51
|
Mato S, Victoria Sánchez-Gómez M, Matute C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia 2011; 58:1739-47. [PMID: 20645411 DOI: 10.1002/glia.21044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.
Collapse
Affiliation(s)
- Susana Mato
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | | |
Collapse
|
52
|
Biton S, Ashkenazi A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 2011; 145:92-103. [PMID: 21458669 DOI: 10.1016/j.cell.2011.02.023] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/21/2011] [Accepted: 02/04/2011] [Indexed: 11/30/2022]
Abstract
Upon DNA damage, ataxia telangiectasia mutated (ATM) kinase triggers multiple events to promote cell survival and facilitate repair. If damage is excessive, ATM stimulates cytokine secretion to alert neighboring cells and apoptosis to eliminate the afflicted cell. ATM augments cell survival by activating nuclear factor (NF)-κB; however, how ATM induces cytokine production and apoptosis remains elusive. Here we uncover a p53-independent mechanism that transmits ATM-driven cytokine and caspase signals upon strong genotoxic damage. Extensive DNA lesions stimulated two sequential NF-κB activation phases, requiring ATM and NEMO/IKK-γ: The first phase induced TNF-α-TNFR1 feedforward signaling, promoting the second phase and driving RIP1 phosphorylation. In turn, RIP1 kinase triggered JNK3/MAPK10-dependent interleukin-8 secretion and FADD-mediated proapoptotic caspase-8 activation. Thus, in the context of excessive DNA damage, ATM employs NEMO and RIP1 kinase through autocrine TNF-α signaling to switch on cytokine production and caspase activation. These results shed light on cell-fate regulation by ATM.
Collapse
Affiliation(s)
- Sharon Biton
- Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
53
|
Shao ZH, Wojcik KR, Qin Y, Li CQ, Hoek TLV, Hamann KJ. Blockade of Caspase-2 Activity Inhibits Ischemia/Reperfusion-Induced Mitochondrial Reactive Oxygen Burst and Cell Death in Cardiomyocytes. J Cell Death 2011. [DOI: 10.4137/jcd.s6723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We previously showed that initiator caspases-2 and −8 are prominently activated in ischemia/reperfusion (I/R)-induced injury in cardiomyocytes, but while blockade of caspase-2 activity enhanced cell survival, blockade of caspase-8 activity did not protect cardiomyocytes. Because apoptotic death in these cells is characterized by a burst of reactive oxygen species (ROS) at reperfusion and their survival by inhibition of this burst, we examined the effects of blocking caspase-2 and caspase-8 activities on ROS production. Caspase-2 inhibition blocked the reperfusion-induced ROS burst, while inhibition of caspase-8 did not. We also examined effects of caspase inhibition on mitochondrial membrane potential (ΔΨm) and mitochondrial function and found that blocking caspase-2, but not caspase-8, allowed recovery of ΔΨm and mitochondrial functionality. Furthermore, knockdown of caspase-2 by small-interfering (si)RNA confirmed caspase-2 participation in cytochrome c release, which correlates with loss of ΔΨm and cell death in these cardiomyocytes.
Collapse
Affiliation(s)
- Zuo-Hui Shao
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | | | - Yimin Qin
- Sections of Pulmonary and Critical Care Medicine
| | - Chang-Qing Li
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | - Terry L. Vanden Hoek
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
54
|
von Haefen C, Wendt J, Semini G, Sifringer M, Belka C, Radetzki S, Reutter W, Daniel PT, Danker K. Synthetic glycosidated phospholipids induce apoptosis through activation of FADD, caspase-8 and the mitochondrial death pathway. Apoptosis 2011; 16:636-51. [DOI: 10.1007/s10495-011-0592-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
55
|
Hara K, Kasahara E, Takahashi N, Konishi M, Inoue J, Jikumaru M, Kubo S, Okamura H, Sato E, Inoue M. Mitochondria Determine the Efficacy of Anticancer Agents that Interact with DNA but Not the Cytoskeleton. J Pharmacol Exp Ther 2011; 337:838-45. [DOI: 10.1124/jpet.111.179473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
56
|
Mühlethaler-Mottet A, Flahaut M, Bourloud KB, Nardou K, Coulon A, Liberman J, Thome M, Gross N. Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis. Cell Death Dis 2011; 2:e125. [PMID: 21368896 PMCID: PMC3101821 DOI: 10.1038/cddis.2011.8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin-proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation.
Collapse
Affiliation(s)
- A Mühlethaler-Mottet
- Department of Paediatrics, Paediatric Oncology Research, University Hospital CHUV, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Luna J, Masamunt MC, Rickmann M, Mora R, España C, Delgado S, Llach J, Vaquero E, Sans M. Tocotrienols have potent antifibrogenic effects in human intestinal fibroblasts. Inflamm Bowel Dis 2011; 17:732-41. [PMID: 20684017 DOI: 10.1002/ibd.21411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Excessive fibroblast expansion and extracellular matrix (ECM) deposition are key events for the development of bowel stenosis in Crohn's disease (CD) patients. Tocotrienols are vitamin E compounds with proven in vitro antifibrogenic effects on rat pancreatic fibroblasts. We aimed at investigating the effects of tocotrienols on human intestinal fibroblast (HIF) proliferation, apoptosis, autophagy, and synthesis of ECM. METHODS HIF isolated from CD, ulcerative colitis (UC), and normal intestine were treated with tocotrienol-rich fraction (TRF) from palm oil. HIF proliferation was quantified by (3) H-thymidine incorporation, apoptosis was studied by DNA fragmentation, propidium iodide staining, caspase activation, and poly(ADP-ribose) polymerase cleavage, autophagy was analyzed by quantification of LC3 protein and identification of autophagic vesicles by immunofluorescence and production of ECM components was measured by Western blot. RESULTS TRF significantly reduced HIF proliferation and prevented basic fibroblast growth factor-induced proliferation in CD and UC, but not control HIF. TRF enhanced HIF death by promoting apoptosis and autophagy. HIF apoptosis, but not autophagy, was prevented by the pan-caspase inhibitor zVAD-fmk, whereas both types of cell death were prevented when the mitochondrial permeability transition pore was blocked by cyclosporin A, demonstrating a key role of the mitochondria in these processes. TRF diminished procollagen type I and laminin γ-1 production by HIF. CONCLUSIONS Tocotrienols exert multiple effects on HIF, reducing cell proliferation, enhancing programmed cell death through apoptosis and autophagy, and decreasing ECM production. Considering their in vitro antifibrogenic properties, tocotrienols could be useful to treat or prevent bowel fibrosis in CD patients.
Collapse
Affiliation(s)
- Jeroni Luna
- Department of Gastroenterology, Hospital Clı´nic i Provincial / IDIBAPS, CIBER EHD, Barcelona, Catalunya, Spain..
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chung KS, Choi JH, Back NI, Choi MS, Kang EK, Chung HG, Jeong TS, Lee KT. Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Mol Nutr Food Res 2011; 54:1318-28. [PMID: 20397191 DOI: 10.1002/mnfr.200900305] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although eupafolin, a flavone found in Artemisia princeps Pampanini, has been shown to inhibit the growth of several human cancer cells, its mode of action is poorly understood. In this study, we investigated the pro-apoptotic activities of eupafolin in human cervical carcinoma HeLa cells. It was found that eupafolin induced apoptosis in a dose-dependent manner, as evidenced by DNA fragmentation and the accumulation of positive cells for annexin V. In addition, eupafolin triggered the activations of caspases-3, -6, -7, -8, and -9 and the cleavages of their substrates, such as, poly (ADP-ribose) polymerase and lamin A/C. Furthermore, treatment with eupafolin resulted in a loss of mitochondrial membrane potential (DeltaPsi(m)), increased the release of cytochrome c to the cytosol, and altered the expression levels of B-cell lymphoma 2 (Bcl-2) family proteins. Interestingly, caspase-8, an initiator caspase, was activated after the loss of DeltaPsi(m) and the activations of caspases-3 and -9. Moreover, treatment with z-DEVD-fmk (a specific caspase-3 inhibitor) and the overexpression of Bcl-2 prevented eupafolin-stimulated caspase-8 activation. Altogether, these results suggest that the eupafolin-induced apoptosis in HeLa cells is mediated by caspase-dependent pathways, involving caspases-3, -9, and -8, which are initiated by the Bcl-2-dependent loss of DeltaPsi(m).
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Biomedical Science, College of Medical Science, Kyung-Hee University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Hilchie AL, Furlong SJ, Sutton K, Richardson A, Robichaud MRJ, Giacomantonio CA, Ridgway ND, Hoskin DW. Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutr Cancer 2010; 62:379-89. [PMID: 20358476 DOI: 10.1080/01635580903441238] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Curcumin, the principal curcuminoid of tumeric, has potent anticancer activity. To determine the mechanism of curcumin-induced cytotoxicity in prostate cancer cells, we exposed PC3 prostate carcinoma cells to 25 to 100 microM curcumin for 24 to 72 h. Curcumin treatment of PC3 cells caused time- and dose-dependent induction of apoptosis and depletion of cellular reduced glutathione (GSH). Exogenous GSH and its precursor N-acetyl-cysteine, but not ascorbic acid (AA) or ebselen, decreased curcumin accumulation in PC3 cells and also prevented curcumin-induced DNA fragmentation. The failure of AA and ebselen to protect PC3 cells from curcumin-induced apoptosis argued against the involvement of reactive oxygen species; rather, GSH-mediated inhibition of curcumin-induced cytotoxicity was due to reduced curcumin accumulation in PC3 cells. Curcumin-treated PC3 cells showed apoptosis-inducing cellular ceramide accumulation and activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK). Caspase-3, caspase-8, and caspase-9 were activated, and cytochrome c and apoptosis-inducing factor (AIF) were released from mitochondria following curcumin treatment. Interestingly, curcumin-induced apoptosis was not prevented by p38 MAPK, JNK, or caspase inhibition. We conclude that curcumin-induced cytotoxicity was due to cellular ceramide accumulation and damage to mitochondria that resulted in apoptosis mediated by AIF and other caspase-independent processes.
Collapse
|
60
|
Kater B, Hunold A, Schmalz HG, Kater L, Bonitzki B, Jesse P, Prokop A. Iron containing anti-tumoral agents: unexpected apoptosis-inducing activity of a ferrocene amino acid derivative. J Cancer Res Clin Oncol 2010; 137:639-49. [DOI: 10.1007/s00432-010-0924-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|
61
|
Lim SJ, Choi MK, Kim MJ, Kim JK. Alpha-tocopheryl succinate potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in human H460 lung cancer cells. Exp Mol Med 2010; 41:737-45. [PMID: 19561399 DOI: 10.3858/emm.2009.41.10.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Paclitaxel is one of the chemotherapeutic drugs widely used for the treatment of nonsmall cell lung cancer (NSCLC) patients. Here, we tested the ability of alpha-tocopheryl succinate (TOS), another promising anticancer agent, to enhance the paclitaxel response in NSCLC cells. We found that sub-apoptotic doses of TOS greatly enhanced paclitaxel-induced growth suppression and apoptosis in the human H460 NSCLC cell lines. Our data revealed that this was accounted for primarily by an augmented cleavage of poly(ADP-ribose) polymerase (PARP) and enhanced activation of caspase-8. Pretreatment with z-VAD-FMK (a pan-caspase inhibitor) or z-IETD-FMK (a caspase-8 inhibitor) blocked TOS/paclitaxel cotreatment-induced PARP cleavage and apoptosis, suggesting that TOS potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in H460 cells. Furthermore, the growth suppression effect of TOS/paclitaxel combination on human H460, A549 and H358 NSCLC cell lines were synergistic. Our observations indicate that combination of paclitaxel and TOS may offer a novel therapeutic strategy for improving paclitaxel drug efficacy in NSCLC patient therapy as well as for potentially lowering the toxic side effects of paclitaxel through reduced drug dosage.
Collapse
Affiliation(s)
- Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea.
| | | | | | | |
Collapse
|
62
|
Gillissen B, Wendt J, Richter A, Richter A, Müer A, Overkamp T, Gebhardt N, Preissner R, Belka C, Dörken B, Daniel PT. Endogenous Bak inhibitors Mcl-1 and Bcl-xL: differential impact on TRAIL resistance in Bax-deficient carcinoma. ACTA ACUST UNITED AC 2010; 188:851-62. [PMID: 20308427 PMCID: PMC2845080 DOI: 10.1083/jcb.200912070] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although both Mcl-1 and Bcl-xL keep proapoptotic Bak in check, it is the loss of Mcl-1 that sensitizes cells to death receptor–mediated apoptosis. Tumor necrosis factor (α)–related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that preferentially kills tumor cells with limited cytotoxicity to nonmalignant cells. However, signaling from death receptors requires amplification via the mitochondrial apoptosis pathway (type II) in the majority of tumor cells. Thus, TRAIL-induced cell death entirely depends on the proapoptotic Bcl-2 family member Bax, which is often lost as a result of epigenetic inactivation or mutations. Consequently, Bax deficiency confers resistance against TRAIL-induced apoptosis. Despite expression of Bak, Bax-deficient cells are resistant to TRAIL-induced apoptosis. In this study, we show that the Bax dependency of TRAIL-induced apoptosis is determined by Mcl-1 but not Bcl-xL. Both are antiapoptotic Bcl-2 family proteins that keep Bak in check. Nevertheless, knockdown of Mcl-1 but not Bcl-xL overcame resistance to TRAIL, CD95/FasL and tumor necrosis factor (α) death receptor ligation in Bax-deficient cells, and enabled TRAIL to activate Bak, indicating that Mcl-1 rather than Bcl-xL is a major target for sensitization of Bax-deficient tumors for death receptor–induced apoptosis via the Bak pathway.
Collapse
Affiliation(s)
- Bernhard Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, Humboldt University, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
64
|
Cell death induced by novel fluorinated taxanes in drug-sensitive and drug-resistant cancer cells. Invest New Drugs 2009; 29:411-23. [PMID: 20013348 DOI: 10.1007/s10637-009-9368-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study is to compare the effects of new fluorinated taxanes SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 with those of the classical taxane paclitaxel and novel non-fluorinated taxane SB-T-1216 on cancer cells. Paclitaxel-sensitive MDA-MB-435 and paclitaxel-resistant NCI/ADR-RES human cancer cell lines were used. Cell growth and survival evaluation, colorimetric assessment of caspases activities, flow cytometric analyses of the cell cycle and the assessment of mitochondrial membrane potential, reactive oxygen species (ROS) and the release of cytochrome c from mitochondria were employed. Fluorinated taxanes have similar effects on cell growth and survival. For MDA-MB-435 cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853 and SB-T-12854 was 3 nM, 4 nM, 3 nM and 5 nM, respectively. For NCI/ADR-RES cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 was 20 nM, 20 nM, 10 nM and 10 nM, respectively. Selected fluorinated taxanes, SB-T-12853 and SB-T-12854, at the death-inducing concentrations (30 nM for MDA-MB-435 and 300 nM for NCI/ADR-RES) were shown to activate significantly caspase-3, caspase-9, caspase-2 and also slightly caspase-8. Cell death was associated with significant accumulation of cells in the G(2)/M phase. Cytochrome c was not released from mitochondria and other mitochondrial functions were not significantly impaired. The new fluorinated taxanes appear to use the same or similar mechanisms of cell death induction as compared with SB-T-1216 and paclitaxel. New fluorinated and non-fluorinated taxanes are more effective against drug-resistant cancer cells than paclitaxel. Therefore, new generation of taxanes, either non-fluorinated or fluorinated, are excellent candidates for further and detailed studies.
Collapse
|
65
|
Huang S, Day TW, Choi MR, Safa AR. Human beta-galactoside alpha-2,3-sialyltransferase (ST3Gal III) attenuated Taxol-induced apoptosis in ovarian cancer cells by downregulating caspase-8 activity. Mol Cell Biochem 2009; 331:81-8. [PMID: 19415457 PMCID: PMC4450256 DOI: 10.1007/s11010-009-0147-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/23/2009] [Indexed: 01/15/2023]
Abstract
Taxol triggers apoptosis in a variety of cancer cells, but it also upregulates cytoprotective proteins and/or pathways that compromise its therapeutic efficacy. In this report, we found that Taxol treatment resulted in caspase-8-dependent apoptosis in SKOV3 human ovarian cancer cells. Moreover, Taxol-induced apoptosis was associated with caspase-3 activation. Interestingly, Taxol treatment upregulated alpha-2,3-sialyltransferase (ST3Gal III) expression and forced expression of ST3Gal III attenuated Taxol-induced apoptosis. Furthermore, ST3Gal III overexpression inhibited Taxol-triggered caspase-8 activation, indicating that ST3Gal III upregulation produces cellular resistance to Taxol and hence reduces the efficacy of Taxol therapy.
Collapse
Affiliation(s)
- Su Huang
- Department of Pharmacology and Toxicology, Indiana University Simon Cancer Center, Indiana University School of Medicine, 1044 West Walnut St. R4-119, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
66
|
Füllbeck M, Dunkel M, Hossbach J, Daniel PT, Preissner R. Cellular fingerprints: a novel approach using large-scale cancer cell line data for the identification of potential anticancer agents. Chem Biol Drug Des 2009; 74:439-48. [PMID: 19799613 DOI: 10.1111/j.1747-0285.2009.00883.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cellular fingerprint, a novel in silico screening approach, was developed to identify new biologically active compounds in combination with structural fingerprints. To this end, high-throughput screening (HTS) data from the National Cancer Institute have been used. To validate this method, we have selected the proapoptotic, natural compound betulinic acid (BA). Because of its antiproliferative effect on a variety of cancer cell lines, the identification of novel BA analogs is of great interest. Novel analogs have been identified and validated in different apoptosis assays. In addition, the novel approach exhibited a strong correlation between structural similarity and biological activity, so that it offers enormous potential for the identification of novel biologically active compounds.
Collapse
Affiliation(s)
- Melanie Füllbeck
- Institute of Physiology, Charité- Universitätsmedizin Berlin, Germany
| | | | | | | | | |
Collapse
|
67
|
Kong KV, Leong WK, Lim LHK. Osmium carbonyl clusters containing labile ligands hyperstabilize microtubules. Chem Res Toxicol 2009; 22:1116-22. [PMID: 19441774 DOI: 10.1021/tx900056a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A study into the possible molecular targets of the osmium carbonyl cluster Os(3)(CO)(10)(NCCH(3))(2) (2) in the ER- breast carcinoma (MDA-MB-231) cell line was carried out. Infrared and (1)H NMR analyses of cells treated with 2 showed the formation of carboxylato- and thiolato-bridged clusters from the interaction with intracellular carboxylic acid and sulfhydryl residues. The cytotoxicity of 2 was reduced in the presence of fetal bovine serum, and measurement with Ellman's reagent as well as fluorescence confocal microscopy with tetramethylrhodamine-5-maleimide staining all demonstrated binding to intracellular sulfhydryl groups leading up to cell disruption. Tubulin-FITC antibody staining of treated cells showed disruption of the microtubules, and a tubulin polmerization assay showed that 2 induced hyperstabilization of the microtubules.
Collapse
Affiliation(s)
- Kien Voon Kong
- Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 117543
| | | | | |
Collapse
|
68
|
Intracellular cleavage of osteopontin by caspase-8 modulates hypoxia/reoxygenation cell death through p53. Proc Natl Acad Sci U S A 2009; 106:15326-31. [PMID: 19706414 DOI: 10.1073/pnas.0903704106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN) is highly expressed in cancer patients and plays important roles in many stages of tumor progression, such as anti-apoptosis, proliferation, and metastasis. From functional screening of human cDNA library, we isolated OPN as a caspase-8 substrate that regulates cell death during hypoxia/reoxygenation (Hyp/RO). In vitro cleavage assays demonstrate that OPN is cleaved at Asp-135 and Asp-157 by caspase-8. Cellular cleavage of OPN is observed in apoptotic cells exposed to Hyp/RO among various apoptotic stimuli and its cleavage is blocked by zVAD or IETD caspase inhibitor. Further, over-expression of OPN, the form with secretion signal, inhibits Hyp/RO-induced cell death. Caspase cleavage-defective OPN mutant (OPN D135A/D157A) is more efficient to suppress Hyp/RO-induced cell death than wild-type OPN. OPN D135A/D157A sustains AKT activity to increase cell viability through inhibition of caspase-9 during Hyp/RO. In addition, OPN is highly induced in some tumor cells during Hyp/RO, such as HeLa and Huh-7 cells, which is associated with their resistance to Hyp/RO by sustaining AKT activity. Notably, OPN C-terminal cleavage fragment produced by caspase-8 is detected in the nucleus. Plasmid-encoded expression of OPN C-terminal cleavage fragment increases p53 protein level and induces apoptosis of wild-type mouse embryonic fibroblast cells, but not p53(-/-) mouse embryonic fibroblast cells. These observations suggest that the protective function of OPN during Hyp/RO is inactivated via the proteolytic cleavage by caspase-8 and its cleavage product subsequently induces cell death via p53, postulating caspase-8 as a negative regulator of tumorigenic activity of OPN.
Collapse
|
69
|
Keuling AM, Felton KEA, Parker AAM, Akbari M, Andrew SE, Tron VA. RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway. PLoS One 2009; 4:e6651. [PMID: 19684859 PMCID: PMC2722728 DOI: 10.1371/journal.pone.0006651] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. METHODOLOGY/PRINCIPAL FINDINGS Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. CONCLUSIONS/SIGNIFICANCE Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.
Collapse
Affiliation(s)
- Angela M. Keuling
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Kathleen E. A. Felton
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Majid Akbari
- Department of Pathology, Vancouver Coastal Health, Lions Gate Hospital Site, Vancouver, British Columbia, Canada
| | - Susan E. Andrew
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Victor A. Tron
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
70
|
Paclitaxel promotes a caspase 8-mediated apoptosis through death effector domain association with microtubules. Oncogene 2009; 28:3551-62. [PMID: 19668227 PMCID: PMC2851247 DOI: 10.1038/onc.2009.210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubule-perturbing drugs have become front line chemotherapeutics, inducing cell cycle crisis as a major mechanism of action. However, these agents exhibit pleiotropic effects on cells, and can induce apoptosis via other means. Paclitaxel, a microtubule-stabilizing agent, induces a caspase-dependent apoptosis, though the precise mechanism(s) remain unclear. Here, we used genetic approaches to evaluate the role of caspase 8 in paclitaxel-mediated apoptosis. We observed that caspase 8-expressing cells are more sensitive to paclitaxel than caspase 8-deficient cells. Mechanistically, caspase 8 was found associated with microtubules, and this interaction increased following paclitaxel-treatment. The prodomains (DEDs) of caspase 8 were sufficient for interaction with microtubules, but the caspase 8 holoprotein was required for apoptosis. DED-only forms of caspase 8 were found in both primary and tumor cell lines, associating with perinuclear microtubules and the centrosome. Microtubule-association, and paclitaxel-sensitivity, depends upon a critical lysine (K156) within a microtubule-binding motif (KLD) in DED-b of caspase 8. The results reveal an unexpected pathway of apoptosis mediated by caspase 8.
Collapse
|
71
|
Sharifi AM, Eslami H, Larijani B, Davoodi J. Involvement of caspase-8, -9, and -3 in high glucose-induced apoptosis in PC12 cells. Neurosci Lett 2009; 459:47-51. [DOI: 10.1016/j.neulet.2009.03.100] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/17/2009] [Accepted: 03/30/2009] [Indexed: 01/06/2023]
|
72
|
2,3',4,4',5'-Pentamethoxy-trans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem Pharmacol 2009; 78:1224-32. [PMID: 19591809 DOI: 10.1016/j.bcp.2009.06.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 01/23/2023]
Abstract
Resveratrol, a naturally occurring polyphenolic antioxidant, is a compound holding promise for cancer chemoprevention. Previous studies suggest that 2,3',4,5'-tetramethoxy-trans-stilbene (TMS) and 3,4,4',5,-tetramethoxy-trans-stilbene (MR-4), both of which are derivatives of resveratrol, are potent apoptosis-inducing agents with clinical potential. In this study, we chemically synthesized 2,3',4,4',5'-pentamethoxy-trans-stilbene (PMS), the hybrid molecule of TMS and MR-4, and determined its effects on colon cancer growth. When compared with its parent compounds, PMS displayed more potent in vitro anti-mitogenic effect on colon cancer cells (Caco-2, HT-29 and SW1116). Moreover, PMS inhibited tumor growth in vivo in a colon cancer xenograft model. In this connection, PMS strongly induced apoptosis in HT-29 cells as evidenced by increased PARP cleavage, DNA fragmentation, and accumulation of sub-G(1) population. Further mechanistic analysis revealed that PMS enhanced the polymerization of microtubules, which was followed by G(2)/M mitotic arrest and caspase-dependent apoptosis. The activation of caspases-3, -7, -8, and -9 was involved in PMS-induced apoptosis with concomitant down-regulation of the pro-survival PI3K/Akt signaling. Collectively, these data suggest that PMS is a potent inducer of apoptosis via targeting microtubules and may merit investigation as a potential chemoprophylactic and therapeutic agent for colon cancer.
Collapse
|
73
|
Day TW, Wu CH, Safa AR. Etoposide induces protein kinase Cdelta- and caspase-3-dependent apoptosis in neuroblastoma cancer cells. Mol Pharmacol 2009; 76:632-40. [PMID: 19549763 DOI: 10.1124/mol.109.054999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this report, we reveal that etoposide inhibits the proliferation of SK-N-AS neuroblastoma cancer cells and promotes protein kinase Cdelta (PKCdelta)- and caspase-dependent apoptosis. Etoposide induces the caspase-3-dependent cleavage of PKCdelta to its active p40 fragment, and active PKCdelta triggers the processing of caspase-3 by a positive-feedback mechanism. Treatment of cells with the caspase-3-specific inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone or caspase-3-specific small interacting RNA (siRNA) prevented the etoposide-induced activation of caspase-8 and inhibited apoptosis. The silencing of the caspase-2 or caspase-8 genes using siRNAs did not affect the etoposide-induced processing of caspase-3, indicating that these caspases lie downstream of caspase-3 in this signaling pathway. Furthermore, the etoposide-induced processing of caspase-2 required the expression of caspase-8, and the etoposide-mediated processing of caspase-8 required the expression of caspase-2, indicating that these two caspases activate each other after etoposide treatment. We also observed that etoposide-mediated apoptosis was decreased by treating the cells with the caspase-6-specific inhibitor benzyloxycarbonyl-Val-Glu(OMe)-Ile-Asp-(OMe)-fluoromethyl ketone and that caspase-6 was activated by a caspase-8-dependent mechanism. Finally, we show that rottlerin blocks etoposide-induced apoptosis by inhibiting the PKCdelta-mediated activation of caspase-3 and by degrading caspase-2, which prevents caspase-8 activation. Our results add important insights into how etoposide mediates apoptotic signaling and how targeting these pathways may lead to the development of novel therapeutics for the treatment of neuroblastomas.
Collapse
Affiliation(s)
- Travis W Day
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
74
|
Hsiao JR, Leu SF, Huang BM. Apoptotic mechanism of paclitaxel-induced cell death in human head and neck tumor cell lines. J Oral Pathol Med 2009; 38:188-97. [PMID: 19200178 DOI: 10.1111/j.1600-0714.2008.00732.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Paclitaxel (taxol) is clinically used to treat various human tumors. However, the cellular and molecular mechanism regarding apoptotic effect of paclitaxel on head and neck squamous cell carcinoma (HNSCC) remains elusive. METHODS The apoptotic effect and the mechanism of paclitaxel on FaDu hypopharyngeal cancer cell line, OEC-M1 gingival cancer cell line, and OC3 betel quid chewing-related buccal cancer cell lines were investigated by morphological observations, cell viability assay, flow cytometry assay and Western blotting methods. RESULTS Rounded-up cell number increased with membrane blebbing as the treatment of paclitaxel (50-500 nM) increased from 24 to 48 h among these cell lines. In cell viability assay, cell surviving rate significantly decreased from 87 to 27% as the dosage and duration of paclitaxel treatment increased (P < 0.05). Flow-cytometry analysis further demonstrated that 50 nM paclitaxel induced G2/M phase cell arrest among these cell lines within 8 h treatment, and then G2/M phase cell fraction significantly decreased as subG1 phase cell fraction significantly increased after 24 h treatment (P < 0.05), suggesting that cells underwent apoptosis. Furthermore, the activated caspases-8, -9, -3, -6 and poly ADP-ribose polymerase cleavage could all be significantly detected in FaDu, OEC-M1 and OC3 cells (P < 0.05). CONCLUSION Paclitaxel activated cell cycle arrest and caspase protein expressions to induce apoptosis in HNSCC cell lines.
Collapse
Affiliation(s)
- J-R Hsiao
- Department of Otolaryngology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
75
|
Chen YW, Lin GJ, Chia WT, Lin CK, Chuang YP, Sytwu HK. Triptolide exerts anti-tumor effect on oral cancer and KB cells in vitro and in vivo. Oral Oncol 2009; 45:562-8. [PMID: 19359213 DOI: 10.1016/j.oraloncology.2008.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 01/11/2023]
Abstract
Triptolide (TPL), a diterpenoid triepoxide purified from the Chinese herb Tripterygium wilfordii Hook F, has been reported to potentiate the anti-tumor effect in various cancer cells. However, the effect of TPL on oral cancers is not yet evaluated. Herein we first demonstrate that TPL induces prominent growth inhibition and apoptosis in two oral cancer cell lines, SCC25 and OEC-M1 and in KB cells. Our results indicate that TPL induces a dose-dependent apoptosis of these cells at nanomolar concentration. Apoptosis signalings are both activated through time upon TPL treatment detected by elevated caspase-3, 8, 9 activities. In xenograft tumor mouse model, TPL injection successfully inhibits the tumor growth via apoptosis induction which was demonstrated by TUNEL assay. These results demonstrate that TPL exerts anti-tumor effect on oral cancer and KB cells and suggest further the potential of TPL combining with other chemotherapeutic agents or radiotherapy for advanced oral cancer.
Collapse
Affiliation(s)
- Yuan-Wu Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, Min-Chuan East Road, Neihu 114, Taipei 114, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
76
|
Li Y, Xing D, Chen Q. Dynamic Monitoring of Apoptosis in Chemotherapies with Multiple Fluorescence Reporters. Mol Imaging Biol 2009; 11:213-22. [DOI: 10.1007/s11307-008-0195-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
|
77
|
Cooperative effect of p21Cip1/WAF-1 and 14-3-3sigma on cell cycle arrest and apoptosis induction by p14ARF. Oncogene 2008; 27:6707-19. [PMID: 18806827 DOI: 10.1038/onc.2008.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
P14(ARF) (p19(ARF) in the mouse) plays a central role in the regulation of cellular proliferation. Although the capacity of p14(ARF) to induce a cell cycle arrest in G1 phase depends on a functional p53/p21-signaling axis, the G2 arrest triggered by p14(ARF) is p53/p21-independent. Using isogeneic HCT116 cells either wild-type or homozygously deleted for p21, 14-3-3sigma or both, we further investigated the cooperative effect of p21 and 14-3-3sigma on cell cycle regulation and apoptosis induction by p14(ARF). In contrast to DNA damage, which induces mitotic catastrophe in 14-3-3sigma-deficient cells, we show here that the expression of p14(ARF) triggers apoptotic cell death, as evidenced by nuclear DNA fragmentation and induction of pan-caspase activities, irrespective of the presence or absence of 14-3-3sigma. The activation of the intrinsic mitochondrial apoptosis pathway by p14(ARF) was confirmed by cytochrome c release from mitochondria and induction of caspase-9- (LEHDase) and caspase-3/7-like (DEVDase) activities. Moreover, 14-3-3sigma/p21 double-deficient cells were exceedingly sensitive to apoptosis induction by p14(ARF) as compared to wild-type cells or cells lacking either gene alone. Notably, p14(ARF)-induced apoptosis was preceded by an arrest in the G2 phase of cell cycle, which coincided with downregulation of cdc2 (cdk1) protein expression and lack of its nuclear localization. This indicates that p14(ARF) impairs mitotic entry by targeting the distal DNA damage-signaling pathway and induces apoptotic cell death, rather than mitotic catastrophe, out of a transient G2 arrest. Furthermore, our data delineate that the disruption of G2/M cell cycle checkpoint control critically determines the sensitivity of the cell toward p14(ARF)-induced mitochondrial apoptosis.
Collapse
|
78
|
Liao PC, Tan SK, Lieu CH, Jung HK. Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J Cell Biochem 2008; 104:1509-23. [PMID: 18452161 DOI: 10.1002/jcb.21730] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The participation of the mitochondrial pathway in paclitaxel-induced apoptosis has been well documented. After addition of paclitaxel to U937 cells, however, we observed an early expression of five endoplasmic reticulum (ER) stress response genes that preceded the release of cytochrome c from the mitochondria and the cleavage of the caspases. Involvement of the ER was supported by the following evidence. Paclitaxel treatment not only activated calpain and caspase-4, but also induced a gradual increase in the cytosolic Ca(2+) concentration at 3-6 h. Paclitaxel-induced apoptosis can be inhibited by the calpain inhibitor calpeptin and IP(3) receptor inhibitors. Either buffering of the cytosolic Ca(2+) or inhibition of mitochondrial calcium uptake reduced BiP expression. These inhibitors also reduced mitochondrial apoptotic signals, such as mitochondrion membrane potential disruption, cytochrome c release and eventually reduced the death of U937 cells. Paclitaxel-induced Bax/Bak translocation to the ER and Bax dimerization on the ER membrane occurred within 3 h, which led to a Ca(2+) efflux into cytosol. Moreover, we found that cytochrome c translocated to the ER after releasing from mitochondria and then interacted with the IP(3) receptor at 12-15 h. This phenomenon has been known to amplify apoptotic signaling. Taken together, ER would seem to contribute to paclitaxel-induced apoptosis via both the early release of Ca(2+) and the late amplification of mitochondria-mediated apoptotic signals.
Collapse
Affiliation(s)
- Pei-Chun Liao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | | | |
Collapse
|
79
|
Fas/CD95-mediated apoptosis of type II cells is blocked by Toxoplasma gondii primarily via interference with the mitochondrial amplification loop. Infect Immun 2008; 76:2905-12. [PMID: 18411295 DOI: 10.1128/iai.01546-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The intracellular protozoan Toxoplasma gondii induces persistent infections in various hosts and is an important opportunistic pathogen of humans with immature or deficient immune responses. The ability to survive intracellularly largely depends on the blocking of different proapoptotic signaling cascades of its host cell. Fas/CD95 triggers an apoptotic cascade that is crucial for immunity and the outcome of infectious diseases. We have determined the mechanism by which T. gondii counteracts death receptor-mediated cell death in type II cells that transduce Fas/CD95 ligation via caspase 8-mediated activation of the mitochondrial amplification loop. The results showed that infection with T. gondii significantly reduced Fas/CD95-triggered apoptosis in HeLa cells by inhibiting the activities of initiator caspases 8 and 9 and effector caspase 3/7. Parasitic infection dose dependently diminished cleavage of caspase 8, the BH3-only protein Bid, and the downstream caspases 9 and 3. Importantly, interference with Fas/CD95-triggered caspase 8 and caspase 3/7 activities after parasitic infection was largely dependent on the presence of caspase 9. Within the mitochondrial amplification loop, T. gondii significantly inhibited the Fas/CD95-triggered release of cytochrome c into the host cell cytosol. These results indicate that T. gondii inhibits Fas/CD95-mediated apoptosis in type II cells primarily by decreasing the apoptogenic function of mitochondria.
Collapse
|
80
|
Karmakar S, Banik NL, Ray SK. Combination of all-trans retinoic acid and paclitaxel-induced differentiation and apoptosis in human glioblastoma U87MG xenografts in nude mice. Cancer 2008; 112:596-607. [PMID: 18098270 DOI: 10.1002/cncr.23223] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Glioblastoma, which is the most malignant brain tumor, remains incurable and almost always causes death. As a new treatment strategy, the combination of all-trans retinoic acid (ATRA) and paclitaxel was explored for controlling the growth of glioblastoma U87MG xenografts. METHODS Human glioblastoma U87MG xenografts were developed in athymic nude mice for treatments with ATRA, paclitaxel, and ATRA plus paclitaxel. The efficacy of treatments in controlling tumor growth was assessed by histologic examination, Western blot analysis, and immunofluorescent labelings. RESULTS Astrocytic differentiation in U87MG xenografts was associated with increased GFAP expression and decreased telomerase expression. The combination of ATRA and paclitaxel was found to cause more apoptosis than paclitaxel alone. Apoptosis occurred with down-regulation of MEK-2 and overexpression of p-ERK, p-JNK, and p-p38 MAPK. Down-regulation of both Akt and p-Akt also favored the apoptotic process. Combination therapy activated the receptor-mediated pathway of apoptosis with induction of TNF-alpha, activation of caspase-8, and cleavage of Bid to tBid. Combination therapy also induced the mitochondria-mediated pathway of apoptosis with an increase in the Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and Smac/Diablo into the cytosol. In addition, combination therapy promoted phosphorylation of Bcl-2 for its inactivation and down-regulated NF-kappaB and BIRC proteins, indicating suppression of several cell survival factors. Western blot analysis demonstrated that activation of cysteine proteases such as calpain, caspase-12, caspase-9, and caspase-3 contributed to apoptosis. Immunofluorescent labelings confirmed overexpression of cysteine proteases in apoptosis. CONCLUSIONS Treatment of U87MG xenografts with a combination of ATRA and paclitaxel induced differentiation and also multiple molecular mechanisms for apoptosis.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
81
|
Gillissen B, Essmann F, Hemmati PG, Richter A, Richter A, Oztop I, Chinnadurai G, Dörken B, Daniel PT. Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis. ACTA ACUST UNITED AC 2007; 179:701-15. [PMID: 18025305 PMCID: PMC2080900 DOI: 10.1083/jcb.200703040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)-only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1-Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.
Collapse
Affiliation(s)
- Bernhard Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, University Medical Center Charité, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hajji N, Wallenborg K, Vlachos P, Nyman U, Hermanson O, Joseph B. Combinatorial action of the HDAC inhibitor trichostatin A and etoposide induces caspase-mediated AIF-dependent apoptotic cell death in non-small cell lung carcinoma cells. Oncogene 2007; 27:3134-44. [PMID: 18071312 DOI: 10.1038/sj.onc.1210976] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commonly used regimens in cancer therapy rely on the induction of apoptotic cell death, and drug resistance can be attributed, at least in part, to a disabled apoptotic program. Non-small cell lung carcinomas (NSCLC), exhibit an intrinsic resistance to chemotherapy. Here, we show that co-treatment with etoposide (VP16) and the pan-histone deacetylase (HDAC) inhibitor trichostatin A (TSA), but not valproic acid (VPA), induced apoptotic cell death in drug-resistant NSCLC cells. Co-treatment, but not single treatment, with VP16 and TSA induced apoptosis in a caspase-dependent manner accompanied by a crucial decrease in Bcl-xL expression allowing Bax activation and subsequent initiation of the apoptosis inducing factor (AIF)-dependent death pathway. Importantly, AIF proved to be required for the effects of TSA/VP16 as RNA knockdown of AIF resulted in a complete abolishment of TSA/VP16-induced apoptotic cell death in drug-resistant NSCLC cells. Our results thus provide evidence for the requirement of both caspase-dependent and caspase-independent apoptotic pathways in TSA/VP16-mediated death of drug-resistant NSCLC cells, and extend previous suggestions that HDAC inhibitors in combination with conventional chemotherapeutic drugs could be valuable in the treatment of NSCLC cancer and other malignancies in which Bcl-xL is overexpressed.
Collapse
Affiliation(s)
- N Hajji
- Division of Toxicology and Neurotoxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
83
|
Janssen K, Pohlmann S, Jänicke RU, Schulze-Osthoff K, Fischer U. Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment. Blood 2007; 110:3662-72. [PMID: 17652622 DOI: 10.1182/blood-2007-02-073213] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Taxane derivatives such as paclitaxel elicit their antitumor effects at least in part by induction of apoptosis, but the underlying mechanisms are incompletely understood. Here, we used different cellular models with deficiencies in key regulators of apoptosis to elucidate the mechanism of paclitaxel-induced cell death. Apoptosis by paclitaxel was reported to depend on the activation of the initiator caspase-10; however, we clearly demonstrate that paclitaxel kills murine embryonic fibroblasts (MEFs) devoid of caspase-10 as well as human tumor cell lines deficient in caspase-10, caspase-8, or Fas-associating protein with death domain. In contrast, the lack of Apaf-1 or caspase-9, key regulators of the mitochondrial pathway, not only entirely protected against paclitaxel-induced apoptosis but could even confer clonogenic survival, depending on the cell type and drug concentration. Thus, paclitaxel triggers apoptosis not through caspase-10, but via caspase-9 activation at the apoptosome. This conclusion is supported by the fact that Bcl-2-overexpressing cells and Bax/Bak doubly-deficient MEFs were entirely resistant to paclitaxel-induced apoptosis. Interestingly, also the single knockout of Bim or Bax, but not that of Bak or Bid, conferred partial resistance, suggesting a particular role of these mediators in the cell-death pathway activated by paclitaxel.
Collapse
Affiliation(s)
- Katja Janssen
- Institute of Molecular Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
84
|
Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P. Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol Cancer Ther 2007; 6:752-61. [PMID: 17308071 DOI: 10.1158/1535-7163.mct-06-0564] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Taxanes have a broad spectrum of activity against various human cancers, including melanoma. In this study, we have examined the molecular mechanism of docetaxel-induced apoptosis of human melanoma. We report that docetaxel induced varying degrees of apoptosis in a panel of melanoma cell lines but not in normal fibroblasts. Induction of apoptosis was caspase dependent and associated with changes in mitochondrial membrane potential that could be inhibited by overexpression of Bcl-2. Docetaxel induced changes in Bax that correlated with sensitivity to docetaxel-induced apoptosis. These changes in Bax were not inhibited by overexpression of Bcl-2. Kinetic studies of caspase-2 activation by Western blotting and fluorogenic assays revealed that activation of caspase-2 seemed to be the initiating event. Inhibition of caspase-2 with z-VDVAD-fmk or by small interfering RNA knockdown inhibited changes in Bax and mitochondrial membrane potential and events downstream of mitochondria. Activation of caspase-8 and Bid seemed to be a late event, and docetaxel was able to induce apoptosis in cells deficient in caspase-8 and Bid. p53 did not seem to be involved as a p53 null cell line was sensitive to docetaxel and an inhibitor of p53 did not inhibit apoptosis. Small interfering RNA knockdown of PUMA and Noxa also did not inhibit apoptosis. These results suggest that docetaxel induces apoptosis in melanoma cells by pathways that are dependent on activation of caspase-2, which initiates mitochondrial dependent apoptosis by direct or indirect activation of Bax.
Collapse
Affiliation(s)
- Nizar M Mhaidat
- Immunology and Oncology Unit, Royal Newcastle Hospital, Room 443, David Maddison Clinical Sciences Building, Corner King and Watt Streets, Newcastle, NSW 2300, Australia
| | | | | | | | | |
Collapse
|
85
|
Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 2007; 6:609-21. [PMID: 17877447 DOI: 10.1517/14740338.6.5.609] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Better known as Taxol (Bristol-Myers Squibb), paclitaxel is the first member of the taxane family to be used in cancer chemotherapy. The taxanes exert their cytotoxic effect by arresting mitosis through microtubule stabilization, resulting in cellular apoptosis. The use of paclitaxel as a chemotherapeutic agent has become a broadly accepted option in the treatment of patients with ovarian, breast and non-small cell lung cancers, malignant brain tumors, and a variety of other solid tumors. However, significant toxicities, such as myelosuppression and peripheral neuropathy, limit the effectiveness of paclitaxel-based treatment regimens. This review addresses the toxicities associated with paclitaxel treatment and describes existing and future strategies of paclitaxel administration directed at limiting these toxicities.
Collapse
Affiliation(s)
- Neena I Marupudi
- Johns Hopkins School of Medicine, Department of Neurological Surgery, Meyer 7-113, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
86
|
Piñeiro D, González VM, Hernández-Jiménez M, Salinas M, Martín ME. Translation regulation after taxol treatment in NIH3T3 cells involves the elongation factor (eEF)2. Exp Cell Res 2007; 313:3694-706. [PMID: 17825817 DOI: 10.1016/j.yexcr.2007.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 02/08/2023]
Abstract
Changes to the translational machinery that occur during apoptosis have been described in the last few years. The two principal ways in which translational factors are modified during apoptosis are: (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. Taxol, a member of a new class of anti-tubulin drugs, is currently used in chemotherapeutic treatments of different types of cancers. We have previously demonstrated that taxol induces calpain-mediated apoptosis in NIH3T3 cells [Piñeiro et al., Exp. Cell Res., 2007, 313:369-379]. In this study we found that translation was significantly inhibited during taxol-induced apoptosis in these cells. We have studied the phosphorylation status and expression levels of eIF2a, eIF4E, eIF4G and the regulatory protein 4E-BP1, all of which are implicated in translation regulation. We found that taxol treatment did not induce changes in eIF2alpha phosphorylation, but strongly decreased eIF4G, eIF4E and 4E-BP1 expression levels. MDL28170, a specific inhibitor of calpain, prevented reduction of eIF4G, but not of eIF4E or 4E-BP1 levels. Moreover, the calpain inhibitor did not block taxol-induced translation inhibition. All together these findings demonstrated that none of these factors are responsible for the taxol-induced protein synthesis inhibition. On the contrary, taxol treatment increased elongation factor eEF2 phosphorylation in a calpain-independent manner, supporting a role for eEF2 in taxol-induced translation inhibition.
Collapse
Affiliation(s)
- David Piñeiro
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
87
|
Kalousek I, Brodska B, Otevrelova P, Röselova P. Actinomycin D upregulates proapoptotic protein Puma and downregulates Bcl-2 mRNA in normal peripheral blood lymphocytes. Anticancer Drugs 2007; 18:763-72. [PMID: 17581298 DOI: 10.1097/cad.0b013e3280adc905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have examined the ability of actinomycin D to induce apoptosis in human peripheral blood lymphocytes. Run-On assays were performed to specify the primary molecular damage, reverse transcription-PCR, Western blots and flow cytometry studies were performed to ascertain which proteins of the apoptosis machinery were affected to cause actinomycin D-induced cell death. Expression of 23 apoptosis-related genes was investigated. The down-regulation of ribosomal RNA synthesis caused by actinomycin D induced a mitochondria-dependent apoptosis. Although the expression of the majority of examined genes remained indifferent against actinomycin D activity, the cellular level of p53 protein increased, subsequently upregulating both Puma mRNA and protein. Puma-mediated mitochondrial apoptosis was accompanied by nucleolin cleavage and Bcl-2 mRNA destabilization. The stability of the cellular level of Bcl-2 protein independent of a mRNA decrease suggests that protection of Bcl-2 protein against proteasomal degradation can moderate the apoptotic process. In peripheral blood lymphocytes cultured in vitro, the apoptosis induced by a low concentration of actinomycin D (10 nmol/l) is dependent on p53 and Puma activation. This apoptotic pathway is demonstrated in peripheral blood lymphocytes for the first time. A different apoptotic pathway induced in peripheral blood lymphocytes using this drug has, however, been previously revealed by other authors. The combination of cell specificity and dose-dependent effects can likely play a decisive role in apoptosis observed in peripheral blood lymphocytes after genotoxic drug application.
Collapse
Affiliation(s)
- Ivan Kalousek
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128-20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
88
|
Kim BM, Chung HW. Hypoxia/reoxygenation induces apoptosis through a ROS-mediated caspase-8/Bid/Bax pathway in human lymphocytes. Biochem Biophys Res Commun 2007; 363:745-50. [PMID: 17904098 DOI: 10.1016/j.bbrc.2007.09.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 09/08/2007] [Indexed: 01/22/2023]
Abstract
Recently, we showed that hypoxia/reoxygenation (H/R) induced apoptosis in human lymphocytes via reactive oxygen species (ROS) generation and disruption of the mitochondrial membrane; however, the signaling mechanisms responsible for these events are unclear. Here, we investigated the mechanism of H/R-induced apoptosis in human cultured lymphocytes. H/R increased the proportion of apoptotic cells, while z-IETD-fmk, z-VAD-fmk, and z-DEVD-fmk inhibited H/R-induced apoptosis. H/R also enhanced caspase-3 and caspase-8 activity. Time-sequence analysis of the induction of apoptosis by H/R revealed that H/R triggers apoptosis through a mitochondrial pathway involving caspase-8, Bid cleavage, and Bax activation. Furthermore, suppression of caspase-8 activity with z-IETD-fmk prevented Bid cleavage and Bax activation during apoptosis. N-acetylcysteine (NAC), a well-known ROS scavenger, suppressed caspase-8 activation and the subsequent cleavage of caspase-9 and caspase-3, indicating the role of ROS in caspase-8-mediated apoptosis. Overall, our results indicate that H/R induces apoptosis via a mitochondrial pathway involving caspase-8/Bid/Bax activation in human lymphocytes. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in H/R-treated human lymphocytes.
Collapse
Affiliation(s)
- Byeong Mo Kim
- School of Public Health and Institute of Health and Environment, 28 Yunkeun-dong, Chongno-ku, Seoul National University, Seoul 110-460, Republic of Korea
| | | |
Collapse
|
89
|
Karmakar S, Banik NL, Patel SJ, Ray SK. Combination of all-trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis 2007; 12:2077-87. [PMID: 17701358 DOI: 10.1007/s10495-007-0116-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 07/20/2007] [Indexed: 11/28/2022]
Abstract
Glioblastoma is the most prevalent and highly malignant brain tumor that continues to defy current treatment strategies. This investigation used all-trans retinoic acid (ATRA) and taxol (TXL) as a combination therapy for controlling the growth of human glioblastoma T98G xenografted in athymic nude mice. Histopathological examination revealed that ATRA induced differentiation and combination of ATRA and TXL caused more apoptosis than either treatment alone. Combination therapy decreased expression of telomerase, nuclear factor kappa B (NFkappacapital VE, Cyrillic), and inhibitor-of-apoptosis proteins (IAPs) indicating suppression of survival factors while upregulated Smac/Diablo. Combination therapy also changed expression of Bax and Bcl-2 proteins leading to increased Bax:Bcl-2 ratio, mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9. Increased activities of calpain and caspase-3 degraded 270 kD alpha-spectrin at the specific sites to generate 145 kD spectrin breakdown product (SBDP) and 120 kD SBDP, respectively. Further, increased activity of caspase-3 cleaved inhibitor-of-caspase-activated DNase (ICAD). In situ double immunofluorescent labelings showed overexpression of calpain, caspase-12, caspase-3, and AIF during apoptosis, suggesting involvement of both caspase-dependent and caspase-independent pathways for apoptosis. Our investigation revealed that treatment of glioblastoma T98G xenografts with the combination of ATRA and TXL induced differentiation and multiple molecular mechanisms for apoptosis.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 325E, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
90
|
Karmakar S, Banik NL, Ray SK. Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res 2007; 32:2103-13. [PMID: 17562168 DOI: 10.1007/s11064-007-9376-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/01/2007] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most malignant human brain tumor that shows poor response to existing therapeutic agents. Search continues for an effective therapy for controlling this deadliest brain tumor. Curcumin (CCM), a polyphenolic compound from Curcuma longa, possesses anti-cancer properties in both in vitro and in vivo. In the present investigation, we evaluated the therapeutic efficacy of CCM against human malignant glioblastoma U87MG cells. Trypan blue dye exclusion test showed decreased viability of U87MG cells with increasing dose of CCM. Wright staining and ApopTag assay, respectively, showed the morphological and biochemical features of apoptosis in U87MG cells treated with 25 microM and 50 microM of CCM for 24 h. Western blotting showed activation of caspase-8, cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, and release of cytochrome c from mitochondria followed by activation of caspase-9 and caspase-3 for apoptosis. Also, CCM treatments increased cytosolic level of Smac/Diablo to suppress the inhibitor-of-apoptosis proteins and down regulated anti-apoptotic nuclear factor kappa B (NFkappaB), favoring the apoptosis. Increased activities of calpain and caspase-3 cleaved 270 kDa alpha-spectrin at specific sites generating 145 kDa spectrin break down product (SBDP) and 120 kDa SBDP, respectively, leading to apoptosis in U87MG cells. Results show that CCM is an effective therapeutic agent for suppression of anti-apoptotic factors and activation of calpain and caspase proteolytic cascades for apoptosis in human malignant glioblastoma cells.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
91
|
Rickmann M, Vaquero EC, Malagelada JR, Molero X. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology 2007; 132:2518-32. [PMID: 17570223 DOI: 10.1053/j.gastro.2007.03.107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/08/2007] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Selective removal of activated pancreatic stellate cells (PSCs) through induction of their own programmed death is a goal of therapeutic interest in patients with chronic pancreatitis. Here, we investigated the effects of tocotrienols on PSC death outcomes. METHODS Activated and quiescent PSCs and acinar cells from rat pancreas were treated with vitamin E derivatives alpha-tocopherol; individual alpha-, beta-, gamma-, and delta-tocotrienols; and a tocotrienol rich fraction (TRF) from palm oil. RESULTS TRF, but not alpha-tocopherol, reduced viability of activated PSC by setting up a full death program, independent of cell cycle regulation. Activated PSCs died both through apoptosis, as indicated by increased DNA fragmentation and caspase activation, and through autophagy, as denoted by the formation of autophagic vacuoles and LC3-II accumulation. In contrast to alpha-tocopherol, TRF caused an intense and sustained mitochondrial membrane depolarization and extensive cytochrome c release. Caspase inhibition with zVAD-fmk suppressed TRF-induced apoptosis but enhanced autophagy. However, mitochondrial permeability transition pore blockade with cyclosporin A completely abolished the deadly effects of TRF. beta-, gamma-, and delta-tocotrienol, but not alpha-tocotrienol nor alpha-tocopherol, reproduced TRF actions on activated PSCs. TRF death induction was restricted to activated PSCs because it did not cause apoptosis either in quiescent PSCs or in acinar cells. CONCLUSIONS Tocotrienols selectively trigger activated pancreatic stellate cell death by targeting the mitochondrial permeability transition pore. Our findings unveil a novel potential for tocotrienols to ameliorate the fibrogenesis associated with chronic pancreatitis.
Collapse
Affiliation(s)
- Mariana Rickmann
- Digestive System Research Unit, Institut de Recerca Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
92
|
Vitale I, Antoccia A, Cenciarelli C, Crateri P, Meschini S, Arancia G, Pisano C, Tanzarella C. Combretastatin CA-4 and combretastatin derivative induce mitotic catastrophe dependent on spindle checkpoint and caspase-3 activation in non-small cell lung cancer cells. Apoptosis 2007; 12:155-66. [PMID: 17143747 DOI: 10.1007/s10495-006-0491-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Combretastatin A-4 (CA-4), a natural stilbenoid isolated from Combretum caffrum, is a new vascular targeting agent (VTA) known for its antitumor activity due to its anti-tubulin properties. We investigated the molecular mechanisms leading to cell death in non-small cell lung cancer H460 cells induced by natural (CA-4) and synthetic stilbenoids (ST2151) structurally related to CA-4. We found that both compounds induced depolymerization and rearrangement of spindle microtubules, as well as an increasingly aberrant organization of metaphase chromosomes in a dose- and time-dependent manner. Prolonged exposition to ST2151 led cells to organize multiple sites of tubulin repolymerization, whereas tubulin repolymerization was observed only after CA-4 washout. H460 cells were arrested at a pro-metaphase stage, with condensed chromosomes and a triggered spindle assembly checkpoint, as evaluated by kinetochore localization of Bub1 and Mad1 antibodies. Persistent checkpoint activation led to mitochondrial membrane permeabilization (MMP) alterations, cytochrome c release, activation of caspase-9 and -3, PARP cleavage and DNA fragmentation. On the other hand, caspase-2, and -8 were not activated by the drug treatment. The ability of cells to reassemble tubulin in the presence of an activated checkpoint may be responsible for ST2151-induced multinucleation, a recognized sign of mitotic catastrophe. In conclusion, we believe that discovery of new agents able to trigger mitotic catastrophe cell death as a result of mitotic block and prolonged spindle checkpoint activation is particularly worthwhile, considering that tumor cells have a high proliferative rate and mitotic failure occurs irrespective of p53 status.
Collapse
Affiliation(s)
- Ilio Vitale
- Department of Biology, University Roma Tre, V.le Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Zhang M, Ling Y, Yang CY, Liu H, Wang R, Wu X, Ding K, Zhu F, Griffith BN, Mohammad RM, Wang S, Yang D. A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells. Ann Hematol 2007; 86:471-81. [PMID: 17396262 DOI: 10.1007/s00277-007-0288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
A novel small molecule inhibitor, 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB), competes with the Bak BH3 peptide to bind Bcl-2 protein with a binding affinity of IC(50) = 0.70 microM, as assessed by a fluorescence polarization based binding assay. HL-60 cells express the highest levels of Bcl-2 among the cell lines examined. Treated with 5 microM of MNB only for 6 h, 85% of HL-60 cells were detected to undergo apoptosis. Pan-caspase inhibitor, Z-VAD-FMK, blocks MNB-induced apoptosis in HL-60 cells. Caspase-2, caspase-3, caspase-7, caspase-8, caspase-9, and PARP activation were observed at as early as 4 to 6 h of MNB treatment. In addition, it has been confirmed that the caspase-3 specific inhibitor, Z-DEVD-FMK, blocks the activation of caspase-8 in MNB-treated HL-60 cells. MNB treatment does not change Bcl-2 or Bax expression level in HL-60 cells, but causes Bid cleavage. Further experiments have illustrated that MNB inhibits the heterodimerization of Bcl-2 with Bax or Bid, reduces the mitochondrial membrane potential (DeltaPsimt), and induces cytochrome c release from mitochondria in HL-60 cells. These results suggest that MNB induces apoptosis in HL-60 by inhibiting the heterodimerization of Bcl-2 with pro-apoptosis Bcl-2 members, resulting in a decrease in the mitochondrial membrane potential and cytochrome c release, activation of caspases and PARP; it is a caspase-dependent process in which the activation of caspase-8 is dependent on the mitochondrial apoptosis signal transduction pathway. MNB prolongs the life spans of HL-60 bearing mice, potently kills fresh AML and ALL cells, indicating that it has the potential to be developed to treat leukemia.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Piñeiro D, Martín ME, Guerra N, Salinas M, González VM. Calpain inhibition stimulates caspase-dependent apoptosis induced by taxol in NIH3T3 cells. Exp Cell Res 2007; 313:369-79. [PMID: 17145055 DOI: 10.1016/j.yexcr.2006.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/16/2006] [Accepted: 10/19/2006] [Indexed: 02/05/2023]
Abstract
Taxol is an anticancer drug that triggers apoptosis in a wide spectrum of cancers such as ovarian, breast, lung, head and neck, and bladder carcinoma by both caspase-dependent and -independent apoptosis mechanisms. However, the exact signaling pathways involved in taxol-induced apoptosis strongly depend on the cellular background and they are not completely established yet. In this study we demonstrate that taxol induces caspase-3-independent apoptosis in NIH3T3 cells by a calpain-mediated mechanism. Taxol treatment produced changes in the mitochondrial membrane potential (Delta Psi m) which could be responsible of Ca(2+) release from the mitochondria and the consequent calpain activation. Interestingly, we show that calpain produced proteolysis of caspase-3 and demonstrate that, accordingly, calpain inhibition increased taxol-induced apoptosis. In addition, we reveal that poly (ADP-ribose) polymerase (PARP) was processed by calpain in taxol-treated cells and by caspase-3 after calpain inhibition. In conclusion, these results demonstrate for the first time that calpain could play an important role modulating taxol-induced apoptosis. Further studies are needed to address the potentiality of inducing apoptosis by a combined use of taxol and calpain inhibitors in cells with increased calpain activity.
Collapse
Affiliation(s)
- David Piñeiro
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Ctra Colmenar km 9,100, 28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
95
|
Boudreau RTM, Conrad DM, Hoskin DW. Apoptosis induced by protein phosphatase 2A (PP2A) inhibition in T leukemia cells is negatively regulated by PP2A-associated p38 mitogen-activated protein kinase. Cell Signal 2007; 19:139-51. [PMID: 16844342 DOI: 10.1016/j.cellsig.2006.05.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 01/21/2023]
Abstract
Serine/threonine phosphatase regulation of phosphorylation-mediated intracellular signaling controls a number of important processes in mammalian cells. In this study, we show that constitutively active protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase, is essential for T leukemia cell survival. Jurkat and CCRF-CEM T leukemia cells treated with the PP2A-selective inhibitor okadaic acid (OA) showed a dose- and time-dependent induction of apoptosis, as indicated by loss of mitochondrial transmembrane potential (delta psi(m)), cleavage-induced activation of caspase-3, -8, and -9, and DNA fragmentation. In addition, caspase-8 or caspase-9 inhibition with z-IETD-fmk or z-LEHD-fmk, respectively, largely prevented OA-induced apoptosis. Although OA treatment did not affect constitutive Bcl-2 expression, overexpression of Bcl-2 prevented both OA-induced DNA fragmentation and dissipation of delta psi(m). Furthermore, inhibition of caspase-3, -8, or -9 partially protected against OA-induced loss of delta psi(m). In addition, caspase-9 and caspase-3 inhibition largely prevented procaspase-3 and procaspase-8 cleavage, respectively, while caspase-8 inhibition partially interfered with procaspase-9 cleavage in OA-treated T leukemia cells. Thus, PP2A inhibition triggered the intrinsic pathway of apoptosis, which was enhanced by a mitochondrial feedback amplification loop. PP2A has also been implicated in the regulation of p38 mitogen-activated protein kinase (MAPK). Co-immunoprecipitation analysis revealed a physical association between the catalytic subunit of PP2A and p38 MAPK in T leukemia cells. Moreover, OA treatment caused p38 MAPK to be phosphorylated in a dose- and time-dependent fashion, indicating that PP2A prevented p38 MAPK activation. Although p38 MAPK activation usually promotes apoptosis, pharmacologic inhibition of p38 MAPK exacerbated OA-induced DNA fragmentation and loss of delta psi(m) in T leukemia cells, suggesting that, in this instance, the p38 MAPK signaling pathway promoted cell survival. Collectively, these findings indicate that PP2A and p38 MAPK have coordinate effects on signaling pathways that regulate the survival of T leukemia cells.
Collapse
Affiliation(s)
- Robert T M Boudreau
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 University Ave., Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
96
|
Mühlethaler-Mottet A, Flahaut M, Bourloud KB, Auderset K, Meier R, Joseph JM, Gross N. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio. BMC Cancer 2006; 6:214. [PMID: 16930472 PMCID: PMC1569857 DOI: 10.1186/1471-2407-6-214] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/24/2006] [Indexed: 12/31/2022] Open
Abstract
Background Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. Methods NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Results Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs. Conclusion HDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas.
Collapse
Affiliation(s)
- Annick Mühlethaler-Mottet
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| | - Marjorie Flahaut
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| | - Katya Auderset
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| | - Roland Meier
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| | - Jean-Marc Joseph
- Paediatric Surgery, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| | - Nicole Gross
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland
| |
Collapse
|
97
|
Lang PA, Huober J, Bachmann C, Kempe DS, Sobiesiak M, Akel A, Niemoeller OM, Dreischer P, Eisele K, Klarl BA, Gulbins E, Lang F, Wieder T. Stimulation of erythrocyte phosphatidylserine exposure by paclitaxel. Cell Physiol Biochem 2006; 18:151-64. [PMID: 16914900 DOI: 10.1159/000095190] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Side effects of cytostatic treatment include development of anemia resulting from either decreased generation or accelerated clearance of circulating erythrocytes. Recent experiments revealed a novel kind of stress-induced erythrocyte death, i.e. eryptosis, which is characterized by enhanced cytosolic Ca(2+) levels, increased ceramide formation and exposure of phosphatidylserine at the cell surface. The present study explored whether cytostatic treatment with paclitaxel (Taxol) triggers eryptosis. Blood was drawn from cancer patients before and after infusion of 175 mg/m2 Taxol. The treatment significantly decreased the hematocrit and significantly increased the percentage of annexin-V-binding erythrocytes in vivo (by 37%). In vitro incubation of human erythrocytes with 10 microM paclitaxel again significantly increased annexin-V-binding (by 129%) and augmented the increase of annexin-V-binding following cellular stress. The enhanced phosphatidylserine exposure was not dependent on caspase-activity but paralleled by erythrocyte shrinkage, increase of cytosolic Ca(2+) activity, ceramide formation and activation of calpain. Phosphatidylserine exposure was similarly induced by docetaxel but not by carboplatin or doxorubicin. Moreover, eryptosis was triggered by the Ca(2+) ionophore ionomycin (10 microM). In mice, ionomycin-treated eryptotic erythrocytes were rapidly cleared from circulating blood and sequestrated into the spleen. In conclusion, our data strongly suggest that paclitaxel-induced anemia is at least partially due to induction of eryptosis.
Collapse
Affiliation(s)
- Philipp A Lang
- Department of Physiology and Department of Obstetrics and Gynaecology, University of Tübingen
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Hemmati PG, Güner D, Gillissen B, Wendt J, von Haefen C, Chinnadurai G, Dörken B, Daniel PT. Bak functionally complements for loss of Bax during p14ARF-induced mitochondrial apoptosis in human cancer cells. Oncogene 2006; 25:6582-94. [PMID: 16847458 DOI: 10.1038/sj.onc.1209668] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In contrast to the initial notion that the biological activity of p14(ARF) strictly depends on a functional mdm-2/p53 signaling axis, we recently demonstrated that p14(ARF) mediates apoptosis in a p53/Bax-independent manner. Here, we show that p14(ARF) induces breakdown of the mitochondrial membrane potential and cytochrome c release before triggering caspase-9- and caspase-3/7-like activities in p53/Bax-deficient DU145 prostate cancer cells expressing wild-type Bak. Re-expression of Bax in these cells failed to further enhance p14(ARF)-induced apoptosis, suggesting that p14(ARF)-induced apoptosis primarily depends on Bak but not Bax in these cells. To further define the role of Bak and Bax in p14(ARF)-induced mitochondrial apoptosis, we employed short interference RNA for the knockdown of bak in isogeneic, p53 wild-type HCT116 colon cancer cells either proficient or deficient for Bax. There, combined loss of Bax and Bak attenuated p14(ARF)-induced apoptosis whereas single loss of Bax or Bak was only marginally effective, as in the case of DU145. Notably, HCT116 cells deficient for Bax and Bak failed to release cytochrome c and showed attenuated activation of caspase-9 (LEHDase) and caspase-3/caspase-7 (DEVDase) upon p14(ARF) expression. These data indicate that p14(ARF) triggers apoptosis via a Bax/Bak-dependent pathway in p53-proficient HCT116, whereas Bax is dispensable in p53-deficient DU145 cells. Nevertheless, a substantial proportion of p14(ARF)-induced cell death proceeds in a Bax/Bak-independent manner. This is also the case for inhibition of clonogenic growth that occurs, at least in part, through an entirely Bax/Bak-independent mechanism.
Collapse
Affiliation(s)
- P G Hemmati
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Pratt MAC, Niu MY, Renart LI. Regulation of survivin by retinoic acid and its role in paclitaxel-mediated cytotoxicity in MCF-7 breast cancer cells. Apoptosis 2006; 11:589-605. [PMID: 16528475 DOI: 10.1007/s10495-006-4603-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.
Collapse
Affiliation(s)
- M A Christine Pratt
- Department Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5.
| | | | | |
Collapse
|
100
|
Alexandre J, Batteux F, Nicco C, Chéreau C, Laurent A, Guillevin L, Weill B, Goldwasser F. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 2006; 119:41-8. [PMID: 16450384 DOI: 10.1002/ijc.21685] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular events following paclitaxel binding to microtubules that lead to cell death remain poorly understood. Because reactive oxygen species (ROS) are involved in the cytotoxicity of anticancer agents acting through independent molecular targets, we explored the role of ROS in paclitaxel cytotoxicity. Within 15 min after in vitro exposure of A549 human lung cancer cells to paclitaxel, a concentration-dependent intracellular increase in O(o)(2)(-) and H(2)O(2) levels was detected by spectrofluorometry. Addition of N-acetylcysteine (NAC) or glutathione, two H(2)O(2) scavenger, induced a 4-fold increase in paclitaxel IC(50). Delaying NAC co-incubation by 4 hr, resulted in a 3-fold reduction in cell protection. The glutathione synthesis inhibitor, buthionine sulfoximine significantly increased paclitaxel cytotoxicity and H(2)O(2) accumulation, but did not modify O(o)(2)(-) levels. Co-incubation with diphenylene iodonium suggested that paclitaxel induced-O(o)(2)(-) production was in part associated with increased activity of cytoplasmic NADPH oxidase. Concomitant treatment with inhibitors of caspases 3 and 8 increased cell survival but did not prevent the early accumulation of H(2)O(2.) To evaluate the role of ROS in paclitaxel antitumoral activity, mice were injected with LLC1 lung cancer cells and treated with paclitaxel i.p. and/or NAC. The antitumoral activity of paclitaxel in mice was abolished by NAC. In conclusion, the accumulation of H(2)O(2) is an early and crucial step for paclitaxel-induced cancer cell death before the commitment of the cells into apoptosis. These results suggest that ROS participate in vitro and in vivo to paclitaxel cytotoxicity.
Collapse
Affiliation(s)
- Jérôme Alexandre
- UPRES 1833, Groupe Hospitalier Cochin, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine Paris 5, France
| | | | | | | | | | | | | | | |
Collapse
|