51
|
Baghy K, Tátrai P, Regős E, Kovalszky I. Proteoglycans in liver cancer. World J Gastroenterol 2016; 22:379-393. [PMID: 26755884 PMCID: PMC4698501 DOI: 10.3748/wjg.v22.i1.379] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects.
Collapse
|
52
|
Xiong XL, Qin H, Yan SQ, Zhou LS, Chen P, Zhao DC. Expression of glypican-3 is highly associated with pediatric hepatoblastoma: a systemic analysis. Asian Pac J Cancer Prev 2015; 16:1029-31. [PMID: 25735325 DOI: 10.7314/apjcp.2015.16.3.1029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Glypican-3 (GPC3) is reported to be an oncofetal protein that is a useful diagnostic immunomarker for hepatoblastoma. However, the results are not inclusive. This study systemically investigated the association between expression of GPC3 and pediatric hepatoblastoma. METHODS Clinical studies evaluating the association were identified using a predefined search strategy. GPC3 immunohistochemistry was applied in the pathological diagnosis of hepatoblastoma using the monoclonal antibodies with formalin-fixed and paraffin-embedded specimens. Positive predictive rates for the association between expression of GPC3 and pediatric hepatoblastoma were calculated. RESULTS Specimens from four clinical studies which including 134 patients with pediatric hepatoblastoma tested by GPC3 immunohistochemistry were considered eligible for inclusion. Systemic analysis showed that, in all patients, pooled positive predictive rate of the association between expression of GPC3 and pediatric hepatoblastoma was 95.5% (128/134). CONCLUSION This systemic analysis suggests that the expression of glypican-3 is highly associated with the diagnosis of pediatric hepatoblastoma.
Collapse
Affiliation(s)
- Xiao-Li Xiong
- Dept. of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | | | | | |
Collapse
|
53
|
Prognostic significance of GPC5 expression in patients with prostate cancer. Tumour Biol 2015; 37:6413-8. [DOI: 10.1007/s13277-015-4499-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022] Open
|
54
|
Shawky MS, Ricciardelli C, Lord M, Whitelock J, Ferro V, Britt K, Thompson EW. Proteoglycans: Potential Agents in Mammographic Density and the Associated Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2015; 20:121-31. [PMID: 26501889 DOI: 10.1007/s10911-015-9346-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022] Open
Abstract
Although increased mammographic density (MD) has been well established as a marker for increased breast cancer (BC) risk, its pathobiology is far from understood. Altered proteoglycan (PG) composition may underpin the physical properties of MD, and may contribute to the associated increase in BC risk. Numerous studies have investigated PGs, which are a major stromal matrix component, in relation to MD and BC and reported results that are sometimes discordant. Our review summarises these results and highlights discrepancies between PG associations with BC and MD, thus serving as a guide for identifying PGs that warrant further research towards developing chemo-preventive or therapeutic agents targeting preinvasive or invasive breast lesions, respectively.
Collapse
|
55
|
Liu Y, Zheng D, Liu M, Bai J, Zhou X, Gong B, Lü J, Zhang Y, Huang H, Luo W, Huang G. Downregulation of glypican-3 expression increases migration, invasion, and tumorigenicity of human ovarian cancer cells. Tumour Biol 2015; 36:7997-8006. [PMID: 25967456 DOI: 10.1007/s13277-015-3528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/04/2015] [Indexed: 01/03/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane of heparan sulfate proteoglycan family involved in cell proliferation, adhesion, migration, invasion, and differentiation during the development of the majority of mesodermal tissues and organs. GPC3 is explored as a potential biomarker for hepatocellular carcinoma screening. However, as a tumor-associated antigen, its role in ovarian cancer remains elusive. In this report, the expression levels of GPC3 in the various ovarian cancer cells were determined with quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and GPC3 expression in ovarian cancer UCI 101 and A2780 cells was knocked down by siRNA transfection, and the effects of GPC3 knockdown on in vitro cell proliferation, migration, and invasion were respectively analyzed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and Transwell migration assay. Additionally, the effect of GPC3 knockdown on in vivo tumorigenesis were investigated in athymic nude mice. The results indicated that GPC3 knockdown significantly promoted cell proliferation and increased cell migration and invasion by upregulation of matrix metalloproteinase (MMP)-2 and MMP-9 expression and downregulation of tissue inhibitor of metalloproteinase-1 expression. Additionally, GPC3 knockdown also increased in vivo tumorigenicity of UCI 101 and A2780 cells and final tumor weights and volumes after subcutaneous cell injection in the nude mice. The results of immunohistochemical staining and Western blotting both demonstrated a lower expression of GPC3 antigen in the tumors of GPC3 knockdown groups than that of negative control groups. Moreover, transforming growth factor-β2 protein expression in the tumors of GPC3 knockdown groups was significantly increased, which at least contributed to tumor growth in the nude mice. Taken together, these findings suggest that GPC3 knockdown promotes the progression of human ovarian cancer cells by increasing their migration, invasion, and tumorigenicity, and suggest that GPC3 is a potential therapeutic target for ovarian cancer patients.
Collapse
Affiliation(s)
- Ying Liu
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Dongping Zheng
- Ultrasonic Imaging Division, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Mingming Liu
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Jiao Bai
- Ultrasonic Imaging Division, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Xi Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Baolan Gong
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Jieyu Lü
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Hui Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Wenying Luo
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, China
| | - Guangrong Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
56
|
Farnedi A, Rossi S, Bertani N, Gulli M, Silini EM, Mucignat MT, Poli T, Sesenna E, Lanfranco D, Montebugnoli L, Leonardi E, Marchetti C, Cocchi R, Ambrosini-Spaltro A, Foschini MP, Perris R. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors. BMC Cancer 2015; 15:352. [PMID: 25935541 PMCID: PMC4429505 DOI: 10.1186/s12885-015-1336-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Background Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. Methods A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. Results HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. Conclusions An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1336-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Farnedi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Silvia Rossi
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Nicoletta Bertani
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Mariolina Gulli
- Department of Life Sciences, Division of Genetics and Environmental Biotechnology, University of Parma, Parma, Italy.
| | - Enrico Maria Silini
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | - Maria Teresa Mucignat
- S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| | - Tito Poli
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Enrico Sesenna
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Davide Lanfranco
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Lucio Montebugnoli
- Unit of Maxillo-Facial Surgery, Department of Oral Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Elisa Leonardi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, Unit of Maxillo-Facial Surgery, University of Bologna, S. Orsola Hospital, Bologna, Italy.
| | - Renato Cocchi
- Unit of Maxillo-facial Surgery at Bellaria Hospital, Bologna, Italy. .,Unit of Maxillo-facial Surgery, "Casa Sollievo della Sofferenza", San Giovanni in Rotondo, Italy.
| | - Andrea Ambrosini-Spaltro
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Roberto Perris
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| |
Collapse
|
57
|
Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, Gopal S, Gomes A, Afratis N, Lim HC, Couchman JR, Filmus J, Sanderson RD, Schaefer L, Iozzo RV, Karamanos NK. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta Rev Cancer 2015; 1855:276-300. [PMID: 25829250 DOI: 10.1016/j.bbcan.2015.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Mario Hubo
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Helena Frey
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sandeep Gopal
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Angélica Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Nikos Afratis
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Jorge Filmus
- Department of Biological Sciences, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Canada
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, UAB Comprehensive Cancer Center, 1720 2nd Ave. S, WTI 602B, Birmingham, AL 35294, USA
| | - Liliana Schaefer
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
58
|
Qi XH, Wu D, Cui HX, Ma N, Su J, Wang YT, Jiang YH. Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Mol Med Rep 2014; 10:3177-84. [PMID: 25270552 DOI: 10.3892/mmr.2014.2600] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world. The gene glypican-3 (GPC3) is reported to be a potential therapeutic target for HCC. In this study, we use RNA interference with lentiviral vectors to explore the effect of GPC3 silencing on the biological behavior of HCC cells and the potential role of the GPC3 protein in the activation of epithelial-mesenchymal transition (EMT), which relates to HCC cell invasion and migration. Our data suggest that GPC3 silencing leads to a decrease in HCC cell proliferation and to an increase in apoptosis. We demonstrated that GPC3 silencing regulates cell invasion and migration, most probably through the activation of the EMT cellular program. In conclusion, GPC3 is associated with the HCC cell biological behavior, while the relationship between GPC3 and EMT in tumorigenesis of HCC deserves future investigation.
Collapse
Affiliation(s)
- Xin-Hui Qi
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Di Wu
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui-Xia Cui
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Ma
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jia Su
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu-Tong Wang
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - You-Hong Jiang
- Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
59
|
Valsechi MC, Oliveira ABB, Conceição ALG, Stuqui B, Candido NM, Provazzi PJS, de Araújo LF, Silva WA, Calmon MDF, Rahal P. GPC3 reduces cell proliferation in renal carcinoma cell lines. BMC Cancer 2014; 14:631. [PMID: 25168166 PMCID: PMC4161903 DOI: 10.1186/1471-2407-14-631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma. METHODS Five clear cell renal cell carcinoma cell lines and carcinoma samples were used to analyze GPC3 mRNA expression (qRT-PCR). Then, representative cell lines, one primary renal carcinoma (786-O) and one metastatic renal carcinoma (ACHN), were chosen to carry out functional studies. We constructed a GPC3 expression vector and transfected the renal carcinoma cell lines, 786-O and ACHN. GPC3 overexpression was analyzed using qRT-PCR and immunocytochemistry. We evaluated cell proliferation using MTT and colony formation assays. Flow cytometry was used to evaluate apoptosis and perform cell cycle analyses. RESULTS We observed that GPC3 is downregulated in clear cell renal cell carcinoma samples and cell lines compared with normal renal samples. GPC3 mRNA expression and protein levels in 786-O and ACHN cell lines increased after transfection with the GPC3 expression construct, and the cell proliferation rate decreased in both cell lines following overexpression of GPC3. Further, apoptosis was not induced in the renal cell carcinoma cell lines overexpressing GPC3, and there was an increase in the cell population during the G1 phase in the cell cycle. CONCLUSION We suggest that the GPC3 gene reduces the rate of cell proliferation through cell cycle arrest during the G1 phase in renal cell carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paula Rahal
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas - IBILCE/UNESP, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
60
|
Okolicsanyi RK, Faure M, Jacinto JM, Chacon-Cortes D, Chambers S, Youl PH, Haupt LM, Griffiths LR. Association of the SNP rs2623047 in the HSPG modification enzyme SULF1 with an Australian Caucasian Breast Cancer Cohort. Gene 2014; 547:50-4. [DOI: 10.1016/j.gene.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/25/2014] [Accepted: 06/05/2014] [Indexed: 11/16/2022]
|
61
|
The motile breast cancer phenotype roles of proteoglycans/glycosaminoglycans. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124321. [PMID: 25140302 PMCID: PMC4129668 DOI: 10.1155/2014/124321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022]
Abstract
The consecutive stages of cancer growth and dissemination are obligatorily perpetrated through specific interactions of the tumor cells with their microenvironment. Importantly, cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycan (PG) content and distribution are markedly altered during tumor pathogenesis and progression. GAGs and PGs perform multiple functions in specific stages of the metastatic cascade due to their defined structure and ability to interact with both ligands and receptors regulating cancer pathogenesis. Thus, GAGs/PGs may modulate downstream signaling of key cellular mediators including insulin growth factor receptor (IGFR), epidermal growth factor receptor (EGFR), estrogen receptors (ERs), or Wnt members. In the present review we will focus on breast cancer motility in correlation with their GAG/PG content and critically discuss mechanisms involved. Furthermore, new approaches involving GAGs/PGs as potential prognostic/diagnostic markers or as therapeutic agents for cancer-related pathologies are being proposed.
Collapse
|
62
|
Li HR, Huang LS, Chen G, Lu HP, Feng ZB. Correlation between GPC3 expression and proliferation of hepatocellular carcinoma cells. Shijie Huaren Xiaohua Zazhi 2014; 22:2108-2115. [DOI: 10.11569/wcjd.v22.i15.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between GPC3 expression and proliferative ability of hepatocellular carcinoma (HCC) cells.
METHODS: Immunohistochemistry was employed to detect the expression of GPC3 in 54 HCC tissues. The correlation between GPC3 expression and Ki-67 labeling index and other clinicopathologic characteristics was studied. An shRNA targeting the GPC3 gene was transfected into SMMC7721 cells to silence GPC3 expression. MTT assay was performed to determine the effect of GPC3 knockdown on the growth of HCC SMMC7721 cells.
RESULTS: GPC3 expression was significantly correlated with Ki-67 Li (r = 0.521, P = 0.000). GPC3 expression was related to differentiation degree and vessel invasion of HCC (r = 0.287, 0.289; P = 0.035, 0.034). The cell proliferative activity was significantly reduced in the GPC3-shRNA group compared with the negative control group and blank control group (F = 45.38, P = 0.000).
CONCLUSION: GPC3 may play an important role in the occurrence, development and invasion of HCC, mainly due to the effect on the proliferation of HCC cells.
Collapse
|
63
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
64
|
The association of arylendosulfatase 1 (SULF1) gene polymorphism with recurrent miscarriage. J Assist Reprod Genet 2013; 31:157-61. [PMID: 24322345 DOI: 10.1007/s10815-013-0150-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE One of the most common problems in reproductive medicine is recurrent miscarriage (RM). There is increasing evidence showing genetic susceptibility of women is an important risk factor in the occurrence of RM. In recent years, there is a growing interest in sulfate and its role in fetal development. A novel mechanism of SULF1 has been demonstrated for modifying the activities of some growth factors and signalling molecules that have major roles during embryogenesis. The aim of present study was to evaluate the association of SULF1 gene polymorphism (rs6990375 G > A) in Iranian patients with RM. METHODS We established a case-control study of 200 Iranian women: 100 patients with the history of two or more RM as cases and 100 healthy women with at least two cases of successful pregnancy and no history of miscarriage as controls. The polymorphism was examined by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The genotypic analysis between case and controls showed significant differences (p-value = 0.000). Allelic analysis showed no significant correlation (Χ2 = 3.36, p-value = 0.066). The heterozygous genetic variant was significantly higher among healthy women (OR = 12.67, 95% CI = 6.47-24.79). CONCLUSIONS Our data showed that rs6990375 polymorphism of SULF1 gene could be among one of the factors related to RM in Iranian women. Further evaluation of this polymorphism may be important and need further studies.
Collapse
|
65
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
66
|
Gamage DG, Hendrickson TL. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 2013; 48:446-64. [DOI: 10.3109/10409238.2013.831024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
67
|
Heparan sulfate and heparanase as modulators of breast cancer progression. BIOMED RESEARCH INTERNATIONAL 2013; 2013:852093. [PMID: 23984412 PMCID: PMC3747466 DOI: 10.1155/2013/852093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/04/2013] [Indexed: 12/16/2022]
Abstract
Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients' survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.
Collapse
|
68
|
Bai S, Wei S, Pasha TL, Yao Y, Tomaszewski JE, Bing Z. Immunohistochemical Studies of Metastatic Germ-Cell Tumors in Retroperitoneal Dissection Specimens. Int J Surg Pathol 2013; 21:342-51. [DOI: 10.1177/1066896912471849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Germ-cell tumors (GCTs) are the most common malignancies in adolescent and young men. These tumors are highly treatable, even at an advanced stage; therefore, accurate diagnosis is imperative. In this study, we evaluated immunohistochemical stains for SALL4, NANOG, glypican-3 (GPC3), D2-40, and CD30 with adequate control in retroperitoneal dissection specimens under the same laboratory conditions. The study groups included 31 cases of metastatic testicular GCTs with the following components: 11 seminomas, 14 embryonal carcinoma (ECs), 12 yolk sac tumor (YSTs), 8 teratomas, 10 cases of metastatic melanomas, 14 cases of malignant lymphomas, and 11 cases of metastatic, poorly differentiated carcinoma. SALL4 showed diffuse nuclear labeling for all seminomas, ECs, and YSTs. NANOG showed diffuse nuclear positivity in all seminomas and ECs. Metastatic carcinomas, melanomas, and malignant lymphomas were negative for these 2 markers. Gypican-3, D2-40, and CD30 showed sensitive staining for YSTs, seminomas, and ECs, respectively. In conclusion, SALL4 and NANOG are sensitive and specific markers for GCTs. GPC3, D2-40, and CD30 are sensitive but not specific for individual components of GCTs and may be useful in aiding in the differential diagnosis for the individual component of GCTs when the identity of GCT is established.
Collapse
Affiliation(s)
- Shuting Bai
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shi Wei
- University of Alabama, Birmingham, AL, USA
| | - Theresa L. Pasha
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Yao
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zhanyong Bing
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
69
|
Mateos ME, Beyer K, López-Laso E, Siles JL, Pérez-Navero JL, Peña MJ, Guzmán J, Matas J. Simpson-Golabi-Behmel syndrome type 1 and hepatoblastoma in a patient with a novel exon 2-4 duplication of the GPC3 gene. Am J Med Genet A 2013; 161A:1091-5. [PMID: 23463737 DOI: 10.1002/ajmg.a.35738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 10/03/2012] [Indexed: 11/09/2022]
Abstract
Mutations in the gene encoding glypican (GPC) 3 appear to be responsible for most cases of Simpson-Golabi-Behmel syndrome type 1. Duplication of the GPC4 gene has also been associated to this syndrome; however, no duplications involving GPC3 have been related. We describe a family that harbors a novel exon 2-4 duplication event leading to a truncating germline mutation of the GPC3 gene that, to our knowledge, has not been previously reported. GPC3 transcripts that carry this duplication bear non-functional proteins making its pathogenic role highly probable. The absence of a functional GPC3 may alter the normal differentiation of embryonal mesodermal tissues predisposing to the development of embryonal tumors, as the index case studied who developed a hepatoblastoma at age 9 months.
Collapse
Affiliation(s)
- María Elena Mateos
- Pediatric Oncology Unit, Department of Pediatrics, University Hospital Reina Sofía, Córdoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Pan Z, Chen C, Long H, Lei C, Tang G, Li L, Feng J, Chen F. Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis. Mol Med Rep 2013; 7:969-74. [PMID: 23338845 DOI: 10.3892/mmr.2013.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/08/2013] [Indexed: 11/05/2022] Open
Abstract
Glypican‑3 (GPC3) is a membrane heparan sulfate proteoglycan involved in cell proliferation, differentiation, adhesion, migration and the development of the majority of mesodermal tissues and organs. GPC3 has been found to be important for the occurrence and development of hepatocellular carcinoma (HCC). Therefore, it may be suitable for use as a novel molecular marker for the diagnosis of primary liver cancer. In the present study, the role of GPC3 in the occurrence and development of HCC was determined. GPC3 recombinant vector was transfected into two HCC cell lines, Huh7 and SK‑HEP‑1, to upregulate the expression of GPC3 and examine changes in the biological behavior of the cells. Results indicate that overexpression of GPC3 in Huh7 and SK‑HEP‑1 cells effectively inhibited cell proliferation and cell invasion through induction of apoptosis. However, cotreatment of the cells with insulin‑like growth factor 2 (IGF2) and fibroblast growth factor 2 (FGF2) was found by Annexin V‑PI flow cytometric analysis to significantly inhibit the apoptotic cell death induced by GPC3 overexpression. These observations indicate that GPC3 may act as a negative regulator of IGF2 and FGF2 pathways. Taken together, these results demonstrate that overexpression of GPC3 inhibits the occurrence and development of HCC.
Collapse
Affiliation(s)
- Zhijian Pan
- Second Department of General Surgery, Fifth Hospital of Wuhan, Hubei 430050, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Fernández-Vega I, García O, Crespo A, Castañón S, Menéndez P, Astudillo A, Quirós LM. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer. BMC Cancer 2013; 13:24. [PMID: 23327652 PMCID: PMC3561094 DOI: 10.1186/1471-2407-13-24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 01/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs), which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. METHODS Twenty-three infiltrating ductal adenocarcinomas (IDCs), both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS) chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. RESULTS No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic), while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of heparanase 2, which displays anti-metastatic features, experienced a strong deregulation in all patients analyzed. CONCLUSIONS IDCs show alterations in the expression of HSPG genes; principally the expression and localization of proteoglycans and the sulfation patterns of glycosaminoglycan chains, depending on the metastatic nature of the tumor. In addition, the anti-proliferative molecule heparanase 2 experiences strong deregulation, thus highlighting it as a potentially interesting diagnostic factor.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo 33006, Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
73
|
Mounajjed T, Zhang L, Wu TT. Glypican-3 expression in gastrointestinal and pancreatic epithelial neoplasms. Hum Pathol 2012; 44:542-50. [PMID: 23079207 DOI: 10.1016/j.humpath.2012.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Glypican-3 (GPC3) is a plasma membrane-bound proteoglycan that can be overexpressed in certain malignancies but has been particularly linked to hepatocellular carcinoma (HCC). GPC3 is currently used as an immunohistochemical marker for HCC, but its expression in epithelial neoplasms of the gastrointestinal (GI) tract and pancreas, a common source of liver metastasis, has not been studied in detail. In this study, we examined GPC3 immunoreactivity in 98 neoplasms of the GI tract including 30 adenocarcinomas (ADCA), 29 squamous cell carcinomas (esophageal and anal), and 39 neuroendocrine carcinomas, and 60 neoplasms of the pancreas including 22 ADCA, 26 pancreatic neuroendocrine neoplasms, and 12 pancreatic acinar cell carcinomas. Two control groups of 32 HCCs and 16 intrahepatic cholangiocarcinomas were also stained with GPC3. Although most (7/12, 58.5%) acinar cell carcinomas were GPC3 positive, pancreatic ADCA and neuroendocrine neoplasms were GPC3 negative. In addition, 27.5%, (8/29) of squamous cell carcinomas, 20% (6/30) of ADCA, and 2.5% (1/39) of neuroendocrine carcinomas of the GI tract were immunoreactive for GPC3. HCC was positive for GPC3 in 75% (24/32) of cases but cholangiocarcinoma was negative. While significant correlation between GPC3 positivity and poor differentiation was observed in HCC only, GPC3 expression did not correlate with tumor size. In conclusion, 14% of GI tract and pancreatic carcinomas/neoplasms (particularly pancreatic acinar cell carcinoma) can express GPC3 by immunohistochemistry. As these tumors commonly metastasize to the liver, this offers a potential pitfall in differentiating between HCC and metastatic carcinoma when evaluating tumors involving the liver.
Collapse
Affiliation(s)
- Taofic Mounajjed
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
74
|
Glypican-3 as a potential differential diagnosis marker for hepatocellular carcinoma: a tissue microarray-based study. Acta Histochem 2012; 114:547-52. [PMID: 22119409 DOI: 10.1016/j.acthis.2011.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
The differential diagnosis between hepatocellular carcinoma (HCC) and benign hepatic lesions is still difficult and new biochemical markers for HCC are required. The aim of this study was to assess the differential diagnostic value of glypican-3 (GPC3) immunostaining in HCC patients. 147 cases of surgically excised HCC tissues, 94 cases from needle biopsies, and tissue microarrays were used for this study. The tissue microarrays contained 449 specimens including: 115 HCC, 25 intrahepatic cholangiocellular carcinoma, 29 lung adenocarcinoma, 23 squamous cell lung carcinoma, 53 ovary adenocarcinoma, 44 renal cell carcinoma, 30 prostate acinar adenocarcinoma, 42 breast carcinoma, 41 gastric carcinoma and 47 colorectal carcinoma. The immunolocalization of GPC3 was measured using immunohistochemical staining. Among 147 surgically excised HCC samples, 87.1% (128/147) were GPC3 positive. No GPC3 expression, however, was observed in paracarcinomatous and cirrhotic tissues. In needle biopsy tissues, GPC3 was positively expressed in 81.9% (77/94). Among tissue microassays, HCCs showed positive GPC3 expression in 55.7% (64/115), while 9.6% (5/52) of lung carcinoma and 5.7% (3/53) of ovary adenocarcinoma also were positively stained. The other tumor types showed negative GPC3 expression. In conclusion, our results show that GPC3 is specifically overexpressed in HCC tissue and may be regarded as a potential marker for differential diagnostic hepatocellular carcinoma.
Collapse
|
75
|
Mostovich LA, Prudnikova TY, Kondratov AG, Gubanova NV, Kharchenko OA, Kutsenko OS, Vavilov PV, Haraldson K, Kashuba VI, Ernberg I, Zabarovsky ER, Grigorieva EV. The TCF4/β-catenin pathway and chromatin structure cooperate to regulate D-glucuronyl C5-epimerase expression in breast cancer. Epigenetics 2012; 7:930-9. [PMID: 22805760 DOI: 10.4161/epi.21199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
D-glucuronyl C5-epimerase (GLCE) is a potential tumor-suppressor gene involved in heparan sulfate biosynthesis. GLCE expression is significantly decreased in breast tumors; however, the underlying molecular mechanisms remain unclear. This study examined the possible epigenetic mechanisms for GLCE inactivation in breast cancer. Very little methylation of the GLCE promoter region was detected in breast tumors in vivo and in breast cancer cells (MCF7 and T47D) in vitro and GLCE expression in breast cancer cells was not altered by 5-deoxyazacytidine (5-aza-dC) treatment, suggesting that promoter methylation is not involved in regulating GLCE expression. Chromatin activation by Trichostatin A (TSA) or 5-aza-dC/TSA treatment increased GLCE expression by two to 3-fold due to an increased interaction between the GLCE promoter and the TCF4/β-catenin transactivation complex, or H3K9ac and H3K4Me3 histone modifications. However, ectopic expression of TCF4/β-catenin was not sufficient to activate GLCE expression in MCF7 cells, suggesting that chromatin structure plays a key role in GLCE regulation. Although TSA treatment significantly repressed canonical WNT signaling in MCF7 cells, it did not influence endogenous TCF4/β-catenin mRNA levels and activated TCF4/β-catenin-driven transcription from the GLCE promoter, indicating GLCE as a novel target for TCF4/β-catenin complex in breast cancer cells. A correlation was observed between GLCE, TCF4 and β-catenin expression in breast cancer cells and primary tumors, suggesting an important role for TCF4/β-catenin in regulating GLCE expression both in vitro and in vivo. Taken together, the results indicate that GLCE expression in breast cancer is regulated by a combination of chromatin structure and TCF4/β-catenin complex activity.
Collapse
|
76
|
Malignant mixed mullerian tumor: an immunohistochemical study. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:569609. [PMID: 22848863 PMCID: PMC3400397 DOI: 10.1155/2012/569609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/19/2012] [Accepted: 05/22/2012] [Indexed: 11/17/2022]
Abstract
Malignant mixed Mullerian tumor (MMMT) is an uncommon aggressive neoplasm composed of both malignant epithelial and mesenchymal components. In this study, immunohistochemical stains of germ cell markers, including SALL4, OCT3/4, glypican-3, and alpha-fetal protein (AFP), and CDX2 were performed in a series of MMMTs. SALL4 nuclear immunoreactivity was detected in 6 out of 19 cases (33%). The staining extent ranged from focal to extensive. The staining intensity was usually intermediate to strong (the score ranged from 1.5 to 3, and average score was 2.3 ± 0.5 in the positive cases). In addition, glypican-3 cytoplasmic reactivity was detected in 14 out of 16 cases (88%) with a mean score of 1.8 ± 0.7 (score ranging from 1 to 3). In contrast, OCT3/4 was only positive in 1 out of 19 cases and AFP in 2 out of 18 cases (11%). In summary, SALL4 and glypican-3 were frequently expressed in a subset of MMMTs. Their roles in the pathogenesis and biology of MMMT are yet to be determined. MMMT should be included in the differential diagnosis when a tumor is positive for SALL4 and/or glypican-3.
Collapse
|
77
|
Abstract
Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.
Collapse
Affiliation(s)
- Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| | - Mandy Kain
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|
78
|
Capurro MI, Shi W, Filmus J. LRP1 mediates Hedgehog-induced endocytosis of the GPC3-Hedgehog complex. J Cell Sci 2012; 125:3380-9. [PMID: 22467855 DOI: 10.1242/jcs.098889] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glypican-3 (GPC3) is a heparan sulfate (HS) proteoglycan that is bound to the cell membrane through a glycosylphosphatidylinositol link. This glypican regulates embryonic growth by inhibiting the hedgehog (Hh) signaling pathway. GPC3 binds Hh and competes with Patched (Ptc), the Hh receptor, for Hh binding. The interaction of Hh with GPC3 triggers the endocytosis and degradation of the GPC3-Hh complex with the consequent reduction of Hh available for binding to Ptc. Currently, the molecular mechanisms by which the GPC3-Hh complex is internalized remains unknown. Here we show that the low-density-lipoprotein receptor-related protein-1 (LRP1) mediates the Hh-induced endocytosis of the GPC3-Hh complex, and that this endocytosis is necessary for the Hh-inhibitory activity of GPC3. Furthermore, we demonstrate that GPC3 binds through its HS chains to LRP1, and that this interaction causes the removal of GPC3 from the lipid rafts domains.
Collapse
Affiliation(s)
- Mariana I Capurro
- Division of Molecular and Cell Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
79
|
Yoneda A, Lendorf ME, Couchman JR, Multhaupt HAB. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans. J Histochem Cytochem 2012; 60:9-21. [PMID: 22205677 DOI: 10.1369/0022155411428469] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor markers are widely used in pathology not only for diagnostic purposes but also to assess the prognosis and to predict the treatment of the tumor. Because tumor marker levels may change over time, it is important to get a better understanding of the molecular changes during tumor progression. Occurrence of breast and ovarian cancer is high in older women. Common known risk factors of developing these cancers in addition to age are not having children or having children at a later age, the use of hormone replacement therapy, and mutations in certain genes. In addition, women with a history of breast cancer may also develop ovarian cancer. Here, the authors review the different tumor markers of breast and ovarian carcinoma and discuss the expression, mutations, and possible roles of cell surface heparan sulfate proteoglycans during tumorigenesis of these carcinomas. The focus is on two groups of proteoglycans, the transmembrane syndecans and the lipid-anchored glypicans. Both families of proteoglycans have been implicated in cellular responses to growth factors and morphogens, including many now associated with tumor progression.
Collapse
Affiliation(s)
- Atsuko Yoneda
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
80
|
Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci 2012; 69:553-79. [PMID: 21964924 PMCID: PMC11114698 DOI: 10.1007/s00018-011-0816-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.
Collapse
Affiliation(s)
- Elena Garusi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Silvia Rossi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Roberto Perris
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- S.O.C. of Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|
81
|
Ozkan H, Erdal H, Koçak E, Tutkak H, Karaeren Z, Yakut M, Köklü S. Diagnostic and prognostic role of serum glypican 3 in patients with hepatocellular carcinoma. J Clin Lab Anal 2012; 25:350-3. [PMID: 21919070 DOI: 10.1002/jcla.20484] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
α-Feto protein (AFP) is the widely used tumor marker in the diagnosis of hepatocellular carcinoma (HCC). The aim of this study was to assess the diagnostic and prognostic validity of a novel marker, serum Glypican-3 (GPC3) and to compare AFP in patients with HCC. One hundred and twenty-eight patients (75 patients with HCC, 55 patients with cirrhosis, and 28 healthy controls) were included in this study. Cut-off value of GPC3 was 3.9 pg/ml. AFP was divided into four subgroups, according to cut-off values with 13, 20, 100, and 200 ng/ml. Sensitivity, specificity, and positive and negative predictive values of GPC3 and AFP13, AFP20, AFP100, AFP200 subgroups and also GPC3+AFP13, GPC3+AFP20 , GPC3+AFP100 , GPC3+AFP200 combinations were compared. Serum GPC3 levels were significantly higher in patients with HCC and cirrhosis compared with control subjects (P<0.05). The median serum GPC3 levels were 3.9 pg/ml in controls, 5.51 pg/ml in patients with cirrhosis, and 5.13 pg/ml in those with HCC. The median serum AFP levels were 1.37 ng/ml in controls, 2.32 ng/ml in cirrhotics, and 50.65 ng/ml in HCC patients. The sensitivity, specificity, and positive and negative predictive values of GPC3 was 61.33, 41.82, 58.97, and 44.43%, respectively. The values for AFP were 68.57, 94.55, 94.12, and 70.27%, respectively. There was no correlation between GPC3 levels and prognostic parameters. GPC3 is not a useful diagnostic and prognostic marker for HCC.
Collapse
Affiliation(s)
- Hasan Ozkan
- Ankara University, School of Medicine, Department of Gastroenterology, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
82
|
Wang H, Wen W. Biomarkers of Hepatocellular Carcinoma. PRIMARY LIVER CANCER 2012:79-154. [DOI: 10.1007/978-3-642-28702-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
83
|
Abstract
Invasive migration of carcinoma cells is a prerequisite for the metastatic dissemination of solid tumours. Numerous mechanisms control the ability of cancer cells to acquire a motile and invasive phenotype, and subsequently degrade and invade the basement membrane. Several genes that are up-regulated in breast carcinoma are responsible for mediating the metastatic cascade. Recent studies have revealed that the NFAT (nuclear factor of activated T-cells) is a transcription factor that is highly expressed in aggressive breast cancer cells and tissues, and mediates invasion through transcriptional induction of pro-invasion and migration genes. In the present paper we demonstrate that NFAT promotes breast carcinoma invasion through induction of GPC (glypican) 6, a cell-surface glycoprotein. NFAT transcriptionally regulates GPC6 induction in breast cancer cells and binds to three regulatory elements in the GPC6 proximal promoter. Expression of GPC6 in response to NFAT signalling promotes invasive migration, whereas GPC6 silencing with shRNA (small-hairpin RNA) potently blocks this phenotype. The mechanism by which GPC6 promotes invasive migration involves inhibition of canonical β-catenin and Wnt signalling, and up-regulation of non-canonical Wnt5A signalling leading to the activation of JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Thus GPC6 is a novel NFAT target gene in breast cancer cells that promotes invasive migration through Wnt5A signalling.
Collapse
|
84
|
Farrell WE, Azevedo MF, Batista DL, Smith A, Bourdeau I, Horvath A, Boguszewski M, Quezado M, Stratakis CA. Unique gene expression profile associated with an early-onset multiple endocrine neoplasia (MEN1)-associated pituitary adenoma. J Clin Endocrinol Metab 2011; 96:E1905-14. [PMID: 21917868 PMCID: PMC3205896 DOI: 10.1210/jc.2011-1127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Multiple endocrine neoplasia type 1 (MEN1) is caused by mutations in the menin (MEN1) gene. The mechanism(s) by which MEN1 mutations lead to pituitary tumor formation remain(s) unknown. OBJECTIVE The aim of the study was to identify the pediatric MEN1-associated pituitary tumor transcriptome. PATIENTS AND METHODS A patient harboring a MEN1 mutation (c.525C>G; p.H139D) who presented with an early-onset mammosomatotroph pituitary adenoma was studied. Microarray analysis was performed in the tumor sample and compared with the profile observed in normal pituitaries and in a sporadic mammosomatotropinoma. Validation of the microarray results was performed using quantitative real-time PCR and immunohistochemical analysis for selected genes. RESULTS In the MEN1-associated pituitary adenoma, 59 and 24 genes were found to be significantly up- and down-regulated, respectively. The up-regulated genes included those involved in cell growth and maintenance, apoptosis, growth arrest, and tumorigenesis. Moreover, we observed decreased expression in genes neuroendocrine in nature and related to growth or apoptosis. Only 21 of the 59 genes differentially expressed in the MEN1-associated adenoma showed a similar expression profile to that seen in the sporadic mammosomatotropinoma; for some genes an opposite expression profile was observed. CONCLUSIONS We identified changes in the transcriptome that occur in pituitary GH- and PRL-producing cells after the loss of menin expression; some of the gene changes are necessary for tumor evolution, and others may be tertiary. Nevertheless, the rare overlap between the expression profiles of the MEN1 tumor vs. that of its sporadic counterpart suggests that these tumors evolve along different molecular pathways.
Collapse
Affiliation(s)
- William E Farrell
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Building 10, CRC, Room 1-3330, 10 Center Drive, MSC1103, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Allegretta M, Filmus J. Therapeutic potential of targeting glypican-3 in hepatocellular carcinoma. Anticancer Agents Med Chem 2011; 11:543-8. [PMID: 21554204 DOI: 10.2174/187152011796011109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 02/08/2023]
Abstract
Glypican-3 (GPC3) is a developmentally-regulated oncofetal protein that has been established as a clinically-relevant biomarker for early hepatocellular carcinoma (HCC). It is one of the first transcripts to appear during malignant hepatocyte transformation, and is expressed at the protein level in approximately half of high-grade dysplastic macronodules in cirrhotic liver. Several studies show it is expressed in most (75 to 100%) of HCCs confirmed by histopathology. The protein is anchored to the hepatocyte membrane by a glycosyl-phosphatidylinositol (GPI) anchor and shows consistent membrane immunostaining pattern, making it a viable target for immunotherapeutic approaches. Targeting GPC3 for therapeutic intervention is a promising approach for the clinical management of HCC and selected other tumors that express the marker.
Collapse
|
86
|
Nambotin SB, Wands JR, Kim M. Points of therapeutic intervention along the Wnt signaling pathway in hepatocellular carcinoma. Anticancer Agents Med Chem 2011; 11:549-59. [PMID: 21554202 DOI: 10.2174/187152011796011019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. However, there is little known about targeted therapeutics for the treatment of this devastating tumor. Among the growth factor signaling cascades deregulated in HCC, evidences suggest that the WNT/Frizzled-mediated signaling pathway plays a key role in the hepatic carcinogenesis. Aberrant activation of the signaling in HCC is mostly due to deregulated expression of the Wnt/β-catenin signaling components. This leads to the activation of the β-catenin/TCF dependent target genes, which controls cell proliferation, cell cycle, apoptosis or motility. It has been shown that disruption of the Wnt/β-catenin signaling cascade displayed anti-cancer properties in HCC. Currently, no therapeutic molecules targeting the WNT pathway are available or under clinical evaluation for the treatment of HCC. This review will discuss the identified potential molecular targets related to the canonical WNT signaling pathway and their potential therapeutic usefulness.
Collapse
Affiliation(s)
- Sarah B Nambotin
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
87
|
Marquardt JU, Quasdorff M, Varnholt H, Curth HM, Mesghenna S, Protzer U, Goeser T, Nierhoff D. Neighbor of Punc E11, a novel oncofetal marker for hepatocellular carcinoma. Int J Cancer 2011; 128:2353-63. [PMID: 20658536 DOI: 10.1002/ijc.25567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatocellular carcinoma (HCC) is the 5th common malignancy worldwide, but established markers fail to detect up to one third of HCC. We have recently identified Neighbor of Punc E11 (Nope) as a surface marker for murine fetal liver stem cells. Similar to commonly used HCC markers such as α-Fetoprotein (Afp) and Glypican-3 (Gpc-3), we here establish Nope as an oncofetal marker of murine and human HCC and investigate its specific expression in hepatoma cell lines and primary HCC. Murine and human hepatoma cell lines and Cre-inducible SV40 T-antigen transgenic mice (Alb-SV40TAg(ind) ) were analyzed for Nope expression in comparison to common HCC markers by quantitative RT-PCR, Western blot analyses and immunohistochemistry. Nope expression in primary human HCC was investigated using Oncomine Microarray database. Nope expression was elevated in 8 of 10 investigated murine and human hepatoma cell lines and in all tumors of our oncogenic mouse model but remained undetectable in normal liver and at preneoplastic stages of murine hepatocarcinogenesis. Furthermore, a significant induction of Nope was detected in primary human cancers compared to corresponding normal or cirrhotic tissue. Nope expression in tumor specimens and murine cell lines correlated closely with expression levels of Gpc-3, whereas expression levels of Afp showed high variations. In conclusion, we identified Nope as a novel oncofetal surface marker for murine and human HCC. Nope is specifically expressed by epithelial tumor cells but not in preneoplastic stages and is a promising marker for clinical application because of its high detection rate in Afp-positive and Afp-negative tumors.
Collapse
Affiliation(s)
- Jens Uwe Marquardt
- Department of Gastroenterology and Hepatology, University of Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Lin Q, Xiong LW, Pan XF, Gen JF, Bao GL, Sha HF, Feng JX, Ji CY, Chen M. Expression of GPC3 protein and its significance in lung squamous cell carcinoma. Med Oncol 2011; 29:663-9. [PMID: 21556932 DOI: 10.1007/s12032-011-9973-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/29/2011] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to investigate GPC3 gene expression in lung squamous cell carcinoma tissue and its correlation with clinical and tumor characteristics. Using RT-PCR, the presence of GPC3 gene expression was detected in cancer tissue and adjacent normal tissue in 66 cases of lung squamous cell carcinoma and positive rates were calculated. Using Western blot, changes in GPC3 protein expression were detected in lung squamous cell carcinoma and adjacent normal tissues. The percentage of tissue samples expressing GPC3 mRNA was significantly higher in lung squamous cell carcinoma than in adjacent normal tissue (P < 0.05). This percentage was also significantly higher for cases with lymph node metastasis than for those without lymph node metastasis (P < 0.05). Further, the percentage of samples expressing GPC3 mRNA was higher with lowering degrees of tumor differentiation (P < 0.05). Rates of GPC3 expression were, however, independent of patient gender, age, and tumor size (P > 0.05). The expression of GPC3 protein in lung squamous cell carcinoma was significantly higher than that in adjacent normal tissues (P < 0.05). The expression in cases with lymph node metastasis was significantly higher than in those without lymph node metastasis (P < 0.05), and GPC3 protein expression increased with lowering degrees of tumor differentiation (P < 0.05). Further investigation is warranted for the association of initiation, development, invasion, and metastasis of disease.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, No. 241, West Huaihai Rd, Shanghai 200030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Iozzo RV, Sanderson RD. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 2011; 15:1013-31. [PMID: 21155971 PMCID: PMC3633488 DOI: 10.1111/j.1582-4934.2010.01236.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans, key molecular effectors of cell surface and pericellular microenvironments, perform multiple functions in cancer and angiogenesis by virtue of their polyhedric nature and their ability to interact with both ligands and receptors that regulate neoplastic growth and neovascularization. Some proteoglycans such as perlecan, have pro- and anti-angiogenic activities, whereas other proteoglycans, such as syndecans and glypicans, can also directly affect cancer growth by modulating key signalling pathways. The bioactivity of these proteoglycans is further modulated by several classes of enzymes within the tumour microenvironment: (i) sheddases that cleave transmembrane or cell-associated syndecans and glypicans, (ii) various proteinases that cleave the protein core of pericellular proteoglycans and (iii) heparanases and endosulfatases which modify the structure and bioactivity of various heparan sulphate proteoglycans and their bound growth factors. In contrast, some of the small leucine-rich proteoglycans, such as decorin and lumican, act as tumour repressors by physically antagonizing receptor tyrosine kinases including the epidermal growth factor and the Met receptors or integrin receptors thereby evoking anti-survival and pro-apoptotic pathways. In this review we will critically assess the expanding repertoire of molecular interactions attributed to various proteoglycans and will discuss novel proteoglycan functions modulating cancer progression, invasion and metastasis and how these factors regulate the tumour microenvironment.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Ralph D Sanderson
- Department of Pathology, and the Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
90
|
Cho HS, Ahn JM, Han HJ, Cho JY. Glypican 3 binds to GLUT1 and decreases glucose transport activity in hepatocellular carcinoma cells. J Cell Biochem 2011; 111:1252-9. [PMID: 20803547 DOI: 10.1002/jcb.22848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glypican 3 (GPC3), a member of heparin sulfate proteoglycans, is attached to the cell surface by a glycosylphosphatidylinositol anchor and is reported to be overexpressed in liver cancers. In order to identify GPC3 binding proteins on the cell surface, we constructed a cDNA containing the C-terminal cell surface-attached form of GPC3 (GPC3c) in a baculoviral vector. The GPC3c bait protein was produced by expressing the construct in Sf21 insect cells and double purified using a His column and Flag immunoprecipitation. Purified GPC3c was used to uncover GPC3c-interacting proteins. Using an LC-MS/MS proteomics strategy, we identified glucose transporter 1 (GLUT1) as a novel GPC3 interacting protein from the HepG2 hepatoma cell lysates. The interaction was confirmed by immunoprecipitation (IP)-WB analysis and surface plasmon resonance (SPR). SPR result showed the interaction of GLUT1 to GPC3c with equilibrium dissociation constants (K(D) ) of 1.61 nM. Moreover, both incubation with GPC3c protein and transfection of Gpc3c cDNA into HepG2 cells resulted in reduced glucose uptake activity. Our results indicate that GPC3 plays a role in glucose transport by interacting with GLUT1.
Collapse
Affiliation(s)
- Hye-Sim Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | | | | | | |
Collapse
|
91
|
Wang T, Wang FM, Gao YT, Zhu ZY, Guo HS, Yang B, Zhang CS, Zhang Q, Du Z. Significance of GPC3 expression in liver biopsy specimens for differential diagnosis of liver diseases. Shijie Huaren Xiaohua Zazhi 2011; 19:693-699. [DOI: 10.11569/wcjd.v19.i7.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the expression of glypican 3 (GPC3) in different liver diseases and to explore its significance in early diagnosis of hepatocellular carcinoma (HCC).
METHODS: The expression of GPC3 and α-fetoprotein (AFP) was detected by immunohistochemistry in 126 liver needle biopsy specimens from 13 patients with very early stage HCC, 44 patients with early stage HCC, 16 patients with dysplastic nodules, 29 patients with liver cirrhosis, and 24 patients with hepatitis, and in 57 resected HCC specimens from patients with intermediate and advanced HCC. Twenty-eight resected normal liver tissue specimens were used as controls.
RESULTS: The expression of GPC3 in HCC differed significantly from those in other liver diseases (all P < 0.01). Detection of GPC3 expression showed a higher diagnostic sensitivity (80.7%) and specificity (99.4%) than that of AFP (37.7% and 93.6%, respectively). GPC3 was expressed in 92.3% of very early stage HCC and in 72.7% of early stage of HCC. In contrast, AFP only appeared in 38.5% of very early stage HCC and in 34.1% of early stage HCC. The positive rates of GPC3 expression in very early and early stage HCC were significantly higher than those in dysplastic nodules (both P < 0.01). GPC3 and AFP expression was not detected in liver cirrhosis, hepatitis or normal liver tissue. In patients with small HCC, the positive rate of GPC3 expression was 78.6%, and combined detection of GPC3 and AFP had a sensitivity of 85.7%. In patients with small HCC who had an AFP of ≤20 μg/L, the positive rate of GPC3 expression was 70%. The recurrence rate after radical surgery in GPC3-positive patients was higher than that of GPC3-negative ones (P < 0.05).
CONCLUSION: GPC3 is highly expressed in HCC. Detection of GPC3 expression has a high sensitivity and specificity for diagnosis of very early and early stage HCC and therefore represents a potential diagnostic parameter for early HCC. Immunohistochemistry detection of GPC3 in liver needle biopsy specimens is an effective ancillary tool for early diagnosis of HCC. GPC3 expression is an independent prognostic factor for HCC recurrence after surgery.
Collapse
|
92
|
Han CH, Huang YJ, Lu KH, Liu Z, Mills GB, Wei Q, Wang LE. Polymorphisms in the SULF1 gene are associated with early age of onset and survival of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:5. [PMID: 21214932 PMCID: PMC3025876 DOI: 10.1186/1756-9966-30-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/07/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND SULF1 (sulfatase 1) selectively removes the 6-O-sulphate group from heparan sulfate, changing the binding sites for extracellular growth factors. SULF1 expression has been reported to be decreased in various cancers, including ovarian cancer. We hypothesized that single nucleotide polymorphisms (SNPs) of SULF1 would impact clinicopathologic characteristics. METHODS We genotyped five common (minor allele frequency>0.05) regulatory SNPs with predicted functionalities (rs2623047 G>A, rs13264163 A>G, rs6990375 G>A, rs3802278 G>A, and rs3087714 C>T) in 168 patients with primary epithelial ovarian cancer, using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS We found that rs2623047 G>A was significantly associated with an early age of onset of ovarian cancer in the G allele dose-response manner (P = 0.027; Ptrend = 0.007) and that rs2623047 GG/GA genotypes were associated with longer progression-free survival; rs6990375 G>A was also associated with the early age of onset in the A allele dose-response manner (P = 0.013; Ptrend= 0.009). The significant differences in age of disease onset persisted among carriers of haplotypes of rs2623047 and rs6990375 (P = 0.014; Ptrend = 0.004). In luciferase reporter gene assays, rs2623047 G allele showed a slightly higher promoter activity than the A allele in the SKOV3 tumorigenic cell line. CONCLUSIONS These findings suggest that genetic variations in SULF1 may play a role in ovarian cancer onset and prognosis. Further studies with large sample sizes and of the mechanistic relevance of SULF1 SNPs are warranted.
Collapse
Affiliation(s)
- Chan H Han
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Jing Huang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen H Lu
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhensheng Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-E Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
93
|
Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer 2010; 47:333-8. [PMID: 21112773 DOI: 10.1016/j.ejca.2010.10.024] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/27/2010] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a common malignant cancer worldwide. There is an urgent need to identify new molecular targets for the development of novel therapeutic approaches. Herein, we review the structure, function and biology of glypican-3 (GPC3) and its role in human cancer with a focus on its potential as a therapeutic target for immunotherapy. GPC3 is a cell-surface protein that is over-expressed in HCC. Loss-of-function mutations of GPC3 cause Simpson-Golabi-Behmel syndrome (SGBS), a rare X-linked overgrowth condition. GPC3 binds Wnt and Hedgehog (Hh) signalling proteins. GPC3 is also able to bind basic growth factors such as fibroblast growth factor 2 through its heparan sulphate glycan chains. GPC3 is a promising candidate for liver cancer therapy given that it shows high expression in HCC. An anti-GPC3 monoclonal antibody has shown anti-cancer activity in mice and its humanised IgG molecule is currently undergoing clinical evaluation in patients with HCC. There is also evidence that soluble GPC3 may be a useful serum biomarker for HCC.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| | | |
Collapse
|
94
|
Ou-Yang RJ, Hui P, Yang XJ, Zynger DL. Expression of glypican 3 in placental site trophoblastic tumor. Diagn Pathol 2010; 5:64. [PMID: 20868507 PMCID: PMC2954974 DOI: 10.1186/1746-1596-5-64] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/25/2010] [Indexed: 02/07/2023] Open
Abstract
Background Glypican-3 (GPC3) is a membrane-bound heparan sulfate proteoglycan that functions in embryonic cell growth and differentiation and is highly expressed in the placenta. GPC3 is mutated in Simpson-Golabi-Behmel syndrome, which is characterized by tissue overgrowth and an increased risk of embryonal malignancies. GPC3 has also been implicated in sporadic cancer, particularly hepatocellular carcinoma, for which it has been shown to be a useful diagnostic marker. Although GPC3 expression has been studied in non-neoplastic placental tissue, its presence in gestational trophoblastic diseases has not been previously explored. The purpose of this study was to investigate the immunohistochemical expression of GPC3 in placental site trophoblastic tumor (PSTT), a very rare gestational trophoblastic neoplasm which may be morphologically confused with non-trophoblastic tumors, and to assess its possible utility as a diagnostic marker. Methods Fifteen cases of PSTT, as well as samples from placental site nodule (PSN) (n = 2), leiomyosarcoma (n = 1), leiomyoma (n = 1), invasive cervical squamous cell carcinoma (n = 7) and endometrial adenocarcinoma (n = 11) were examined. Immunoreactivity was semi-quantitatively evaluated as negative (0, < 5% of cells stained), focally positive (1+, 5-10% of cells stained), positive (2+, 11-50% of cells stained) or diffusely positive (3+, > 50% of cells stained). Staining intensity for each subtype was graded from 0 to 3 and a mean intensity was calculated. Results Eighty percent of PSTT (12/15) were immunoreactive for GPC3 (0, 20; 1+, 20%; 2+, 40%; 3+, 20%) with a mean intensity of 1.3. Stronger, predominately cytoplasmic staining was seen in larger multi- and mononucleated cells with smaller mononucleate cells showing weak muddy cytoplasmic staining. Both PSN cases were positive (1+, 50%; 2+, 50%) and two of nine invasive cervical squamous cell carcinomas showed staining (0, 57%; 1+, 29%; 2+, 14%), predominately in a basal distribution. Other uterine tumors and non-neoplastic tissues were negative. Conclusions Identification of GPC3 in PSTT and PSN is consistent with the derivation of these lesions from intermediate trophoblasts, which have been described to express GPC3. GPC3 may be a useful adjunct immunohistochemical marker in differentiating PSTT from non-trophoblastic tumors.
Collapse
Affiliation(s)
- Robin J Ou-Yang
- Department of Pathology, The Ohio State University Medical Center, 410 W 10th Ave, 401 Doan Hall, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
95
|
Zhang Q, Xiao Q, Lin Z, Ying X, Li Z, Lin JM. Development of a competitive radioimmunoassay for glypican-3 and the clinical application in diagnosis of hepatocellular carcinoma. Clin Biochem 2010; 43:1003-8. [PMID: 20444424 DOI: 10.1016/j.clinbiochem.2010.04.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/07/2010] [Accepted: 04/23/2010] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Glypican-3 (GPC3) is a promising specific tumor maker for hepatocellular carcinoma (HCC). The aim of this study is to establish a method to detect serum GPC3 and evaluate the clinical application on clinical diagnosis. DESIGN AND METHODS A competitive radioimmunoassay for detecting serum GPC3 was developed. Clinical sera were detected by the proposed method and AFP, CA19-9 chemiluminescence immunoassay kit. RESULTS The proposed method with high sensitivity, specificity and precision had no or little detectable cross-reactivity with relating tumor markers in the dynamic range from 15 to 500 ng/mL, and the detection limit was 0.5 ng/mL. The level of GPC3 in HCC was obviously higher than that in normal liver or other liver diseases. Additionally, our method showed high shows higher sensitivity and specificity for GPC3 than AFP and combined AFP/CA19-9. CONCLUSIONS This paper provided an applicable competitive radioimmunoassay for GPC3 with high sensitivity, specificity and precision. In addition, using GPC3 for HCC diagnosis was more valuable than AFP.
Collapse
Affiliation(s)
- Qianyun Zhang
- School of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
96
|
Buchanan C, Stigliano I, Garay-Malpartida HM, Rodrigues Gomes L, Puricelli L, Sogayar MC, Bal de Kier Joffé E, Peters MG. Glypican-3 reexpression regulates apoptosis in murine adenocarcinoma mammary cells modulating PI3K/Akt and p38MAPK signaling pathways. Breast Cancer Res Treat 2010; 119:559-74. [PMID: 19288189 DOI: 10.1007/s10549-009-0362-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.
Collapse
Affiliation(s)
- C Buchanan
- Cell Biology Department, Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Av. San Martín 5481, C1417DTB Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Tangkijvanich P, Chanmee T, Komtong S, Mahachai V, Wisedopas N, Pothacharoen P, Kongtawelert P. Diagnostic role of serum glypican-3 in differentiating hepatocellular carcinoma from non-malignant chronic liver disease and other liver cancers. J Gastroenterol Hepatol 2010; 25:129-37. [PMID: 19793164 DOI: 10.1111/j.1440-1746.2009.05988.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The role of glypican-3 (GPC3), a novel serum marker, in differentiating hepatocellular carcinoma (HCC) from non-malignant chronic liver disease and other malignant space-occupying lesions in the liver is largely unknown. The aims of this study were to evaluate its diagnostic role and clinical correlations in patients with HCC. METHODS Six groups were studied which included 40 healthy subjects, 50 patients with chronic hepatitis (CH), 50 patients with liver cirrhosis (LC), 100 patients with HCC, 50 patients with intrahepatic cholangiocarcinoma (ICC) and 50 patients with metastatic carcinoma (MCA). Serum GPC3 levels were measured by using a sandwich enzyme-linked immunosorbent assay method. RESULTS Fifty-three percent of HCC patients had elevated serum GPC3 levels with values ranging 35.5-7826.6 ng/mL. The serum marker was undetectable in other groups except one patient (2%) with LC and another patient (2%) with MCA. In most cases of HCC, elevated GPC3 values did not correlate with alpha-fetoprotein (AFP) levels. Detectable GPC3 was significantly correlated with the presence of viral hepatitis markers but was not correlated with tumor size and stage of HCC. Serum GPC3 was superior to AFP in detecting small HCC (56.3% and 31.3%, respectively). A combination of serum GPC3 and AFP yielded an improved sensitivity for detecting small HCC to 75%. CONCLUSION Serum GPC3 is highly specific for detecting HCC. The combined use of serum GPC3 and AFP provides a potentially promising tool to better differentiate HCC from benign liver disorders, as well as from other liver cancers.
Collapse
Affiliation(s)
- Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|
98
|
Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 2009; 21:1548-58. [PMID: 19427900 PMCID: PMC2735586 DOI: 10.1016/j.cellsig.2009.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TssRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co-receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center, Durham NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708
| |
Collapse
|
99
|
|
100
|
O'Donnell CD, Shukla D. A novel function of heparan sulfate in the regulation of cell-cell fusion. J Biol Chem 2009; 284:29654-65. [PMID: 19726670 DOI: 10.1074/jbc.m109.037960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the important contribution of cell-cell fusion in the development and physiology of eukaryotes, little is known about the mechanisms that regulate this process. Our study shows that glycosaminoglycans and more specifically heparan sulfate (HS) expressed on the cell surface and extracellular matrix may act as negative regulator of cell-cell fusion. Using herpes simplex virus type-1 as a tool to enhance cell-cell fusion, we demonstrate that the absence of HS expression on the cell surface results in a significant increase in cell-cell fusion. An identical phenomenon was observed when other viruses or polyethylene glycol was used as fusion enhancer. Cells deficient in HS biosynthesis showed increased activity of two Rho GTPases, RhoA and Cdc42, both of which showed a correlation between increased activity and increased cell-cell fusion. This could serve as a possible explanation as to why HS-deficient cells showed significantly enhanced cell-cell fusion and suggests that HS could regulate fusion via fine tuning of RhoA and Cdc42 activities.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Ophthalmology and Visual Sciences and the Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|