51
|
Yanai H, Nakamura K, Hijioka S, Kamei A, Ikari T, Ishikawa Y, Shinozaki E, Mizunuma N, Hatake K, Miyajima A. Dlk-1, a cell surface antigen on foetal hepatic stem/progenitor cells, is expressed in hepatocellular, colon, pancreas and breast carcinomas at a high frequency. J Biochem 2010; 148:85-92. [DOI: 10.1093/jb/mvq034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
52
|
Ge C, Stanley P. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes. BMC DEVELOPMENTAL BIOLOGY 2010; 10:36. [PMID: 20346184 PMCID: PMC2865454 DOI: 10.1186/1471-213x-10-36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 03/29/2010] [Indexed: 01/26/2023]
Abstract
Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12) of the Notch1 ligand binding domain (lbd), exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES) cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con) were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f.
Collapse
Affiliation(s)
- Changhui Ge
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY-10461, USA
| | | |
Collapse
|
53
|
Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 2010; 70:2350-8. [PMID: 20179190 DOI: 10.1158/0008-5472.can-09-3885] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.
Collapse
Affiliation(s)
- Xun Zhang
- Neuroendocrine Unit and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Wang Y, Hudak C, Sul HS. Role of preadipocyte factor 1 in adipocyte differentiation. ACTA ACUST UNITED AC 2010; 5:109-115. [PMID: 20414356 DOI: 10.2217/clp.09.80] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preadipocyte factor 1 (Pref-1) is an EGF-repeat-containing transmembrane protein that inhibits adipogenesis. The extracellular domain of Pref-1 is cleaved by TNF-α converting enzyme to generate the biologically active soluble form of Pref-1. The role of Pref-1 in adipogenesis has been firmly established by in vitro and in vivo studies. Pref-1 activates ERK/MAPK and upregulates Sox9 expression to inhibit adipocyte differentiation. Sox9 directly binds to the promoter regions of CCAAT/enhancer-binding protein-β and CCAAT/enhancer-binding protein-δ in order to suppress their promoter activities in preventing adipocyte differentiation. Here, we describe the function of Pref-1 in adipocyte differentiation and the recent findings on the mechanisms by which Pref-1 inhibits adipocyte differentiation.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Science & Toxicology, University of California, Berkeley, CA 94720, USA, Tel.: +1 510 642 3978, ,
| | | | | |
Collapse
|
55
|
Kim Y, Lin Q, Zelterman D, Yun Z. Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res 2010; 69:9271-80. [PMID: 19934310 DOI: 10.1158/0008-5472.can-09-1605] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduced oxygenation, or hypoxia, inhibits differentiation and facilitates stem cell maintenance. Hypoxia commonly occurs in solid tumors and promotes malignant progression. Hypoxic tumors are aggressive and exhibit stem cell-like characteristics. It remains unclear, however, whether and how hypoxia regulates cancer cell differentiation and maintains cancer cell stemness. Here, we show that hypoxia increases the expression of the stem cell gene DLK1, or delta-like 1 homologue (Drosophila), in neuronal tumor cells. Inhibition of DLK1 enhances spontaneous differentiation, decreases clonogenicity, and reduces in vivo tumor growth. Overexpression of DLK1 inhibits differentiation and enhances tumorigenic potentials. We further show that the DLK1 cytoplasmic domain, especially Tyrosine339 and Serine355, is required for maintaining both clonogenicity and tumorigenicity. Because elevated DLK1 expression is found in many tumor types, our observations suggest that hypoxia and DLK1 may constitute an important stem cell pathway for the regulation of cancer stem cell-like functionality and tumorigenicity.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
56
|
Jin ZH, Zhao LZ, Zhang Y, Zhang W. An anti-DLK1 monoclonal antibody produced using ELISA and hybridoma techniques. Hybridoma (Larchmt) 2009; 28:441-5. [PMID: 20025504 DOI: 10.1089/hyb.2009.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DLK1 is a newly identified prognostic factor associated with liver cancer survival. To prepare specific monoclonal antibody (MAb) against DLK1, cDNA of DLK1 was cloned by RT-PCR and inserted into prokaryotic expression vector pGEX-4T1, respectively. The fusion proteins were expressed in Escherichia coli. Monoclonal antibody against DLK1 was obtained with hybridoma technique and specific ELISA screening. Western blotting and immunohistochemistry assays showed that MAb 6D6 had specific binding ability with DLK1 protein in eukaryotic cells and cancer tissues. This MAb will be a helpful tool for the detection of DLK1 protein in the tissues and serum of liver cancer and other cancer patients.
Collapse
Affiliation(s)
- Zhong-hui Jin
- Nuclear Medicine Department, Peking University No. 3 Hospital, Peking, China.
| | | | | | | |
Collapse
|
57
|
Stockhausen MT, Kristoffersen K, Poulsen HS. The functional role of Notch signaling in human gliomas. Neuro Oncol 2009; 12:199-211. [PMID: 20150387 DOI: 10.1093/neuonc/nop022] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now firmly established, and recent data implicate a role for Notch signaling also in gliomas and bCSC. In this review, we explore the role of the Notch signaling pathway in gliomas with emphasis on its role in normal brain development and its interplay with pathways and processes that are characteristic of malignant gliomas.
Collapse
Affiliation(s)
- Marie-Thérése Stockhausen
- Department of Radiation Biology, The Finsen Center, Section 6321, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
58
|
Espina AG, Méndez-Vidal C, Moreno-Mateos MA, Sáez C, Romero-Franco A, Japón MA, Pintor-Toro JA. Induction of Dlk1 by PTTG1 inhibits adipocyte differentiation and correlates with malignant transformation. Mol Biol Cell 2009; 20:3353-62. [PMID: 19477929 DOI: 10.1091/mbc.e08-09-0965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pituitary tumor-transforming gene-1 (PTTG1) is an oncogene highly expressed in a variety of endocrine, as well as nonendocrine-related cancers. Several tumorigenic mechanisms for PTTG1 have been proposed, one of the best characterized being its capacity to act as a transcriptional activator. To identify novel downstream target genes, we have established cell lines with inducible expression of PTTG1 and a differential display approach to analyze gene expression changes after PTTG1 induction. We identified dlk1 (also known as pref-1) as one of the most abundantly expressed PTTG1 targets. Dlk1 is known to participate in several differentiation processes, including adipogenesis, adrenal gland development, and wound healing. Dlk1 is also highly expressed in neuroendocrine tumors. Here, we show that PTTG1 overexpression inhibits adipogenesis in 3T3-L1 cells and that this effect is accomplished by promoting the stability and accumulation of Dlk1 mRNA, supporting a role for PTTG1 in posttranscriptional regulation. Moreover, both pttg1 and dlk1 genes show concomitant expression in fetal liver and placenta, as well as in pituitary adenomas, breast adenocarcinomas, and neuroblastomas, suggesting that PTTG1 and DLK1 are involved in cell differentiation and transformation.
Collapse
Affiliation(s)
- Agueda G Espina
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, CABIMER-CSIC, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
59
|
Laffaire J, Rivals I, Dauphinot L, Pasteau F, Wehrle R, Larrat B, Vitalis T, Moldrich RX, Rossier J, Sinkus R, Herault Y, Dusart I, Potier MC. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. BMC Genomics 2009; 10:138. [PMID: 19331679 PMCID: PMC2678156 DOI: 10.1186/1471-2164-10-138] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. RESULTS We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. CONCLUSION High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought responsible for the cerebellar hypoplasia in Down syndrome, a global destabilization of gene expression was not detected. Altogether these results strongly suggest that the three-copy genes are directly responsible for the phenotype present in cerebellum. We provide here a short list of candidate genes.
Collapse
Affiliation(s)
- Julien Laffaire
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC, CHU Pitie-Salpetriere, Paris, France
| | | | - Luce Dauphinot
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC, CHU Pitie-Salpetriere, Paris, France
| | - Fabien Pasteau
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
| | - Rosine Wehrle
- Neurobiologie des Processus Adaptatifs, CNRS UMR7102, Paris, France
- UPMC, Paris, France
| | - Benoit Larrat
- Laboratoire Ondes et Accoustique, UMR7587, ESPCI, Paris, France
| | - Tania Vitalis
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
| | - Randal X Moldrich
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
- The Queensland Brain Institute, St Lucia, Australia
| | - Jean Rossier
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
| | - Ralph Sinkus
- Laboratoire Ondes et Accoustique, UMR7587, ESPCI, Paris, France
| | | | - Isabelle Dusart
- Neurobiologie des Processus Adaptatifs, CNRS UMR7102, Paris, France
- UPMC, Paris, France
| | - Marie-Claude Potier
- Laboratoire de Neurobiologie, CNRS UMR7637, ESPCI, Paris, France
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC, CHU Pitie-Salpetriere, Paris, France
| |
Collapse
|
60
|
Orr B, Grace OC, Vanpoucke G, Ashley GR, Thomson AA. A role for notch signaling in stromal survival and differentiation during prostate development. Endocrinology 2009; 150:463-72. [PMID: 18801907 DOI: 10.1210/en.2008-0383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch1 signaling is involved in epithelial growth and differentiation of prostate epithelia, and we have examined the role that notch signaling plays in the stroma of the developing prostate. We initially observed expression of delta-like 1 (Dlk1) and Notch2 in gene profiling studies of prostatic mesenchyme, and anticipated that they might be expressed in a key subset of inductive mesenchyme. Using quantitative RT-PCR, Northern blotting, and whole mount in situ hybridization, we confirmed that both Dlk1 and Notch2 mRNAs showed a restricted expression pattern within subsets of the stroma during prostate development. Localization of Dlk1 and Notch2 proteins mirrored the transcript expression, and showed both distinct and overlapping expression patterns within the stroma. Dlk1 and Notch2 were coexpressed in condensed inductive mesenchyme of the ventral mesenchymal pad (VMP), and were partially colocalized in the smooth muscle (SM) layer of the urethral stroma. In addition, Dlk1 was not expressed in SM adjacent to the VMP in female urethra. The function of notch signaling was examined using organ cultures of prostate rudiments and a small molecule inhibitor of notch receptor activity. Inhibition of notch signaling led to a loss of stromal tissue in both prostate and female VMP cultures, suggesting that this pathway was required for stromal survival. Inhibition of notch signaling also led to changes in both epithelial and stromal differentiation, which was evident in altered distributions of SM alpha-actin and p63 in prostates grown in vitro. The effects of notch signaling upon the stroma were only evident in the presence of testosterone, in contrast to effects upon epithelial differentiation.
Collapse
Affiliation(s)
- Brigid Orr
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | |
Collapse
|
61
|
Yin D, Wakimoto N, Xing H, Lu D, Huynh T, Wang X, Black KL, Koeffler HP. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int J Cancer 2008; 123:1364-75. [PMID: 18561312 DOI: 10.1002/ijc.23648] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glioblastoma Multiforme (GBM) is almost inevitably a fatal tumor of the brain with most individuals dying within 1 year of diagnosis. It is the most frequent brain tumor in adults. Dose-response studies showed that Cucurbitacin B inhibited 50% growth (ED(50)) of 5 human GBM cell lines in liquid culture at approximately 10(-7) M. Soft-gel assays demonstrated that nearly all of the GBM clonogenic cells were inhibited at 10(-8) M of Cucurbitacin B. FACS analysis found that the compound (10(-7) M, 24 hr) caused G2/M arrest. The GBM cells underwent profound morphologic changes within 15-30 min after exposure to Cucurbitacin B (10(-7) M), rounding up and losing their pseudopodia associated with disruption of actin and microtubules, as observed by immunoflourescence. Cucurbitacin B (10(-7) M) caused prominent multinucleation of the cells after they were pulse-exposed (48 hr) to the drug, washed and cultured in normal medium for an additional 2 days. The drug (10(-7) M, 3-24 hr) increased levels of p-p38, p-JNK and p-JUN in U87 and T98G GBM cell lines as seen by Western blot. Interestingly, alterations in cell morphology caused by Cucurbitacin B (10(-7) M) were blocked by the JNK inhibitor SP600125. In summary, Cucurbitacin B has a prominent anti-proliferative activity on GBM cells; and at least in part, the mode of action is by affecting the cytoskeleton, as well as, the JNK pathway. Clinical trails of this drug should be pursued in GBM.
Collapse
Affiliation(s)
- Dong Yin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Jin ZH, Yang RJ, Dong B, Xing BC. Progenitor gene DLK1 might be an independent prognostic factor of liver cancer. Expert Opin Biol Ther 2008; 8:371-7. [PMID: 18352842 DOI: 10.1517/14712598.8.4.371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Delta-like 1 homolog (DLK1) is a marker for progenitor cells of the liver. The gene encoding DLK1 is expressed early during embryonic development but, importantly, it is also expressed in some human liver cancers. However, the prognostic value of the DLK1 gene has not been investigated. OBJECTIVES To examine the association between the DLK1 gene and survival time and whether high levels of expression of DLK1 are a prognostic factor for liver cancer. METHODS We evaluated 60 cases of primary liver cancer, and investigated the link between the expression of DLK1 and patient survival. Clinical characteristics of the cases used for our study, such as tumor size, differentiation and staging, are statistically evenly distributed. Using RT-PCR, western blotting and immunohistochemistry, we analyzed the expression of DLK1 in the tumor samples and evaluated the results statistically. RESULTS DLK1 was expressed in 22 of the 60 cases (36.7%), and analysis of the survival of the patients revealed that DLK1-positive patients had a shorter survival time than DLK1-negative patients. Cox regression analysis also showed that DLK1 is a risk factor. However, DLK1 expression does not seem to correlate with other classic prognostic factors such as alpha-fetoprotein (AFP), tumor-node-metastasis (TNM) and vascular invasion, which implies that it is an independent prognostic factor.
Collapse
Affiliation(s)
- Zhong-hui Jin
- Peking University School of Oncology, Beijing Cancer Hospital & Institute, Department of Interventional Therapy, Beijing, 100036, China
| | | | | | | |
Collapse
|
63
|
Middeldorp CM, Hottenga JJ, Slagboom PE, Sullivan PF, de Geus EJC, Posthuma D, Willemsen G, Boomsma DI. Linkage on chromosome 14 in a genome-wide linkage study of a broad anxiety phenotype. Mol Psychiatry 2008; 13:84-9. [PMID: 17700576 PMCID: PMC4205275 DOI: 10.1038/sj.mp.4002061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several linkage studies on anxiety have been carried out in samples ascertained through probands with panic disorder. The results indicated that using a broad anxiety phenotype instead of a DSM-IV anxiety disorder diagnosis might enhance the chance of finding a linkage signal. In the current study, a genome-wide linkage analysis was performed on anxiety measured with a self-report questionnaire whose scores are highly correlated with DSM-IV anxiety disorders. The self-report questionnaire was included in five surveys of a longitudinal study of the Netherlands Twin Register. Genotype and phenotype data were available for 1602 twins and siblings. To estimate identity by descent , additional genotype data for 564 parents and 22 siblings were used. Linkage analyses were carried out using MERLIN-regress on the average anxiety scores across time. A linkage signal (logarithm of odds score 3.4, empirical P-value 0.07) was obtained at chromosome 14 for marker D14S65 at 105 cM (90% confidence interval, 99-115 cM bounded by markers D14S1434 and D14S985). This finding replicates a linkage finding for a broad anxiety phenotype in a clinically based sample, indicating that the region might harbor a quantitative trait locus associated with the whole spectrum of general anxiety, that is from the normal to the clinical range. Moreover, genome-wide linkage and association studies on emotionality in mice obtained significant results in a syntenic region on mouse chromosome 12. Two homolog genes lie in this region -Dlk1 (delta-like 1 homolog, Drosophila) and Rtl1 (retrotransposon-like 1). Future association studies of these genes are warranted.
Collapse
Affiliation(s)
- C M Middeldorp
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Bauer M, Szulc J, Meyer M, Jensen CH, Terki TA, Meixner A, Kinkl N, Gasser T, Aebischer P, Ueffing M. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons. J Neurochem 2007; 104:1101-15. [PMID: 17986227 DOI: 10.1111/j.1471-4159.2007.05037.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro. The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation.
Collapse
Affiliation(s)
- Matthias Bauer
- GSF - National Research Center for Environment and Health, Institute of Human Genetics, Munich-Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
|
66
|
White JD, Vuocolo T, McDonagh M, Grounds MD, Harper GS, Cockett NE, Tellam R. Analysis of the callipyge phenotype through skeletal muscle development; association of Dlk1 with muscle precursor cells. Differentiation 2007; 76:283-98. [PMID: 17697128 DOI: 10.1111/j.1432-0436.2007.00208.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The callipyge mutation in sheep in the form of the paternal heterozygote results in skeletal muscle hypertrophy, which is most pronounced in the hindquarters. Overexpression of one of the genes in the region of the causative single-nucleotide polymorphism, Dlk1, is postulated to be a primary cause of the muscle hypertrophy although the mechanism is not clear. This study examined the expression of Dlk1 mRNA and its encoded protein in skeletal muscles of callipyge and wild-type sheep. The muscles examined included those that demonstrate hypertrophy in callipyge sheep as well as an unaffected muscle. The expression pattern of Dlk1 protein in these muscles was also measured over a developmental time course ranging from 80 days of gestation to 12 weeks after birth. Quantitative reverse transcription-polymerase chain reaction demonstrated that Dlk1 mRNA was significantly increased in affected, but not unaffected, muscles from callipyge sheep at 120 days of gestation through to 12 weeks of age. Immuno-localization of Dlk1 was pronounced in the interstitial connective tissue of fetal muscle but was less intense at later ages. No clear difference in Dlk1 immuno-localization was noted between genotypes in the fetal samples. Strong myofiber-specific Dlk1 immuno-localization was observed in hypertrophied callipyge muscles at 12 weeks of age. This staining was exclusively associated with fast type II myofibers and these had a significantly larger mean cross-sectional area, compared with fast type II myofibers in control sheep that did not overexpress Dlk1. In addition, Dlk1 immuno-localization was associated with a sub-population of Pax7-positive mononucleated cells in all skeletal muscles examined during fetal development and at birth, but this was not apparent at 12 weeks. There were no genotype-dependent alterations in the mRNA expression patterns of a number of promyogenic transcription factors indicating that the callipyge mutation was not affecting muscle cell differentiation per se. We postulate that Dlk1 is implicated in the commitment and/or proliferation of fetal myoblasts as well as in the maintenance of hypertrophy in fully differentiated myofibers.
Collapse
Affiliation(s)
- Jason D White
- School of Veterinary Science, The University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
67
|
Nueda ML, Baladrón V, García-Ramírez JJ, Sánchez-Solana B, Ruvira MD, Rivero S, Ballesteros MA, Monsalve EM, Díaz-Guerra MJM, Ruiz-Hidalgo MJ, Laborda J. The Novel Gene EGFL9/Dlk2, Highly Homologous to Dlk1, Functions as a Modulator of Adipogenesis. J Mol Biol 2007; 367:1270-80. [PMID: 17320102 DOI: 10.1016/j.jmb.2006.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 09/30/2006] [Accepted: 10/02/2006] [Indexed: 11/15/2022]
Abstract
The Dlk1 gene appears to function as a regulator of adipogenesis. Adult Dlk1-deficient mice are obese, but adipose tissue still develops in transgenic mice overexpressing an Fc-dlk1 fusion protein, and neither type of genetically modified mice displays serious abnormalities. It was therefore possible that one yet unidentified gene might either compensate or antagonize for the absence or for overexpression, respectively, of Dlk1 in those animals. In database searches, we found a novel gene, EGFL9, encoding for a protein whose structural features are virtually identical to those of dlk1, suggesting it may function in a similar way. As dlk1 does, the protein encoded by EGFL9/Dlk2 affects adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells; however, it does so in an opposite way to that of dlk1. In addition, expression levels of both genes appear to be inversely correlated in both cell lines. Moreover, enforced changes in the expression of one gene affect the expression levels of the other. Our data suggest that adipogenesis may be modulated by the coordinated expression of Dlk1 and EGFL9/Dlk2.
Collapse
Affiliation(s)
- María-Luisa Nueda
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|