (Cancer Research), University of Duisburg-Essen Medical School, Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
62
|
Martina Y, Avitabile D, Piersanti S, Cherubini G, Saggio I. Different modulation of cellular transcription by adenovirus 5, DeltaE1/E3 adenovirus and helper-dependent vectors. Virus Res 2007; 130:71-84. [PMID: 17601622 DOI: 10.1016/j.virusres.2007.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 01/12/2023]
Abstract
One problem encountered in the use of adenoviral vectors for gene therapy is their toxicity. Although many studies have analyzed this question in vivo, few researches have investigated adenovirus vector effects at the cellular level using a large-scale approach. In particular, no such data are available for helper-dependent adenovirus vectors (HD), which are promising adenovirus vectors for clinical applications since they are devoid of all viral genes and can host large transgene cassettes. The present study used gene chips to examine (Affymetrix HG-U95Av2 interrogating 12,626 unique human transcripts) the effect on liver cells of HD vectors versus that of DeltaE1/E3 adenovirus vector and wild type Adenovirus (Ad5). The effects of the DeltaE1/E3 adenovirus and of HD vectors were comparable, and significantly milder than that of Ad5. Interestingly the expression signatures of DeltaE1/E3 adenovirus and HD vectors were non-overlapping both at the single gene and the pathway level, suggesting specific and different interactions between the host cell and the two gene therapy vectors.
Collapse
Affiliation(s)
- Yuri Martina
- Department of Genetics and Molecular Biology, University La Sapienza, and Fondazione Parco Biomedico S. Raffaele, Rome, Italy
| | | | | | | | | |
Collapse
|
63
|
Cheng K, Grisendi S, Clohessy JG, Majid S, Bernardi R, Sportoletti P, Pandolfi PP. The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 2007; 26:7391-400. [PMID: 17546053 DOI: 10.1038/sj.onc.1210549] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations leading to aberrant cytoplasmic localization of Nucleophosmin 1 (NPM1) have been recently identified as the most frequent genetic alteration in acute myelogenous leukemia. However, the oncogenic potential of this nucleophosmin mutant (NPMc+) has never been established, which casts doubt on its role in leukemogenesis. By performing classical transformation assays, we find that NPMc+, but not wild-type NPM, cooperates specifically with adenovirus E1A to transform primary mouse embryonic fibroblasts in soft agar. We demonstrate that NPMc+ blocks the p19(Arf) (Arf) induction elicited by E1A. Surprisingly, however, we find that NPMc+ induces cellular senescence and that E1A is able to overcome this response. We propose a model whereby the NPMc+ pro-senescence activity needs to be evaded for oncogenic transformation, even though NPMc+ can concomitantly blunt the Arf/p53 pathway. These findings identify for the first time NPMc+ as an oncogene and shed new unexpected light on its mechanism of action.
Collapse
Affiliation(s)
- K Cheng
- Cancer Biology and Genetics Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Bruton RK, Rasti M, Mapp KL, Young N, Carter RZ, Abramowicz IA, Sedgwick GG, Onion DF, Shuen M, Mymryk JS, Turnell AS, Grand RJA. C-terminal-binding protein interacting protein binds directly to adenovirus early region 1A through its N-terminal region and conserved region 3. Oncogene 2007; 26:7467-79. [PMID: 17546052 DOI: 10.1038/sj.onc.1210551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
C-terminal-binding protein interacting protein (CtIP) was first isolated as a binding partner of C-terminal-binding protein (CtBP). It is considered to contribute to the transcriptional repression and cell cycle regulatory properties of the retinoblastoma (Rb) family of proteins and to have a role in the cellular response to DNA damage. Here, we have shown that CtIP is a novel target for the adenovirus oncoprotein early region 1A (AdE1A). AdE1A associates with CtIP in both Ad5E1-transformed cells and Ad5-infected cells and binds directly in glutathione-S-transferase pull-down assays. Two binding sites have been mapped on Ad5E1A - the N-terminal alpha-helical region (residues 1-30) and conserved region 3 (CR3) - the transcriptional activation domain. CtIP can bind AdE1A and CtBP independently, raising the possibility that ternary complexes exist in Ad-transformed and -infected cells. Significantly, reduction of CtIP expression with small interfering RNAs results in reduction of the ability of a Gal4 DNA-binding domain-CR3 construct to transactivate a Gal 4-responsive luciferase reporter and this effect is reversed by reduction of CtBP expression. Therefore, in this model, CtIP acts as a transcriptional co-activator of AdE1A when dissociated from CtBP, through the action of AdE1A. These data are consistent with observations that CtIP expression is induced by AdE1A during viral infection and that reduction of CtIP expression with RNA interference can retard virus replication. In addition, AdE1A causes disruption of the CtIP/Rb complex during viral infection by its interaction with CtIP, possibly contributing to transcriptional derepression.
Collapse
Affiliation(s)
- R K Bruton
- Cancer Research UK Institute for Cancer Studies, The Medical School, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kino T, Chrousos GP. Virus-mediated modulation of the host endocrine signaling systems: clinical implications. Trends Endocrinol Metab 2007; 18:159-66. [PMID: 17400471 PMCID: PMC7128651 DOI: 10.1016/j.tem.2007.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/27/2007] [Accepted: 03/16/2007] [Indexed: 12/30/2022]
Abstract
Viruses, which are among the simplest infective pathogens, can produce characteristic endocrine manifestations in infected patients. In addition to the classic modification of the host endocrine system by either direct or indirect destruction of the endocrine organs and/or effects exerted by systemic production of inflammatory and/or stress mediators, recent progress in molecular virology and endocrinology has revealed that virus-encoded molecules might alter the host endocrine-signaling systems by affecting extracellular and/or intracellular signal transduction and hormone sensitivity of host target tissues. Here, we provide a brief overview of such viral-mediated modulation of host endocrine signaling systems. We propose that virus-encoded molecules and the signaling systems they influence are potential therapeutic targets for the treatment of disorders that are associated with some viral infections.
Collapse
Affiliation(s)
- Tomoshige Kino
- Pediatric Endocrinology Section, Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA.
| | | |
Collapse
|
66
|
Molloy DP, Barral PM, Gallimore PH, Grand RJA. The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A. Virology 2007; 363:342-56. [PMID: 17335865 DOI: 10.1016/j.virol.2007.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/21/2006] [Accepted: 01/17/2007] [Indexed: 11/24/2022]
Abstract
Adenovirus early region 1A (AdE1A) binds to the C-terminal binding protein 1 (CtBP1) primarily through a highly conserved PXDLS motif located close to its C-terminus. Purified synthetic peptides equivalent to this region of AdE1A have been shown to form a series of beta-turns. In this present study the effect of CtBP1 binding on the conformation of C-terminal region of Ad12E1A has been investigated. Using one- and two-dimensional (1)H NMR spectroscopy, the conformation of 20-residue peptides equivalent to amino acids I(241)-V(260) and E(247)-N(266) of Ad12E1A were examined in the absence of CtBP1. Whilst the latter peptide forms a series of beta-turns in its C-terminal half as reported previously, the former peptide is alpha-helical over the region D(243)-Q(253). Upon interaction with CtBP1 the conformation of the backbone in the region (255)PVDLCVK(261) of the Ad12E1A E(247)-N(266) peptide reorganises from a predominately beta-turn to an alpha-helical conformation. This structural isomerisation is characterised by a shift upfield of 0.318 ppm for the delta-CH(3) proton resonance of V(256). 2-D NOESY experiments showed new signals in the amide-alpha region which correlate to transferred NOEs from the protein to the peptide residues E(251), V(256) and K(261). In further analyses the contribution of individual amino acids within the sequence (254)VPVDLS(259) was assessed for their importance in determining structure and consequently affinity of the peptide for CtBP. It has been concluded that Ad12E1A residues (255)P-V(260) serve initially as a recognition site for CtBP and then as an anchor through a beta-turns-->alpha-helix conformational rearrangement. In addition it has been predicted that regions N-terminal to the PXDLS motif in AdE1As from different virus serotypes and from mammalian proteins form alpha-helices.
Collapse
Affiliation(s)
- David P Molloy
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT UK
| | | | | | | |
Collapse
|
67
|
Takahashi A, Higashino F, Aoyagi M, Nakayama M, Yanagawa A, Hasegawa H, Hatta M, Ishida S, Nakajima K, Totsuka Y, Shindoh M. Adenovirus E1A negatively regulates E1AF, an ets family of the protein. Biochem Biophys Res Commun 2007; 355:438-43. [PMID: 17306229 DOI: 10.1016/j.bbrc.2007.01.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
E1AF was first identified as a transcription factor that binds to enhancer motifs of the adenovirus E1A gene and is thought to be a human homologue of mouse PEA3, one of the ets oncoprotein families. Here we show the effect of E1A on the gene expression and function of E1AF. E1A repressed the activity of E1AF promoter, and the N-terminal region of E1A, which is involved in the oncogenic activity of E1A, was essential for this repression. The ability as a transcription factor of E1AF, as well as those of the other PEA3 subfamily members ER81 and ERM, was also repressed by E1A via the same oncogenic domain. Furthermore, E1AF repressed the transformation activity of E1A cooperating with E1B, whereas the other ets family Ets-1 enhanced this activity. These results suggest that E1AF is one of the targets of E1A.
Collapse
Affiliation(s)
- Akiko Takahashi
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, N-13 W-7, Kita-ku, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ye Z, Wang X, Hao S, Zhong J, Xiang J, Yang J. Oncolytic adenovirus-mediated E1A gene therapy induces tumor-cell apoptosis and reduces tumor angiogenesis leading to inhibition of hepatocellular carcinoma growth in animal model. Cancer Biother Radiopharm 2007; 21:225-34. [PMID: 16918299 DOI: 10.1089/cbr.2006.21.225] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oncolytic adenovirus (rAd)-mediated E1A gene therapy of cancer has become a novel therapeutic modality. In this study, we constructed a recombinant oncolytic adenovirus (rAd-E1A) expressing the tumor suppressor E1A gene. We demonstrated that the rAd-E1A replicated in HepG2 and SMMC-7721 human hepatocellular carcinoma (HCC) cells but attenuated in the normal liver cell line HL-7702. It induced HCC cell apoptosis through upregulation of apoptosis-associated Bax, caspase-3, and Fas and downregulation of survivin and Bcl-2 in a p53-dependent pathway. It also downregulated the expression of angiogenesis- associated vascular endothelial growth factor (VEGF) and CD34 genes and reduced tumor vessel formation and angiogenesis. In mice bearing SMMC-7721 tumors, intratumoral injections of rAd- E1A significantly inhibited HCC growth. Therefore, the oncolytic adenovirus-mediated E1A gene therapy may be a useful therapeutic approach for HCC treatment.
Collapse
Affiliation(s)
- Zhenmin Ye
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, SuZhou, China
| | | | | | | | | | | |
Collapse
|
69
|
Kumar RA, Naidu SR, Wang X, Imbalzano AN, Androphy EJ. Interaction of papillomavirus E2 protein with the Brm chromatin remodeling complex leads to enhanced transcriptional activation. J Virol 2006; 81:2213-20. [PMID: 17151122 PMCID: PMC1865958 DOI: 10.1128/jvi.01746-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Papillomavirus E2 is a sequence-specific DNA binding protein that regulates transcription and replication of the viral genome. The transcriptional activities of E2 are typically evaluated by transient transfection of nonreplicating E2-dependent reporters. We sought to address whether E2 activates transcription in an episomal context and its potential interaction with the chromatin remodeling proteins. Using an Epstein-Barr virus-based episomal reporter, we demonstrate that E2 stimulates transcription from an E2-dependent promoter in a chromatin context. This activation is enhanced by the presence of proteins associated with SWI/SNF complexes, which are ATP-dependent chromatin remodeling enzymes. We show that exogenous expression of the Brm ATPase enhances E2 activity in SWI/SNF-deficient cell lines and that the amino-terminal transactivation domain of E2 mediates association with the Brm complex in vivo. Using chromatin immunoprecipitation assays, we demonstrate that Brm enhances promoter occupancy by E2 in an episomal context. Our results demonstrate that E2 activates transcription from an episomal reporter system and reveal a novel property of E2 in collaborating with the Brm chromatin remodeling complex in enhancing transcriptional activation.
Collapse
Affiliation(s)
- R Ajay Kumar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 327, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
70
|
Timpe JM, Verrill KC, Black BN, Ding HF, Trempe JP. Adeno-associated virus induces apoptosis during coinfection with adenovirus. Virology 2006; 358:391-401. [PMID: 17011012 PMCID: PMC1839828 DOI: 10.1016/j.virol.2006.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/11/2006] [Accepted: 08/23/2006] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) is a nonpathogenic parvovirus that efficiently replicates in the presence of adenovirus (Ad). Exogenous expression of the AAV replication proteins induces caspase-dependent apoptosis, but determining if AAV infection causes apoptosis during viral infection is complicated by Ad-mediated programmed cell death. To eliminate Ad-induced cytolysis, we used an E3 adenoviral death protein (ADP) mutant, pm534. AAV and pm534-coinfected cells exhibited increased cell killing compared to pm534 alone. Relative to cells infected with Ad alone, AAV and wild-type Ad-infected cells displayed decreased ADP expression, increased cytolysis until the third day of the infection, and decreased cytolysis thereafter. Biochemical and morphological characteristics of apoptosis were observed during coinfections with AAV and pm534 or Ad, including a moderate degree of caspase activation that was not present during infections with pm534 or Ad alone. AAV coinfection also increased extracellular pH. These studies suggest that AAV induces caspase-dependent and caspase-independent apoptosis.
Collapse
Affiliation(s)
- Jennifer M Timpe
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | | | | | | | |
Collapse
|
71
|
Turnell AS, Mymryk JS. Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. Br J Cancer 2006; 95:555-60. [PMID: 16880778 PMCID: PMC2360682 DOI: 10.1038/sj.bjc.6603304] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adenovirus early region 1A (E1A) possesses potent transforming activity when expressed in concert with activated ras or E1B genes in in vitro tissue culture systems such as embryonic human retinal neuroepithelial cells or embryonic rodent epithelial and fibroblast cells. Early region 1A has thus been used extensively and very effectively as a tool to determine the molecular mechanisms that underlie the basis of cellular transformation. In this regard, roles for the E1A-binding proteins pRb, p107, p130, cyclic AMP response element-binding protein (CBP)/p300, p400, TRRAP and CtBP in cellular transformation have been established. However, the mechanisms by which E1A promotes transformation through interaction with these partner proteins are not fully delineated. In this review, we focus on recent advances in our understanding of CBP/p300 function, particularly with regard to its relationship to the anaphase-promoting complex/cyclosome E3 ubiquitin ligase, which has recently been shown to interact and affect the activity of CBP/p300 through interaction domains that are evolutionarily conserved in E1A.
Collapse
Affiliation(s)
- A S Turnell
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- E-mail:
| | - J S Mymryk
- Departments of Oncology and Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada N6A 4L6
- E-mail:
| |
Collapse
|
72
|
Rasti M, Grand RJA, Yousef AF, Shuen M, Mymryk JS, Gallimore PH, Turnell AS. Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription. EMBO J 2006; 25:2710-22. [PMID: 16763564 PMCID: PMC1500861 DOI: 10.1038/sj.emboj.7601169] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 05/05/2006] [Indexed: 01/12/2023] Open
Abstract
We have determined distinct roles for different proteasome complexes in adenovirus (Ad) E1A-dependent transcription. We show that the 19S ATPase, S8, as a component of 19S ATPase proteins independent of 20S (APIS), binds specifically to the E1A transactivation domain, conserved region 3 (CR3). Recruitment of APIS to CR3 enhances the ability of E1A to stimulate transcription from viral early gene promoters during Ad infection of human cells. The ability of CR3 to stimulate transcription in yeast is similarly dependent on the functional integrity of yeast APIS components, Sug1 and Sug2. The 20S proteasome is also recruited to CR3 independently of APIS and the 26S proteasome. Chromatin immunoprecipitation reveals that E1A, S8 and the 20S proteasome are recruited to both Ad early region gene promoters and early region gene sequences during Ad infection, suggesting their requirement in both transcriptional initiation and elongation. We also demonstrate that E1A CR3 transactivation and degradation sequences functionally overlap and that proteasome inhibitors repress E1A transcription. Taken together, these data demonstrate distinct roles for APIS and the 20S proteasome in E1A-dependent transactivation.
Collapse
Affiliation(s)
- Mozhgan Rasti
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham, UK
| | - Roger J A Grand
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham, UK
| | - Ahmed F Yousef
- Departments of Oncology and Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Michael Shuen
- Departments of Oncology and Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Departments of Oncology and Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Phillip H Gallimore
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew S Turnell
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
73
|
Turnell AS, Stewart GS, Grand RJA, Rookes SM, Martin A, Yamano H, Elledge SJ, Gallimore PH. The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 2005; 438:690-5. [PMID: 16319895 DOI: 10.1038/nature04151] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 08/17/2005] [Indexed: 11/08/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multicomponent E3 ubiquitin ligase that, by targeting protein substrates for 26S proteasome-mediated degradation through ubiquitination, coordinates the temporal progression of eukaryotic cells through mitosis and the subsequent G1 phase of the cell cycle. Other functions of the APC/C are, however, less well defined. Here we show that two APC/C components, APC5 and APC7, interact directly with the coactivators CBP and p300 through protein-protein interaction domains that are evolutionarily conserved in adenovirus E1A. This interaction stimulates intrinsic CBP/p300 acetyltransferase activity and potentiates CBP/p300-dependent transcription. We also show that APC5 and APC7 suppress E1A-mediated transformation in a CBP/p300-dependent manner, indicating that these components of the APC/C may be targeted during cellular transformation. Furthermore, we establish that CBP is required in APC/C function; specifically, gene ablation of CBP by RNA-mediated interference markedly reduces the E3 ubiquitin ligase activity of the APC/C and the progression of cells through mitosis. Taken together, our results define discrete roles for the APC/C-CBP/p300 complexes in growth regulation.
Collapse
Affiliation(s)
- Andrew S Turnell
- Cancer Research UK Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
75
|
Isobe T, Uchida C, Hattori T, Kitagawa K, Oda T, Kitagawa M. Ubiquitin-dependent degradation of adenovirus E1A protein is inhibited by BS69. Biochem Biophys Res Commun 2005; 339:367-74. [PMID: 16300738 DOI: 10.1016/j.bbrc.2005.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Accepted: 11/03/2005] [Indexed: 11/24/2022]
Abstract
Adenovirus E1A protein perturbs the cell cycle and promotes cell transformation. Although E1A is relatively unstable, regulation of E1A stability has not been fully elucidated. Here, we showed that E1A was ubiquitinated and degraded using a proteasome in vivo system. Interestingly, we found that BS69, one of the E1A-binding proteins, inhibited ubiquitination of E1A. BS69 mutants lacking the MYND domain could not bind to E1A and did not inhibit ubiquitination of E1A. Moreover, we demonstrated that overexpression of BS69 stabilized E1A in vivo. These results suggest that BS69 controls E1A stability via inhibition of ubiquitination.
Collapse
Affiliation(s)
- Tomoyasu Isobe
- Department of Biochemistry 1, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Medina DJ, Sheay W, Osman M, Goodell L, Martin J, Rabson AB, Strair RK. Adenovirus infection and cytotoxicity of primary mantle cell lymphoma cells. Exp Hematol 2005; 33:1337-47. [PMID: 16263418 DOI: 10.1016/j.exphem.2005.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/29/2005] [Accepted: 07/11/2005] [Indexed: 02/03/2023]
Abstract
Mantle cell lymphoma (MCL) is a distinct form of non-Hodgkin's lymphoma (NHL) derived from CD5+ B cells. MCL cells overexpress cyclin D1 as a consequence of translocation of the gene into the immunoglobulin heavy-chain gene locus. MCL is an aggressive form of NHL with frequent relapses after standard-dose chemotherapy. In this context, a variety of novel therapies for patients with MCL have been investigated. In this study, we use an expanded panel of attenuated adenoviruses to study adenovirus-mediated cytotoxicity of MCL cells. Our results demonstrate: 1) adenovirus infection of MCL cells despite the absence of receptor/coreceptor molecules known to be important for adenovirus infection of other cells types; 2) cytotoxicity of MCL cells after infection with specific adenovirus mutants; 3) a high degree of cytotoxicity after infection of some patient samples with viruses lacking the E1B 19k "antiapoptotic" gene; and 4) cytotoxicity after infection with viruses containing mutations in E1A pRb or p300 binding. The extent of cytotoxicity with the panel of viruses demonstrated interpatient variability, but 100% cytotoxicity, as determined by molecular analysis, was detected in some samples. These studies provide the foundation for: 1) the development of adenoviruses as cytotoxic agents for MCL and 2) analyses of key regulatory pathways operative in MCL cells.
Collapse
Affiliation(s)
- Daniel J Medina
- The Cancer Institute of New Jersey, Department of Medicine, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
77
|
Bottley G, Cook GP, Meade JL, Holt JR, Hoeben RC, Blair GE. Differential expression of LFA-3, Fas and MHC Class I on Ad5- and Ad12-transformed human cells and their susceptibility to lymphokine-activated killer (LAK) cells. Virology 2005; 338:297-308. [PMID: 15963548 DOI: 10.1016/j.virol.2005.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 02/25/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
Adenovirus (Ad) E1A is a potent oncogene and has been shown to deregulate the expression of a large number of cellular genes leading to cellular transformation. Here we have analysed the expression of several immunomodulatory molecules on the surface of a set of human cell lines transformed with either Ad12 or Ad5. Human cells transformed with Ad12 demonstrated reduced expression of cell surface LFA-3, Fas and MHC class I when compared to Ad5-transformed cells. Furthermore, Ad12-transformed human cell lines demonstrated greater susceptibility to lysis by lymphokine-activated killer (LAK) cells, compared to Ad5-transformed human cell lines. In contrast, previous studies with rodent cells showed that both Ad5- and Ad12-transformed rat cells were susceptible to LAK cells. Thus, transformation of human cells with Ad5 or Ad12 results in differences in the expression of immunomodulatory molecules on the cell surface and differential recognition of these virus-transformed cells by immune effector cells.
Collapse
Affiliation(s)
- Graham Bottley
- Molecular Cell Biology Research Group and School of Biochemistry and Microbiology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
78
|
Zhang X, Hussain R, Turnell AS, Mymryk JS, Gallimore PH, Grand RJA. Accumulation of p53 in response to adenovirus early region 1A sensitizes human cells to tumor necrosis factor alpha-induced apoptosis. Virology 2005; 340:285-95. [PMID: 16051302 DOI: 10.1016/j.virol.2005.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/26/2005] [Accepted: 06/14/2005] [Indexed: 11/30/2022]
Abstract
Many tumor cells are resistant to tumor necrosis factor alpha (TNFalpha)-induced apoptosis. Adenovirus early region 1A (AdE1A) sensitizes the otherwise resistant cells to TNFalpha. AdE1A also stabilizes the p53 protein. The present study demonstrates a correlation between AdE1A-induced sensitization and stabilization of p53 in TNFalpha-induced apoptosis since the N-terminal and CR2 regions, the binding sites for CBP/p300, Rb and 26S proteasome regulatory components, are required for both these actions of AdE1A. TNFalpha does not induce apoptosis and AdE1A fails to sensitize TNFalpha cytotoxicity in p53-negative cells. However, introduction of exogenous p53 overcomes the cellular resistance to TNFalpha toxicity and enhances AdE1A sensitization, demonstrating that AdE1A sensitizes TNFalpha-induced apoptosis by its stabilization of p53. A proteasome inhibitor, lactacystin, enhances TNFalpha cytotoxicity in p53-positive and -negative cells, suggesting that accumulation of cellular proteins other than p53 might also regulate the cellular response to TNFalpha signaling.
Collapse
Affiliation(s)
- Xian Zhang
- Cancer Research UK Institute for Cancer Studies, The Medical School, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
79
|
Lomonosova E, Subramanian T, Chinnadurai G. Mitochondrial localization of p53 during adenovirus infection and regulation of its activity by E1B-19K. Oncogene 2005; 24:6796-808. [PMID: 16007153 DOI: 10.1038/sj.onc.1208836] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent results have revealed that the p53 tumor suppressor protein possesses a direct transcription-independent apoptotic activity. During apoptosis induced by genotoxic stress, a small fraction of p53 is targeted to mitochondria where it initiates apoptosis by causing mitochondrial dysfunction. In adenovirus-infected cells, the expression of E1A protein enhances the accumulation of p53 during early phases of infection and during late times after infection, it is targeted for degradation by the combined action of E1B-55K and E4-orf6 proteins. The functional significance of E1A-mediated accumulation of p53 during early phases of viral replication is not known. Our studies with isogenic epithelial cell lines that differ only on the status of p53 indicate that Ad infection induces apoptosis by p53-dependent and -independent pathways and both pathways are suppressed by E1B-19K. We show that during early phase of Ad infection, a fraction of p53 is targeted to the mitochondria. In virus infected cells, a large fraction of the viral antiapoptosis protein E1B-19K is also localized in mitochondria during early and late phases of infection. Coimmunoprecipitation analysis has revealed that p53 and E1B-19K form a complex in mitochondria. The interaction of 19K involves two noncontiguous regions located around amino-acid residues 14-15 and 123-124. On p53, the mutations within the DNA-binding domain reduce interaction with E1B-19K. Our studies also suggest that 19K may additionally complex with the multidomain mitochondrial proapoptotic protein BAK, thereby reducing the level of p53 interaction with BAK. We suggest that p53-induced apoptosis may be important for efficient cell lysis and viral spread and that E1B-19K may neutralize the apoptotic activity of p53 at multiple levels.
Collapse
Affiliation(s)
- Elena Lomonosova
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
80
|
Rasti M, Grand RJA, Mymryk JS, Gallimore PH, Turnell AS. Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A. J Virol 2005; 79:5594-605. [PMID: 15827174 PMCID: PMC1082771 DOI: 10.1128/jvi.79.9.5594-5605.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal region of the adenovirus (Ad) 12S E1A gene product targets several cellular proteins that are essential for the induction of S phase, cellular immortalization, cellular transformation, transcriptional repression, and transcriptional activation. The precise binding sites for these proteins, however, remain to be resolved. We therefore undertook an extensive site-directed mutagenesis approach to generate specific point mutants and to precisely map the binding sites for CBP, p300, TATA-binding protein (TBP), S4, S8, hGcn5, P/CAF, and Ran within the first 30 amino acids of the Ad5 12S E1A protein. We determined that although common residues within the N-terminal region can form partial binding sites for these proteins, point mutants were also generated that could discriminate between binding sites. These data indicate that AdE1A can target each of these proteins individually through distinct binding sites. It was evident, however, that the mutation of specific hydrophobic residues typically had the greatest effect upon AdE1A's ability to bind individual partners. Indeed, the mutation of L at positions 19 and 20 eliminated the ability of AdE1A to interact with any of the N-terminal binding proteins studied here. Interestingly, although TBP and S8 or CBP/p300 can exist as functional complexes, RNA interference revealed that the recruitment of either TBP, S8, or CBP/p300 to AdE1A was not dependent upon the expression of the other proteins. These data further indicate that AdE1A can target individual partner proteins in vivo and that it does not necessarily recruit these proteins indirectly as components of larger macromolecular complexes. Finally, we took advantage of the fine-mapping data to ascertain which proteins were targeted during the transformation process. Consistent with previous studies, CBP/p300 was found to be targeted by AdE1A during this process, although our data suggest that binding to other N-terminal proteins is also important for transformation.
Collapse
Affiliation(s)
- Mozhgan Rasti
- Cancer Research U.K. Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
81
|
Delouis C, Prochasson P, Laithier M, Brison O. Use of adenoviral E1A protein to analyze K18 promoter deregulation in colon carcinoma cells discloses a role for CtBP1 and BRCA1. BMC Mol Biol 2005; 6:8. [PMID: 15831101 PMCID: PMC1087485 DOI: 10.1186/1471-2199-6-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 04/14/2005] [Indexed: 11/21/2022] Open
Abstract
Background The promoter of the keratin 18 (K18) gene is 5- to 10-fold more active in tumorigenic (T-type) cell clones derived from the SW613-S human colon carcinoma cell line than in non-tumorigenic (NT-type) clones. We have reported previously that the mechanism responsible for this differential activity is acting on the minimal K18 promoter (TATA box and initiation site). This mechanism does not require the binding of a factor to a specific site on the DNA but involves the acetylation of a non-histone substrate. To get further insight into this mechanism, we investigated the effect of the adenovirus E1A protein on the activity of the K18 promoter, both in T and NT cells. Results Wild type adenovirus E1A protein and C-terminal deletion mutants inhibit the K18 promoter, specifically in T-type cells. The domain responsible for this inhibitory effect is located in the 12–25 region of the viral protein. E1A mutants that have lost this region but retain the PLDLS motif (the C-terminal binding site for CtBP1) stimulate the K18 promoter, specifically in NT cells. The inhibitory or stimulatory effects of the different E1A mutants are not dependent on a particular sequence of the promoter. An E1A N-terminal deletion mutant carrying point mutations in the PLDLS motif cannot stimulate the K18 promoter. CtBP1 interacts with CtIP, which is a known partner of BRCA1, itself a component of the RNA polymerase II holoenzyme. The stimulatory effect of two BRCA1 mutants, specifically in NT cells, implicates a tripartite BRCA1-CtIP-CtBP1 complex in the regulation of the K18 promoter. Conclusion Since we have shown previously that the K18 promoter is stimulated by deacetylase inhibitors, specifically in NT cells, we conclude that the activity of the promoter is repressed in NT cells by a mechanism involving the recruitment, by a BRCA1/CtIP complex, of CtBP1 and associated deacetylases to the preinitiation complex. We propose a model depicting the mechanism responsible for the differential activity of the K18 promoter between T and NT cells of the SW613-S cell line.
Collapse
Affiliation(s)
- Cécile Delouis
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Philippe Prochasson
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
- PP: Stowers Institute, 1000 E 50street, Kansas City, MO 64110, USA; OB: UMR 7147, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Madeleine Laithier
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Olivier Brison
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
- PP: Stowers Institute, 1000 E 50street, Kansas City, MO 64110, USA; OB: UMR 7147, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| |
Collapse
|
82
|
Schaack J. Induction and Inhibition of Innate Inflammatory Responses by Adenovirus Early Region Proteins. Viral Immunol 2005; 18:79-88. [PMID: 15802954 DOI: 10.1089/vim.2005.18.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
First-generation adenovirus (Ad) gene therapy vectors deleted for the E1A, E1B, and E3 regions and carrying foreign genes under the control of strong foreign promoters induce high-level innate inflammatory responses within the first 24 hrs after transduction. Both uptake of the capsid and expression of gene products encoded by the vector contribute to the innate inflammatory response. Natural infections by Ad are frequently asymptomatic, suggesting that Ad has potent methods of inhibiting inflammation. The inability of Ad vectors to counter inflammatory responses suggests that the products of the Ad genes deleted in vector construction play critical roles in inhibiting these responses. Genetic analysis of the roles of Ad early region gene functions in vivo demonstrated that a virus made replication-incompetent by deletion of the preterminal protein gene and deleted for the transcriptional activation function of E1A effectively inhibits the innate inflammatory processes induced by Ad vectors. The mechanism(s) by which the Ad early region proteins inhibit inflammation is complex, as certain early region proteins can promote as well as inhibit inflammation, depending on the genetic context of the virus. Understanding of the roles of the Ad gene products in the induction and inhibition of innate inflammatory functions offers potential for the development of non-inflammatory vectors as well as for understanding of the mechanisms by which inflammation is regulated.
Collapse
Affiliation(s)
- Jerome Schaack
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8333, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
83
|
Chu RL, Post DE, Khuri FR, Van Meir EG. Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2005; 10:5299-312. [PMID: 15328165 DOI: 10.1158/1078-0432.ccr-0349-03] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic virotherapy is the use of genetically engineered viruses that specifically target and destroy tumor cells via their cytolytic replication cycle. Viral-mediated tumor destruction is propagated through infection of nearby tumor cells by the newly released progeny. Each cycle should amplify the number of oncolytic viruses available for infection. Our understanding of the life cycles of cytolytic viruses has allowed manipulation of their genome to selectively kill tumor cells over normal tissue. Because the mechanism of tumor destruction is different, oncolytic virotherapy should work synergistically with current modes of treatment such as chemotherapy and radiation therapy. This article focuses on oncolytic adenoviruses that have been created and tested in preclinical and clinical trials in combination with chemotherapy, radiation therapy, and gene therapy.
Collapse
Affiliation(s)
- Roland L Chu
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery, Hematology/Oncology, and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
84
|
Hu B, Zhu H, Qiu S, Su Y, Ling W, Xiao W, Qi Y. Enhanced TRAIL sensitivity by E1A expression in human cancer and normal cell lines: inhibition by adenovirus E1B19K and E3 proteins. Biochem Biophys Res Commun 2005; 325:1153-62. [PMID: 15555548 DOI: 10.1016/j.bbrc.2004.10.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Indexed: 11/23/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily of cytokines that induces apoptosis in a variety of cancer cells, but not in normal cells. However, more and more tumor cells remain resistant to TRAIL, which limited its application for cancer therapy. Expression of the adenovirus serotype 5 (Ad5) E1A sensitizes tumor cells to apoptosis by TNF-alpha, Fas-ligand, and TRAIL. Here we asked whether E1A overcomes this resistance and enhances TRAIL-induced apoptosis in the tumor cells. Our results revealed that the tumor cell lines, HeLa and HepG2, with infection by Ad-E1A, were highly sensitive to TRAIL-induced apoptosis. Importantly, we found that in normal primary human lung fibroblast cells (HLF) TRAIL is capable of inducing apoptosis in combination with E1A as efficiently as in some tumor cell lines. The adenovirus type 5 encoding proteins, E1B19K and E3 gene products, have been shown to inhibit E1A and TRAIL-induced apoptosis of HLF cells by using the recombinant adenovirus AdDeltaE1B55K, with mutation of E1B55K, containing E1B19K and complete E3 region. Further results demonstrated that the expression of DR5 and TRAIL was down-regulated in the AdDeltaE1B55K co-infected HLF cells. These findings suggest that TRAIL may play an important role in limiting virus infections and the ability of adenovirus to inhibit killing may prolong acute and persistent infections. The results from this study have also suggested the possibility that the combination of E1A with TRAIL could be used in the treatment of human malignancy, or in the selection of the optimal adenovirus mutant as effective delivering vector for cancer therapy.
Collapse
Affiliation(s)
- Baoli Hu
- Key Laboratory of Virology, Ministry of Education, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, PR China
| | | | | | | | | | | | | |
Collapse
|
85
|
Avvakumov N, Kajon AE, Hoeben RC, Mymryk JS. Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. Virology 2004; 329:477-92. [PMID: 15518825 DOI: 10.1016/j.virol.2004.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/22/2004] [Accepted: 08/09/2004] [Indexed: 01/27/2023]
Abstract
Despite extensive study of human adenovirus type 5 E1A, surprisingly little is known about the E1A proteins of other adenoviruses. We report here a comprehensive analysis of the sequences of 34 E1A proteins. These represent all six primate adenovirus subgroups and include all human representatives of subgroups A, C, E, and F, eight from subgroup B, nine from subgroup D, and seven simian adenovirus E1A sequences. We observed that many, but not all, functional domains identified in human adenovirus type 5 E1A are recognizably present in the other E1A proteins. Importantly, we identified highly conserved sequences without known activities or binding partners, suggesting that previously unrecognized determinants of E1A function remain to be uncovered. Overall, our analysis forms a solid foundation for future study of the activities and features of the E1A proteins of different serotypes and identifies new avenues for investigating E1A function.
Collapse
Affiliation(s)
- N Avvakumov
- Department of Microbiology and Immunology, London Regional Cancer Centre, The University of Western Ontario, London, Ontario, Canada N6A 4L6
| | | | | | | |
Collapse
|
86
|
Verma SC, Borah S, Robertson ES. Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J Virol 2004; 78:10348-59. [PMID: 15367601 PMCID: PMC516419 DOI: 10.1128/jvi.78.19.10348-10359.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Telomerase is required for the maintenance of telomere length and is an important determinant for cell immortalization. In human cells, telomerase activity is due to the expression of its enzymatic subunit, human telomerase reverse transcriptase (hTERT). The expression of hTERT is not typically detectable in healthy somatic human cells but is present in cancerous tissues and immortalized cells. We have previously shown that hTERT promoter activity is up-regulated by the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA). LANA is expressed in all forms of human malignancies associated with KSHV. The hTERT promoter sequence located at positions -130 to +5 contains several Sp1 binding motifs and was shown be important for up-regulation by LANA. In this report, we demonstrate that hTERT promoter activity is due to the direct interaction of LANA with Sp1. The interaction of LANA with Sp1 was demonstrated through in vitro binding experiments and coimmunoprecipitation and is supported by the colocalization of these two molecules in the nuclei of KSHV-infected cells. Moreover, LANA modulates Sp1-mediated transcription in transient GAL4 fusion reporter assays. Mapping of the regions involved in binding and transcriptional activation showed that the amino terminus of LANA is the major site for interaction and up-regulation but that it can cooperate with the carboxy terminus to enhance these functions. An analysis of Sp1 binding to its cognate sequence corroborated the binding data. Together, our results suggest that the interaction of LANA with Sp1 up-regulates the telomerase promoter, potentially contributing to the immortalization of KSHV-infected cells.
Collapse
Affiliation(s)
- Subhash C Verma
- Department of Microbiology and Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
87
|
Zhang X, Turnell AS, Gorbea C, Mymryk JS, Gallimore PH, Grand RJA. The targeting of the proteasomal regulatory subunit S2 by adenovirus E1A causes inhibition of proteasomal activity and increased p53 expression. J Biol Chem 2004; 279:25122-33. [PMID: 15056666 DOI: 10.1074/jbc.m403287200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although adenovirus early region 1A (AdE1A) can modulate protein expression through its interaction with transcriptional regulators it can also influence the ability of the cell to degrade proteins by binding to components of the 26 S proteasome. We demonstrate here that AdE1A interacts with the S2 subunit of the 19 S regulatory complex in addition to the ATPase subunits S4 and S8 previously identified. S2 forms complexes with both the 13 and 12 S AdE1A proteins both in vivo and in vitro. Mutational analysis has shown direct binding through a short sequence toward the N terminus of conserved region 2 of AdE1A, which encompasses the LXCXE motif, involved in interaction with the pRb family of proteins. In vivo, additional contacts are made between AdE1A and proteasomal components, as well as within the proteasome, such that deletion of the N-terminal region of E1A as well as part of conserved region 2 is required to completely disrupt S2 binding. Mutation of AdE1A, which disrupts complex formation with S2, results in the loss of its ability to stabilize the p53 protein. Similarly down-regulation of S2 expression using small interfering RNAs leads to the inhibition of p53 degradation. These effects were observed in normally growing cells and those subjected to UV irradiation. Furthermore, AdE1A had no effect on the Mdm2-mediated ubiquitination of p53. We suggest therefore that interaction of AdE1A with S2, as well as with the ATPases S4 and S8, directly causes inhibition of proteasomal activity and consequent increase in the protein levels of p53.
Collapse
Affiliation(s)
- Xian Zhang
- Cancer Research United Kingdom Institute for Cancer Studies, The Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
Human adenoviruses (Ads) have the ability to transform primary cells, and certain Ads, the subgenus A adenoviruses such as Ad12, induce tumours in immunocompetent rodents. The oncogenic phenotype of the subgenus A adenoviruses is determined by the viral E1A oncogene. In order to generate tumours, Ad12-transformed cells must evade the cellular immune system of the host. Ad12 E1A gene products mediate transcriptional repression of several genes in the major histocompatibility complex (MHC) involved in antigen processing and presentation, resulting in evasion of cytotoxic T lymphocyte (CTL) killing of transformed cells. In this review, the molecular mechanisms of E1A-mediated transcriptional repression of MHC gene expression are described. In addition, evasion of natural killer (NK) cell killing by Ad-transformed cells is also considered.
Collapse
Affiliation(s)
- G E Blair
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
89
|
Russell IA, Royds JA, Braithwaite AW. Exploitation of Cell Cycle and Cell Death Controls by Adenoviruses: The Road to a Productive Infection. VIRUSES AND APOPTOSIS 2004; 36:207-43. [PMID: 15171614 DOI: 10.1007/978-3-540-74264-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- I Alasdair Russell
- Cell Transformation Group, Department of Pathology, Dunedin School of Medicine, University of Otago, Box 913, Dunedin, New Zealand
| | | | | |
Collapse
|
90
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
91
|
Shuen M, Avvakumov N, Torchia J, Mymryk JS. The E1A proteins of all six human adenovirus subgroups target the p300/CBP acetyltransferases and the SAGA transcriptional regulatory complex. Virology 2003; 316:75-83. [PMID: 14599792 DOI: 10.1016/j.virol.2003.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-terminal/conserved region 1 (CR1) portion of the human adenovirus (Ad) 5 E1A protein was previously shown to inhibit growth in the simple eukaryote Saccharomyces cerevisiae. We now demonstrate that the corresponding regions of the E1A proteins of Ad3,-4,-9,-12, and -40, which represent the remaining five Ad subgroups, also inhibit yeast growth. These results suggest that the E1A proteins of all six human Ad subgroups share a common cellular target(s) conserved in yeast. Growth inhibition induced by either full-length or the N-terminal/CR1 portion of Ad5 E1A was relieved by coexpression of the E1A binding portions of the mammalian p300, CBP, and pCAF acetyltransferases. Similarly, growth inhibition by the N-terminal/CR1 portions of the other Ad E1A proteins was suppressed by expression of the same regions of CBP or pCAF known to bind Ad5 E1A. The physical interaction of each of the different Ad E1A proteins with CBP, p300, and pCAF was confirmed in vitro. Furthermore, deletion of the gene encoding yGcn5, the yeast homolog of pCAF and a subunit of the SAGA transcriptional regulatory complex, restored growth in yeast expressing each of the different Ad E1A proteins. This indicates that the SAGA complex is a conserved target of all Ad E1A proteins. Our results demonstrate for the first time that the p300, CBP, and pCAF acetyltransferases are common targets for the E1A proteins of all six human Ad subgroups, highlighting the importance of these interactions for E1A function.
Collapse
Affiliation(s)
- Michael Shuen
- Department of Microbiology and Immunology, The University of Western Ontario, London, Regional Cancer Centre, 790 Commissioners Road East, N6A 4L6, London, Ontario, Canada
| | | | | | | |
Collapse
|
92
|
Usenko T, Kukushkin A, Pospelova T, Pospelov V. Transient expression of E1A and Ras oncogenes causes downregulation of c-fos gene transcription in nontransformed REF52 cells. Oncogene 2003; 22:7661-6. [PMID: 14576829 DOI: 10.1038/sj.onc.1206975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stable transformation of rat embryo fibroblast (REF) cells with E1A and cHa-ras oncogenes leads to downmodulation of c-fos gene transcription. This repression is provided in part by the association of Elk-1 transcription factor with histone deacetylases mediated through effects of Ras on MAP-kinase cascades. Here, we focus on the primary effects of E1A and Ras displayed in transient transfection assay on the transactivating capability of Elk-1, which is a key transcription factor of c-fos gene regulation. Our data show that E1A is able to suppress serum- and Ras-induced stimulation of Gal-luc reporter activity by a full-length Gal-Elk1-428 fusion protein as well as the expression of c-fos promoter-driven luciferase constructs (fos-luc). The repression can be relieved by trichostatin A, a histone deacetylase (HDAC) inhibitor, implying the involvement of HDACs and an inactive chromatin structure formed due to underacetylation of nucleosomal histones. Thus, upon transient transfection of E1A and Ras oncogenes in REF52 cells or their stable expression in E1A+cHa-ras cells, E1A contributes to the formation of inactive chromatin structure through association with p300/CBP histone acetyltransferases at c-fos promoters, whereas Ras mediates its effect through constitutive activation of the MAP/ERK kinase cascade, thereby promoting the recruitment of HDAC1 to the Elk-1 transcription factor. As a result, downregulation of c-fos gene transcription revealed in established E1A+Ras transformants is unlikely to be a consequence of cell transformation itself, but follows from primary effects of E1A and Ras on chromatin remodeling factors.
Collapse
Affiliation(s)
- Tatiana Usenko
- Institute of Cytology, Russian Academy of Sciences, 194064 St-Petersburg, Russia
| | | | | | | |
Collapse
|
93
|
Lavia P, Mileo AM, Giordano A, Paggi MG. Emerging roles of DNA tumor viruses in cell proliferation: new insights into genomic instability. Oncogene 2003; 22:6508-16. [PMID: 14528275 DOI: 10.1038/sj.onc.1206861] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The small DNA virus proteins E1A and E1B from human Adenovirus, E6 and E7 from human papillomavirus, and large T and small T antigens from SV40, are multifaceted molecular tools that can carry out an impressive number of tasks in the host cell. These viral factors, collectively termed 'oncoproteins' for their ability to induce cancer, can be viewed as paradigmatic oncogenic factors which can disrupt checkpoint controls at multiple levels--they interfere with both 'gatekeeper' cellular functions, including major control pathways of cell cycle and apoptosis, and with 'caretaker' functions, thereby inducing mitotic abnormalities and increasing genomic instability. Both E1A and E7 have been recently found to interact physically with the Ran GTPase. This interaction is key in uncoupling the centrosome cycle from the cell cycle, highlighting a direct link between viral infection and the induction of genomic instability. Further expanding our current knowledge in this field will be crucial to elucidate viral strategies leading to cellular transformation and cancer progression, as well as design novel preventive or therapeutic approaches to human cancer.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | | | | | | |
Collapse
|
94
|
Tarakanova VL, Wold WSM. Transforming growth factor beta1 receptor II is downregulated by E1A in adenovirus-infected cells. J Virol 2003; 77:9324-36. [PMID: 12915548 PMCID: PMC187388 DOI: 10.1128/jvi.77.17.9324-9336.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta1 (TGF-beta1) signaling is compromised in many tumors, thereby allowing the tumor to escape the growth-inhibitory and proapoptotic activities of the cytokine. Human adenoviruses interfere with a number of cellular pathways involved in cell cycle regulation and apoptosis, initially placing the cell in a "tumor-like" state by forcing quiescent cells into the cell cycle and also inhibiting apoptosis. We report that adenovirus-infected cells resemble tumor cells in that TGF-beta1 signaling is inhibited. The levels of TGF-beta1 receptor II (TbetaRII) in adenovirus-infected cells were decreased, and this decrease was mapped, by using virus mutants, to the E1A gene and to amino acids 2 to 36 and the C-terminal binding protein binding site in the E1A protein. The decrease in the TbetaRII protein was accompanied by a decrease in TbetaRII mRNA. The decrease in TbetaRII protein levels in adenovirus-infected cells was greater than the decrease in TbetaRII mRNA, suggesting that downregulation of the TbetaRII protein may occur through more than one mechanism. Surprisingly in this context, the half-lives of the TbetaRII protein in infected and uninfected cells were similar. TGF-beta1 signaling was compromised in cells infected with wild-type adenovirus, as measured with 3TP-lux, a TGF-beta-sensitive reporter plasmid expressing luciferase. Adenovirus mutants deficient in TbetaRII downregulation did not inhibit TGF-beta1 signaling. TGF-beta1 pretreatment reduced the relative abundance of adenovirus structural proteins in infected cells, an effect that was potentiated when cells were infected with mutants incapable of modulating the TGF-beta signaling pathway. These results raise the possibility that inhibition of TGF-beta signaling by E1A is a means by which adenovirus counters the antiviral defenses of the host.
Collapse
Affiliation(s)
- Vera L Tarakanova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | |
Collapse
|
95
|
Löhr K, Hartmann O, Schäfer H, Dobbelstein M. Mutual interference of adenovirus infection and myc expression. J Virol 2003; 77:7936-44. [PMID: 12829833 PMCID: PMC161938 DOI: 10.1128/jvi.77.14.7936-7944.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During infection with adenovirus, massive changes in the transcription of virus genes are observed, suggesting that the expression of cellular genes may also be modulated. To characterize the levels of cellular RNA species in infected cells, cDNA arrays were screened 24 h after infection of HeLa cells with wild-type adenovirus type 5, strain dl309. Despite complete transduction of the cells, fewer than 20 cellular genes (out of 4,600 analyzed and 1,200 found detectable and expressed above background) were altered more than threefold in their corresponding RNA levels compared to mock-infected cells. In particular, the expression of the myc oncogene was reduced at the mRNA level. This reduction was dependent on the replication of virus DNA and partially dependent on the presence of the adenovirus gene products E1B-55 kDa and E4orf6, but not E4orf3. On the other hand, MYC protein had an increased half-life in infected cells, resulting in roughly constant steady-state protein levels. The adenovirus E1A gene product is necessary and sufficient to stabilize MYC. Overexpressed MYC inhibited adenovirus replication and the proper formation of the virus replication centers. We conclude that adenovirus infection leads to the stabilization of MYC, perhaps as a side effect of E1A activities. On the other hand, myc mRNA levels are negatively regulated during adenovirus infection, and this may avoid the detrimental effect of excessive MYC on adenovirus replication.
Collapse
Affiliation(s)
- Kristina Löhr
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Strasse 17, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
96
|
Post DE, Khuri FR, Simons JW, Van Meir EG. Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003; 14:933-46. [PMID: 12869212 DOI: 10.1089/104303403766682205] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The use of replication-competent viruses that have a cytolytic cycle has emerged as a viable strategy (oncolytic virotherapy) to specifically kill tumor cells and the field has advanced to the point of clinical trials. A theoretical advantage of replicative oncolytic viruses is that their numbers should increase via viral replication within infected tumor cells and resulting viral progeny can then infect additional cells within the tumor mass. The life cycle of a virus involves multiple interactions between viral and cellular proteins/genes, which maximize the ability of the virus to infect and replicate within cells. Understanding such interactions has led to the design of numerous genetically engineered adenovirus (Ad) vectors that selectively kill tumor cells while sparing normal cells. These viruses have also been modified to function as therapeutic gene delivery vehicles, thus augmenting their anticancer capacity. In addition, the oncolytic mode of tumor killing differs from that of standard anticancer therapies, providing the possibility for synergistic interactions with other therapies in a multimodal antitumor approach. In this review, we describe the oncolytic Ad vectors tested in preclinical and clinical models and their use in combination with chemo-, radio-, and gene therapies.
Collapse
Affiliation(s)
- Dawn E Post
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
97
|
Cao W, Bao C, Lowenstein CJ. Inducible nitric oxide synthase expression inhibition by adenovirus E1A. Proc Natl Acad Sci U S A 2003; 100:7773-8. [PMID: 12808130 PMCID: PMC164663 DOI: 10.1073/pnas.1337185100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) is an antiviral effector of the innate immune system. Viruses that can interfere with NO synthesis may be able to replicate more rapidly than viruses that cannot limit NO synthesis. We show that the adenovirus E1A protein inhibits NO production by decreasing expression of the inducible NO synthase (NOS2). The amino-terminal portion of E1A decreases transactivation of the NOS2 5'-flanking region, limiting the DNA binding activity of NF-kappaB and inhibiting NOS2 expression. E1A is thus able to deactivate a critical component of the host defense against viral infection. Viral inhibition of NO production is a mechanism that may enable certain viruses to evade the host innate immune system.
Collapse
Affiliation(s)
- Wangsen Cao
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
98
|
Najafi SMA, Li Z, Makino K, Shao R, Hung MC. The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells. Biochem Biophys Res Commun 2003; 305:1099-104. [PMID: 12767945 DOI: 10.1016/s0006-291x(03)00905-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The adenovirus-5 E1A gene encodes two main proteins of 289 and 243 amino acid residues from 13S and 12S mRNA, respectively. The E1A gene products function as transcriptional regulators and have anti-tumor activities. Despite the fact that E1A gene therapy has been tested in clinical trials, the molecular mechanism by which it suppresses tumor cell growth is still not completely understood. Here, we show that E1A increases the expression of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1/CIP1), which inhibits cell growth. We further show that 13S E1A, but not 12S E1A, can transactivate the p21 promoter through Sp1 sites. Interestingly, the E1A-induced transactivation occurs only in cancer cells, not in normal cells. This study provides new insight into the links between E1A and the CDK inhibitor and may have important clinical implications.
Collapse
Affiliation(s)
- S Mahmoud A Najafi
- Department of Molecular and Cellular Oncology, Box 108, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
99
|
Miura TA, Morris K, Ryan S, Cook JL, Routes JM. Adenovirus E1A, not human papillomavirus E7, sensitizes tumor cells to lysis by macrophages through nitric oxide- and TNF-alpha-dependent mechanisms despite up-regulation of 70-kDa heat shock protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4119-26. [PMID: 12682242 DOI: 10.4049/jimmunol.170.8.4119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of adenovirus (Ad) serotype 2 or 5 (Ad2/5) E1A or human papillomavirus (HPV)16 E7 reportedly sensitizes cells to lysis by macrophages. Macrophages possess several mechanisms to kill tumor cells including TNF-alpha, NO, reactive oxygen intermediates (ROI), and Fas ligand (FasL). E1A sensitizes cells to apoptosis by TNF-alpha, and macrophages kill E1A-expressing cells, in part through the elaboration of TNF-alpha. However, E1A also up-regulates the expression of 70-kDa heat shock protein, a protein that inhibits killing by TNF-alpha and NO, thereby protecting cells from lysis by macrophages. Unlike E1A, E7 does not sensitize cells to killing by TNF-alpha, and the effector mechanism(s) used by macrophages to kill E7-expressing cells remain undefined. The purpose of this study was to further define the capacity of and the effector mechanisms used by macrophages to kill tumor cells that express Ad5 E1A or HPV16 E7. We found that Ad5 E1A, but not HPV16 E7, sensitized tumor cells to lysis by macrophages. Using macrophages derived from mice unable to make TNF-alpha, NO, ROI, or FasL, we determined that macrophages used NO, and to a lesser extent TNF-alpha, but not FasL or ROI, to kill E1A-expressing cells. Through the use of S-nitroso-N-acetylpenicillamine, which releases NO upon exposure to an aqueous environment, E1A was shown to directly sensitize tumor cells to NO-induced death. E1A sensitized tumor cells to lysis by macrophages despite up-regulating the expression of 70-kDa heat shock protein. In summary, E1A, but not E7, sensitized tumor cells to lysis by macrophages. Macrophages killed E1A-expressing cells through NO- and TNF-alpha-dependent mechanisms.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
100
|
Kzhyshkowska J, Rusch A, Wolf H, Dobner T. Regulation of transcription by the heterogeneous nuclear ribonucleoprotein E1B-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7. Biochem J 2003; 371:385-93. [PMID: 12489984 PMCID: PMC1223277 DOI: 10.1042/bj20021281] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 12/09/2002] [Accepted: 12/18/2002] [Indexed: 11/17/2022]
Abstract
E1B-AP5 was initially identified as a target of the early adenovirus E1B-55 kDa protein during the course of lytic infection. E1B-AP5 belongs to the heterogeneous nuclear ribonucleoprotein family and was demonstrated to be involved in mRNA processing and transport [Gabler, Schutt, Groitl, Wolf, Shenk and Dobner (1998) J. Virol. 72, 7960-7971]. In the present paper, we demonstrate that E1B-AP5 differentially regulates basic and ligand-dependent transcription. We found that E1B-AP5 represses basic transcription driven by several virus and cellular promoters, and mapped the repression activity to the N-terminal part of the protein. In contrast with basic repression, E1B-AP5 activated the glucocorticoid-dependent promoter in the absence of dexamethasone, but did not contribute to the dexamethasone-induced activation. Mutant analysis indicated the presence of an additional cellular factor that modulates E1B-AP5 transcriptional activity. Using yeast two-hybrid screening, we identified a novel chromatin-associated bromodomain-containing protein, BRD7, as an E1B-AP5 interaction partner. We confirmed E1B-AP5-BRD7 complex formation in vivo and in vitro. We found that, although BRD7 binds to histones H2A, H2B, H3 and H4 through its bromodomain, this domain was not necessary for the interaction with E1B-AP5. Indeed, the triple complex formation of E1B-AP5, BRD7 and histones was demonstrated. Disruption of the E1B-AP5-BRD7 complex increased E1B-AP5 repression activity for basic transcription and converted it from being an activator of the hormone-dependent promoter into being a strong repressor. We conclude that complex formation between BRD7 and E1B-AP5 links chromatin events with mRNA processing at the level of transcriptional regulation.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Universität Heidelberg, Uni-Klinikum Mannheim, Dermatologie, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| | | | | | | |
Collapse
|