51
|
Karpinich NO, Caron KM. Gap junction coupling is required for tumor cell migration through lymphatic endothelium. Arterioscler Thromb Vasc Biol 2015; 35:1147-55. [PMID: 25792452 DOI: 10.1161/atvbaha.114.304752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The lymphatic vasculature is a well-established conduit for metastasis, but the mechanisms by which tumor cells interact with lymphatic endothelial cells (LECs) to facilitate escape remain poorly understood. Elevated levels of the lymphangiogenic peptide adrenomedullin are found in many tumors, and we previously characterized that its expression is necessary for lymphatic vessel growth within both tumors and sentinel lymph nodes and for distant metastasis. APPROACH AND RESULTS This study used a tumor cell-LEC coculture system to identify a series of adrenomedullin-induced events that facilitated transendothelial migration of the tumor cells through a lymphatic monolayer. High levels of adrenomedullin expression enhanced adhesion of tumor cells to LECs, and further analysis revealed that adrenomedullin promoted gap junction coupling between LECs as evidenced by spread of Lucifer yellow dye. Adrenomedullin also enhanced heterocellular gap junction coupling as demonstrated by Calcein dye transfer from tumor cells into LECs. This connexin-mediated gap junction intercellular communication was necessary for tumor cells to undergo transendothelial migration because pharmacological blockade of this heterocellular communication prevented the ability of tumor cells to transmigrate through the lymphatic monolayer. In addition, treatment of LECs with adrenomedullin caused nuclear translocation of β-catenin, a component of endothelial cell junctions, causing an increase in transcription of the downstream target gene C-MYC. Importantly, blockade of gap junction intercellular communication prevented β-catenin nuclear translocation. CONCLUSIONS Our findings indicate that maintenance of cell-cell communication is necessary to facilitate a cascade of events that lead to tumor cell migration through the lymphatic endothelium.
Collapse
Affiliation(s)
- Natalie O Karpinich
- From the Department of Cell Biology and Physiology (N.O.K., K.M.C.) and Department of Genetics (K.M.C.), University of North Carolina at Chapel Hill
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (N.O.K., K.M.C.) and Department of Genetics (K.M.C.), University of North Carolina at Chapel Hill.
| |
Collapse
|
52
|
The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis. Mol Cancer 2015; 14:35. [PMID: 25744065 PMCID: PMC4339430 DOI: 10.1186/s12943-015-0306-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Tumor-induced lymphangiogenesis facilitates breast cancer progression by generating new lymphatic vessels that serve as conduits for tumor dissemination to lymph nodes and beyond. Given the recent evidence suggesting the implication of C-C chemokine ligand 21/chemokine receptor 7 (CCL21/CCR7) in lymph node metastasis, the aim of our study was to define the role of this chemokine pair in breast cancer-associated lymphangiogenesis. Methods The expression analysis of CCL21/CCR7 pair and lymphatic endothelial cell (LEC) markers in breast cancer specimens was performed by means of quantitative real-time PCR. By utilizing CCR7 and CCL21 gene manipulated breast cancer cell implants into orthotopic sites of nude mice, lymphatic vessel formation was assessed through quantitative real-time PCR, immunohistochemistry and immunofluorescence assays. Finally, the lymphangiogenic potential of CCL21/CCR7 was assessed in vitro with primary LECs through separate functional assays, each attempting to mimic different stages of the lymphangiogenic process. Results We found that CCR7 mRNA expression in human breast cancer tissues positively correlates with the expression of lymphatic endothelial markers LYVE-1, podoplanin, Prox-1, and vascular endothelial growth factor-C (VEGF-C). We demonstrated that the expression of CCL21/CCR7 by breast cancer cells has the ability to promote tumor-induced lymph-vascular recruitment in vivo. In vitro, CCL21/CCR7 chemokine axis regulates the expression and secretion of lymphangiogenic factor VEGF-C and thereby promotes proliferation, migration, as well as tube formation of the primary human LECs. Finally, we showed that protein kinase B (AKT) signaling pathway is the intracellular mechanism of CCR7-mediated VEGF-C secretion by human breast cancer cells. Conclusions These results reveal that CCR7 and VEGF-C display a significant crosstalk and suggest a novel role of the CCL21/CCR7 chemokine axis in the promotion of breast cancer-induced lymphangiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0306-4) contains supplementary material, which is available to authorized users.
Collapse
|
53
|
Podgrabinska S, Skobe M. Role of lymphatic vasculature in regional and distant metastases. Microvasc Res 2014; 95:46-52. [PMID: 25026412 DOI: 10.1016/j.mvr.2014.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022]
Abstract
In cancer, lymphatic vasculature has been traditionally viewed only as a transportation system for metastatic cells. It has now become clear that lymphatics perform many additional functions which could influence cancer progression. Lymphangiogenesis, induced at the primary tumor site and at distant sites, potently augments metastasis. Lymphatic endothelial cells (LECs) control tumor cell entry and exit from the lymphatic vessels. LECs also control immune cell traffic and directly modulate adaptive immune responses. This review highlights advances in our understanding of the mechanisms by which lymphatic vessels, and in particular lymphatic endothelium, impact metastasis.
Collapse
Affiliation(s)
- Simona Podgrabinska
- Department of Obstetrics, Gynecology & Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mihaela Skobe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
54
|
Jung JI, Cho HJ, Jung YJ, Kwon SH, Her S, Choi SS, Shin SH, Lee KW, Park JHY. High-fat diet-induced obesity increases lymphangiogenesis and lymph node metastasis in the B16F10 melanoma allograft model: roles of adipocytes and M2-macrophages. Int J Cancer 2014; 136:258-70. [PMID: 24844408 DOI: 10.1002/ijc.28983] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/05/2014] [Indexed: 12/16/2022]
Abstract
To examine the effects of high-fat diet (HFD) on melanoma progression, HFD-fed C57BL/6N mice were subcutaneously injected with syngeneic B16F10 melanoma cells. At 3 weeks post-injection, the tumors were resected; the mice were then sacrificed at 2 weeks post-resection. HFD stimulated melanoma growth and lymph node (LN) metastasis as well as tumor and LN lymphangiogenesis. Lipid vacuoles in the tumor and M2-macrophage (MΦ)s in the adipose and tumor tissues were increased in HFD-fed mice. CCL19 and CCL21 contents were higher in LNs than in tumors. HFD increased both CCL19 and CCL21 levels in LNs and CCR7 in tumors. Adipose tissue-conditioned media (CM) from HFD-fed mice enhanced lymphangiogenesis, and mature adipocyte (MA)/M2-MΦ co-culture CM markedly stimulated the tube formation of lymphatic endothelial cell (LEC)s and B16F10 migration. Monocyte migration was moderately stimulated by B16F10 or MA CM, but tremendously stimulated by B16F10/M2-MΦ co-culture CM, which was enhanced by MA/B16F10/M2-MΦ co-culture CM. The co-culture results revealed that MAs increased CCL2, M-CSF and CCR7 mRNAs in B16F10s; vascular endothelial growth factor (VEGF)-D mRNA in M2-MΦs; and CCL19, CCL21 and VEGF receptor (VEGFR)3 mRNA in LECs. M2-MΦs increased CCL2, M-CSF and VEGF-A mRNAs in B16F10s, whereas B16F10s increased VEGF-C mRNAs in M2-MΦs and VEGFR3 mRNA in LECs. These results indicate that in HFD-fed mice, MA-induced CCL2 and M-CSF in tumor cells increase M2-MΦs in tumor; the crosstalk between tumor cells and M2-MΦs further increases cytokines and angiogenic and lymphangiogenic factors. Additionally, MA-stimulated CCL19, CCL21/CCR7 axis contributes to increased LN metastasis in HFD-fed mice.
Collapse
Affiliation(s)
- Jae In Jung
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 200-702, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 2014; 14:159-72. [PMID: 24561443 DOI: 10.1038/nrc3677] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.
Collapse
Affiliation(s)
- Steven A Stacker
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Steven P Williams
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Tara Karnezis
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Ramin Shayan
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia. [3] Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. [4] O'Brien Institute, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Stephen B Fox
- 1] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [2] Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Marc G Achen
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
56
|
Gill BJ, West JL. Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology. J Biomech 2013; 47:1969-78. [PMID: 24300038 DOI: 10.1016/j.jbiomech.2013.09.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor-matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor-ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis.
Collapse
Affiliation(s)
- Bartley J Gill
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, USA.
| |
Collapse
|
57
|
Charest-Morin X, Pépin R, Gagné-Henley A, Morissette G, Lodge R, Marceau F. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells. Front Pharmacol 2013; 4:122. [PMID: 24068998 PMCID: PMC3781320 DOI: 10.3389/fphar.2013.00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023] Open
Abstract
The C–C chemokine receptor-7 (CCR7) is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503) labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination). CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry). The immune complexes were apparent in endosomal structures, co-localized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked) inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
58
|
Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK, Feirt N, Gordon R, Nagi CS, Wang Y, Entenberg D, Condeelis J, Skobe M. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. ACTA ACUST UNITED AC 2013; 210:1509-28. [PMID: 23878309 PMCID: PMC3727324 DOI: 10.1084/jem.20111627] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lymphatic vessels are thought to contribute to metastasis primarily by serving as a transportation system. It is widely believed that tumor cells enter lymph nodes passively by the flow of lymph. We demonstrate that lymph node lymphatic sinuses control tumor cell entry into the lymph node, which requires active tumor cell migration. In human and mouse tissues, CCL1 protein is detected in lymph node lymphatic sinuses but not in the peripheral lymphatics. CCR8, the receptor for CCL1, is strongly expressed by human malignant melanoma. Tumor cell migration to lymphatic endothelial cells (LECs) in vitro is inhibited by blocking CCR8 or CCL1, and recombinant CCL1 promotes migration of CCR8(+) tumor cells. The proinflammatory mediators TNF, IL-1β, and LPS increase CCL1 production by LECs and tumor cell migration to LECs. In a mouse model, blocking CCR8 with the soluble antagonist or knockdown with shRNA significantly decreased lymph node metastasis. Notably, inhibition of CCR8 led to the arrest of tumor cells in the collecting lymphatic vessels at the junction with the lymph node subcapsular sinus. These data identify a novel function for CCL1-CCR8 in metastasis and lymph node LECs as a critical checkpoint for the entry of metastases into the lymph nodes.
Collapse
Affiliation(s)
- Suvendu Das
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:718380. [PMID: 23861711 PMCID: PMC3686112 DOI: 10.1155/2013/718380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/20/2013] [Indexed: 01/06/2023]
Abstract
Angiogenesis and lymphangiogenesis are considered to play key roles in tumor metastasis. Targeting receptor tyrosine kinases essentially involved in the angiogenesis and lymphangiogenesis would theoretically prevent cancer metastasis. However, the optimal multikinase inhibitor for metastasis suppression has yet to be developed. In this study, we evaluated the effect of NSTPBP 0100194-A (194-A), a multikinase inhibitor of vascular endothelial growth factor receptors (VEGFRs)/fibroblast growth factor receptors (FGFRs), on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of the highly invasive breast cancer cell line 4T1-Luc+. We investigated the biologic effect of 194-A on various invasive breast cancer cell lines as well as endothelial and lymphatic endothelial cells. Intriguingly, we found that 194-A drastically reduced the formation of lung, liver, and lymph node metastasis of 4T1-Luc+ and decreased primary tumor growth. This was associated with significant reductions in intratumoral lymphatic vessel length (LVL) and microvessel density (MVD). 194-A blocked VEGFRs mediated signaling on both endothelial and lymphatic endothelial cells. Moreover, 194-A significantly inhibited the invasive capacity induced by VEGF-C or FGF-2 in vitro in both 4T1 and MDA-MB231 cells. In conclusion, these experimental results demonstrate that simultaneous inhibition of VEGFRs/FGFRs kinases may be a promising strategy to prevent breast cancer metastasis.
Collapse
|
60
|
Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol 2013; 7:259-82. [PMID: 23522958 PMCID: PMC5528409 DOI: 10.1016/j.molonc.2013.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood vessels (angiogenesis) is required for the growth of most tumors. The tumor microenvironment also induces lymphangiogenic factors that promote metastatic spread. Anti-angiogenic therapy targets the mechanisms behind the growth of the tumor vasculature. During the past two decades, several strategies targeting blood and lymphatic vessels in tumors have been developed. The blocking of vascular endothelial growth factor (VEGF)/VEGF receptor-2 (VEGFR-2) signaling has proven effective for inhibition of tumor angiogenesis and growth, and inhibitors of VEGF-C/VEGFR-3 involved in lymphangiogenesis have recently entered clinical trials. However, thus far anti-angiogenic treatments have been less effective in humans than predicted on the basis of pre-clinical tests in mice. Intrinsic and induced resistance against anti-angiogenesis occurs in patients, and thus far the clinical benefit of the treatments has been limited to modest improvements in overall survival in selected tumor types. Our current knowledge of tumor angiogenesis is based mainly on experiments performed in tumor-transplanted mice, and it has become evident that these models are not representative of human cancer. For an improved understanding, angiogenesis research needs models that better recapitulate the multistep tumorigenesis of human cancers, from the initial genetic insults in single cells to malignant progression in a proper tissue environment. To improve anti-angiogenic therapies in cancer patients, it is necessary to identify additional molecular targets important for tumor angiogenesis, and to get mechanistic insight into their interactions for eventual combinatorial targeting. The recent development of techniques for manipulating the mammalian genome in a precise and predictable manner has opened up new possibilities for the generation of more reliable models of human cancer that are essential for the testing of new therapeutic strategies. In addition, new imaging modalities that permit visualization of the entire mouse tumor vasculature down to the resolution of single capillaries have been developed in pre-clinical models and will likely benefit clinical imaging.
Collapse
Affiliation(s)
- Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P.O.B. 5000, 90014 University of Oulu, Finland.
| | | | | |
Collapse
|
61
|
Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol 2013; 3:44. [PMID: 23467856 PMCID: PMC3587800 DOI: 10.3389/fonc.2013.00044] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/18/2013] [Indexed: 11/14/2022] Open
Abstract
It has become evident that mechanical forces play a key role in cancer metastasis, a complex series of steps that is responsible for the majority of cancer-related deaths. One such force is fluid shear stress, exerted on circulating tumor cells by blood flow in the vascular microenvironment, and also on tumor cells exposed to slow interstitial flows in the tumor microenvironment. Computational and experimental models have the potential to elucidate metastatic behavior of cells exposed to such forces. Here, we review the fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvironments, and discuss recent computational and experimental models that have revealed mechanotransduction phenomena that may play a role in the metastatic process.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
62
|
Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 2013; 3:5. [PMID: 23336752 PMCID: PMC3693909 DOI: 10.1186/2045-3701-3-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medicial University, 225 Changhai Road, Shanghai 200438, China.
| | | | | | | | | | | | | |
Collapse
|
63
|
Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y, Caron KM. Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J 2012; 27:590-600. [PMID: 23099649 DOI: 10.1096/fj.12-214080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adrenomedullin (AM) is a potent lymphangiogenic factor that promotes lymphatic endothelial cell (LEC) proliferation through a pharmacologically tractable G-protein-coupled receptor. Numerous types of human cancers have increased levels of AM; however, the functional consequences of this fact have not been characterized. Therefore, we evaluated whether modulating adrenomedullin (Adm) gene dosage within tumor cells affects lymphangiogenesis. Murine Lewis lung carcinoma (LLC) cells that overexpress or underexpress Adm were injected subcutaneously into C57BL/6 mice, and tumors were evaluated for growth and vascularization. A dosage range from ∼10 to 200% of wild-type Adm expression did not affect LLC proliferation in vitro or in vivo, nor did it affect angiogenesis. Notably, the dosage of Adm markedly and significantly influenced tumor lymphangiogenesis. Reduced Adm expression in tumors decreased the proliferation of LECs and the number of lymphatic vessels, while elevated tumor Adm expression led to enlarged lymphatic vessels. Moreover, overexpression of Adm in tumors induced sentinel lymph node lymphangiogenesis and led to an increased incidence of Ki67-positive foci within the lung. These data show that tumor-secreted AM is a critical factor for driving both tumor and lymph node lymphangiogenesis. Thus, pharmacological targeting of AM signaling may provide a new avenue for inhibition of tumor lymphangiogenesis.
Collapse
Affiliation(s)
- Natalie O Karpinich
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Historically, lymphatic vessels were considered passive participants in tumor metastasis by simply providing channels for tumor cells to transit to draining lymph nodes. The discovery of several key lymphatic-specific molecular markers and an increased availability of in vitro and in vivo experimental systems to study lymphatic biology have however highlighted a much more complex, active role for the lymphatic vasculature in metastatic tumor spread. This review will briefly describe the lymphatic system and lymphangiogenesis and then focus on the role of the lymphatic system in cancer metastasis. The progression of our understanding from the lymphatic system as a somewhat passive conduit for metastasis to an active participant in metastatic tumor dissemination, regulated by a complex array of lymphangiogenic factors, chemokines, and immune cell subsets, will be described.
Collapse
Affiliation(s)
- Ailsa Christiansen
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
65
|
Wiig H, Swartz MA. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol Rev 2012; 92:1005-60. [PMID: 22811424 DOI: 10.1152/physrev.00037.2011] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interstitium describes the fluid, proteins, solutes, and the extracellular matrix (ECM) that comprise the cellular microenvironment in tissues. Its alterations are fundamental to changes in cell function in inflammation, pathogenesis, and cancer. Interstitial fluid (IF) is created by transcapillary filtration and cleared by lymphatic vessels. Herein we discuss the biophysical, biomechanical, and functional implications of IF in normal and pathological tissue states from both fluid balance and cell function perspectives. We also discuss analysis methods to access IF, which enables quantification of the cellular microenvironment; such methods have demonstrated, for example, that there can be dramatic gradients from tissue to plasma during inflammation and that tumor IF is hypoxic and acidic compared with subcutaneous IF and plasma. Accumulated recent data show that IF and its convection through the interstitium and delivery to the lymph nodes have many and diverse biological effects, including in ECM reorganization, cell migration, and capillary morphogenesis as well as in immunity and peripheral tolerance. This review integrates the biophysical, biomechanical, and biological aspects of interstitial and lymph fluid and its transport in tissue physiology, pathophysiology, and immune regulation.
Collapse
Affiliation(s)
- Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A. Swartz
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
66
|
Sleeman JP, Cady B, Pantel K. The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin Exp Metastasis 2012; 29:737-46. [PMID: 22669542 DOI: 10.1007/s10585-012-9489-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/20/2012] [Indexed: 01/11/2023]
Abstract
Although tumor cells are found in the blood early after tumorigenesis, dissemination through the lymphatic system and in particular the formation of lymph node metastases has long been considered to be a driving force behind the formation of secondary tumors in distant vital organs. Contemporary experimental observations and clinical trial results suggest that this may not be the case. In this review we survey the evidence for both points of view, and examine the hypothesis that the prognostic relevance of lymph node metastases may lie in their ability to indicate that primary tumors are producing soluble factors that have the potential to promote metastasis at these distant sites, for example by releasing tumor cells from dormancy. Furthermore, the interconnectivity between the lymphatic and blood circulatory systems underscores the relevance of the analysis of the properties of circulating and disseminated tumor cells for prognostic evaluation, patient stratification and understanding the biology of metastasis. We therefore give an overview of the current state of the art in this field.
Collapse
Affiliation(s)
- Jonathan P Sleeman
- Centre for Biomedicine and Medical Technology Mannheim, Universitätsmedizin Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
67
|
CCR7-expressing B16 melanoma cells downregulate interferon-γ-mediated inflammation and increase lymphangiogenesis in the tumor microenvironment. Oncogenesis 2012; 1:e9. [PMID: 23552640 PMCID: PMC3412639 DOI: 10.1038/oncsis.2012.9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expression of the CC chemokine receptor-7 (CCR7) by cancers, including melanoma, augments lymph node (LN) metastasis, but little is known about its role in lymphangiogenesis and anti-tumor immunity. We injected control B16 murine melanoma cells (pLNCX2-B16) and CCR7-overexpressing B16 cells (CCR7-B16) in murine footpads and compared resulting tumors at the protein and mRNA level using immunostaining, Affymetrix gene microarray and quantitative reverse-transcriptase PCR. Although control and CCR7-B16 primary tumors were of similar size, LN metastasis was dramatically enhanced in CCR7-B16 tumors. Microarray analysis of leukocyte-depleted pLNCX2-B16 and CCR7-B16 tumor cell suspensions showed that three major groups of genes linked to interferon (IFN)-γ signaling pathways (for example, STAT1, CXCR 9-11, CCL5 and CXCL10, major histocompatibility complex (MHC) I and MHC II) were downregulated in the CCR7-B16 tumor microenvironment, suggesting activation through CCR7 can downregulate pathways critical for host anti-tumor immunity. In addition, mRNA expression of the lymphatic marker podoplanin was upregulated in CCR7-B16 tumors by 3.35-fold versus control tumors. Anti-podoplanin monoclonal antibody staining revealed a three-fold increase in intratumoral CCL21-expressing lymphatic vessels, as well as a two-fold increase in the number of invading tumor cells per lymphatic vessel in CCR7-B16 versus control tumors. Enhanced anti-vascular endothelial growth factor C (VEGF-C) staining was present in CCR7-B16 versus control tumors, suggesting that VEGF-C may have a role in the CCR7-mediated lymphangiogenesis. In summary, CCR7-B16 tumors show a striking decrease in IFN-γ-mediated inflammatory gene expression in contrast to increased expression of VEGF-C, CCL21 and podoplanin by lymphatic vessels. Enhanced lymphangiogenesis may contribute to the dramatic increase in LN metastasis that is observed in the CCR7-expressing tumors.
Collapse
|
68
|
Majumder M, Tutunea-Fatan E, Xin X, Rodriguez-Torres M, Torres-Garcia J, Wiebe R, Timoshenko AV, Bhattacharjee RN, Chambers AF, Lala PK. Co-expression of α9β1 integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN. PLoS One 2012; 7:e35094. [PMID: 22545097 PMCID: PMC3335831 DOI: 10.1371/journal.pone.0035094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/12/2012] [Indexed: 01/26/2023] Open
Abstract
Introduction and Objectives Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. Results A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells. Conclusion Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype.
Collapse
Affiliation(s)
- Mousumi Majumder
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Elena Tutunea-Fatan
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Xiping Xin
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | | | - Jose Torres-Garcia
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Ryan Wiebe
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Alexander V. Timoshenko
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | | | - Ann F. Chambers
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Department of Oncology, The University of Western Ontario, London, Ontario, Canada
| | - Peeyush K. Lala
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Oncology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
69
|
Tumor lymphangiogenesis as a potential therapeutic target. JOURNAL OF ONCOLOGY 2012; 2012:204946. [PMID: 22481918 PMCID: PMC3307004 DOI: 10.1155/2012/204946] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/10/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022]
Abstract
Metastasis the spread of cancer cells to distant organs, is the main cause of death for cancer patients. Metastasis is often mediated by lymphatic vessels that invade the primary tumor, and an early sign of metastasis is the presence of cancer cells in the regional lymph node (the first lymph node colonized by metastasizing cancer cells from a primary tumor). Understanding the interplay between tumorigenesis and lymphangiogenesis (the formation of lymphatic vessels associated with tumor growth) will provide us with new insights into mechanisms that modulate metastatic spread. In the long term, these insights will help to define new molecular targets that could be used to block lymphatic vessel-mediated metastasis and increase patient survival. Here, we review the molecular mechanisms of embryonic lymphangiogenesis and those that are recapitulated in tumor lymphangiogenesis, with a view to identifying potential targets for therapies designed to suppress tumor lymphangiogenesis and hence metastasis.
Collapse
|
70
|
Integrins and their extracellular matrix ligands in lymphangiogenesis and lymph node metastasis. Int J Cell Biol 2012; 2012:853703. [PMID: 22505936 PMCID: PMC3296286 DOI: 10.1155/2012/853703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 12/17/2022] Open
Abstract
In the 1970s, the late Judah Folkman postulated that tumors grow proportionately to their blood supply and that tumor angiogenesis removed this limitation promoting growth and metastasis. Work over the past 40 years, varying from molecular examination to clinical trials, verified this hypothesis and identified a host of therapeutic targets to limit tumor angiogenesis, including the integrin family of extracellular matrix receptors. However, the propensity for some tumors to spread through lymphatics suggests that lymphangiogenesis plays a similarly important role. Lymphangiogenesis inhibitors reduce lymph node metastasis, the leading indicator of poor prognosis, whereas inducing lymphangiogenesis promotes lymph node metastasis even in cancers not prone to lymphatic dissemination. Recent works highlight a role for integrins in lymphangiogenesis and suggest that integrin inhibitors may serve as therapeutic targets to limit lymphangiogenesis and lymph node metastasis. This review discusses the current literature on integrin-matrix interactions in lymphatic vessel development and lymphangiogenesis and highlights our current knowledge on how specific integrins regulate tumor lymphangiogenesis.
Collapse
|
71
|
Abstract
The lymphatic system has long been accepted as a passive escape route for metastasizing tumor cells. The classic view that lymphatics solely regulate fluid balance, lipid metabolism, and immune cell trafficking to the LN is now being challenged. Research in the field is entering a new phase with increasing evidence suggesting that lymphatics play an active role modulating inflammation, autoimmune disease, and the anti-tumor immune response. Evidence exists to suggest that the lymphatics and chemokines guide LN bi-functionally, driving immunity vs. tolerance according to demand. At sites of chronic inflammation, autoimmunity, and tumors, however, the same chemokines and aberrant lymphangiogenesis foster disease progression. These caveats point to the existence of a complex, finely balanced relationship between lymphatics and the immune system in health and disease. This review discusses emerging concepts in the fields of immunology, tumor biology, and lymphatic physiology, identifying critical, overlapping functions of lymphatics, the LN and lymphoid factors in tipping the balance of immunity vs. tolerance in favor of a growing tumor.
Collapse
Affiliation(s)
- Jacqueline D Shields
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK.
| |
Collapse
|
72
|
Kim SJ, Shin JY, Lee KD, Bae YK, Sung KW, Nam SJ, Chun KH. MicroRNA let-7a suppresses breast cancer cell migration and invasion through downregulation of C-C chemokine receptor type 7. Breast Cancer Res 2012; 14:R14. [PMID: 22251626 PMCID: PMC3496131 DOI: 10.1186/bcr3098] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 01/04/2012] [Accepted: 01/18/2012] [Indexed: 02/16/2023] Open
Abstract
Introduction C-C chemokine receptor type 7 (CCR7) plays an important role in chemotactic and metastatic responses in various cancers, including breast cancer. In the present study, the authors demonstrated that microRNA (miRNA) let-7a downregulates CCR7 expression and directly influences the migration and invasion of breast cancer cells. Methods The expression of CCR7, its ligand CCL21, and let-7a was detected in breast cancer cell lines and in breast cancer patient tissues. Synthetic let-7a and an inhibitor of let-7a were transfected into MDA-MB-231 and MCF-7 breast cancer cells, respectively, and cell proliferation, cell migration, and invasion assays were performed. To confirm the fact that 3'UTR of CCR7 is a direct target of let-7a, a luciferase assay for the reporter gene expressing the let-7a binding sites of CCR7 3'UTR was used. An in vivo invasion animal model system using transparent zebrafish embryos was also established to determine the let-7a effect on breast cancer cell invasion. Results First, a higher expression of both CCR7 and CCL21 in malignant tissues than in their normal counterparts from breast cancer patients was observed. In addition, a reverse correlation in the expression of CCR7 and let-7a in breast cancer cell lines and breast cancer patient tissues was detected. Synthetic let-7a decreased breast cancer cell proliferation, migration, and invasion, as well as CCR7 protein expression in MDA-MB-231 cells. The let-7a inhibitor reversed the let-7a effects on the MCF-7 cells. The 3'UTR of CCR7 was confirmed as a direct target of let-7a by using the luciferase assay for the reporter gene expressing let-7a CCR7 3'UTR binding sites. Notably, when analyzing in vivo invasion, MDA-MB 231 cells after synthetic let-7a transfection were unable to invade the vessels in zebrafish embryos. Conclusions The results from the present study suggest that targeting of CCL21-CCR7 signaling is a valid approach for breast cancer therapy and that let-7a directly binds to the 3'UTR of CCR7 and blocks its protein expression, thereby suppressing migration and invasion of human breast cancer cells. Furthermore, the present study underscores the therapeutic potential of let-7a as an antitumor and antimetastatic manager in breast cancer patients.
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine 250 Sungsan-ro, Seodaemun-gu, Seoul 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Love M, Sandberg JL, Ziarek JJ, Gerarden KP, Rode RR, Jensen DR, McCaslin DR, Peterson FC, Veldkamp CT. Solution structure of CCL21 and identification of a putative CCR7 binding site. Biochemistry 2012; 51:733-5. [PMID: 22221265 DOI: 10.1021/bi201601k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CCL21 is a human chemokine that recruits normal immune cells and metastasizing tumor cells to lymph nodes through activation of the G protein-coupled receptor CCR7. The CCL21 structure solved by NMR contains a conserved chemokine domain followed by an extended, unstructured C-terminus that is not typical of most other chemokines. A sedimentation equilibrium study showed CCL21 to be monomeric. Chemical shift mapping indicates that the CCR7 N-terminus binds to the N-loop and third β-strand of CCL21's chemokine domain. Details of CCL21-receptor recognition may enable structure-based drug discovery of novel antimetastatic agents.
Collapse
Affiliation(s)
- Melissa Love
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, Wisconsin 53190, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sperveslage J, Frank S, Heneweer C, Egberts J, Schniewind B, Buchholz M, Bergmann F, Giese N, Munding J, Hahn SA, Kalthoff H, Klöppel G, Sipos B. Lack of CCR7 expression is rate limiting for lymphatic spread of pancreatic ductal adenocarcinoma. Int J Cancer 2012; 131:E371-81. [PMID: 22020953 DOI: 10.1002/ijc.26502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023]
Abstract
CCR7 expression on tumor cells promotes lymphatic spread in several malignant tumors. However, a comprehensive characterization of the CCL19/CCL21-CCR7 axis in pancreatic ductal adenocarcinoma (PDAC), which is known for its high rates of lymph-node metastases, is still lacking. CCR7 mRNA and CCR7 protein were found to be expressed in spheroid cultures of all six examined PDAC cell lines. In migration assays, CCR7 expressing PDAC cells showed enhanced migration toward CCL19 and CCL21, the two ligands of CCR7. In an orthotopic nude mouse model, CCR7-transfected PT45P1 cells gave rise to significantly larger tumors and showed a higher frequency of lymph vessel invasion and lymph-node metastases than mock-transfected cells. In an analysis using quantitative real-time PCR, CCR7 showed fourfold overexpression in microdissected PDAC cells compared to normal duct cells. Moderate-to-strong immunohistochemical CCR7 expression, found in 58 of 121 well-characterized human PDACs, correlated with high rates of lymph vessel invasion. Conversely, PDACs completely lacking CCR7 expression showed only low rates of lymph vessel invasion and lymph-node metastases. The evaluation of CCL21 expression by immunofluorescence staining revealed a significant upregulation of CCL21 in peritumoral and intratumoral lymph vessels compared to lymph vessels in disease-free pancreata. In conclusion, our study revealed strong evidence that lack of CCR7 impairs the metastatic potential of PDAC. Lymph vessel invasion by CCR7 expressing PDAC cells may be additionally enhanced by upregulation of CCL21 in tumor-associated lymph vessels, representing a previously unknown factor of lymphatic spread.
Collapse
Affiliation(s)
- Jan Sperveslage
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ko CY, Wu L, Nair AM, Tsai YT, Lin VK, Tang L. The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 2011; 33:876-85. [PMID: 22019117 DOI: 10.1016/j.biomaterials.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/01/2011] [Indexed: 02/07/2023]
Abstract
Inflammatory responses and associated products have been implicated in cancer metastasis. However, the relationship between these two processes is uncertain due to the lack of a suitable model. Taking advantage of localized and controllable inflammatory responses induced by biomaterial implantation and the capability of tissue scaffolds to release a wide variety of chemokines, we report a novel system for studying the molecular mechanisms of inflammation-mediated cancer metastasis. The animal model is comprised of an initial subcutaneous implantation of biomaterial microspheres which prompt localized inflammatory responses, followed by the transplantation of metastatic cancer cells into the peritoneal cavity or blood circulation. Histological results demonstrated that substantial numbers of B16F10 cells were recruited to the site nearby biomaterial implants. There was a strong correlation between the degree of biomaterial-mediated inflammatory responses and number of recruited cancer cells. Inflammation-mediated cancer cell migration was inhibited by small molecule inhibitors of CXCR4 but not by neutralizing antibody against CCL21. Using chemokine-releasing scaffolds, further studies were carried out to explore the possibility of enhancing cancer cell recruitment. Interestingly, erythropoietin (EPO) releasing scaffolds, but not stromal cell-derived factor-1α-releasing scaffolds, were found to accumulate substantially more melanoma cells than controls. Rather unexpectedly, perhaps by indirectly reducing circulating cancer cells, mice implanted with EPO-releasing scaffolds had ~30% longer life span than other groups. These results suggest that chemokine-releasing scaffolds may potentially function as implantable cancer traps and serve as powerful tools for studying cancer distraction and even selective annihilation of circulating metastatic cancer cells.
Collapse
Affiliation(s)
- Cheng-Yu Ko
- Bioengineering Department, University of Texas at Arlington, Arlington, TX 76019-0138, USA
| | | | | | | | | | | |
Collapse
|
76
|
Emmett MS, Lanati S, Dunn DBA, Stone OA, Bates DO. CCR7 mediates directed growth of melanomas towards lymphatics. Microcirculation 2011; 18:172-82. [PMID: 21166932 DOI: 10.1111/j.1549-8719.2010.00074.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To determine whether chemotactic-metastasis, the preferential growth of melanomas towards areas of high lymphatic density, is CCL21/CCR7 dependent in vivo. Lymphatic endothelial cells (LECs) produce the chemokine CCL21. Metastatic melanoma cells express CCR7, its receptor, and exhibit chemotactic-metastasis, whereby metastatic cells recognise and grow towards areas of higher lymphatic density. METHODS We used two in vivo models of directional growth towards depots of LECs of melanoma cells over-expressing CCR7. Injected LEC were tracked by intravital fluorescence microscopy, and melanoma growth by bioluminescence. RESULTS Over-expression of the chemokine receptor CCR7 enables non-metastatic tumor cells to recognise and grow towards LECs (3.9 fold compared with control), but not blood endothelial cells (0.9 fold), in vitro and in vivo in the absence of increased lymphatic clearance. Chemotactic metastasis was inhibited by a CCL21 neutralising antibody (4-17% of control). Furthermore, CCR7 expression in mouse B16 melanomas resulted in in-transit metastasis (50-100% of mice) that was less often seen with control tumors (0-50%) in vivo. CONCLUSION These results suggest that recognition of LEC by tumors expressing receptors for lymphatic specific ligands contributes towards the identification and invasion of lymphatics by melanoma cells and provides further evidence for a chemotactic metastasis model of tumor spread.
Collapse
Affiliation(s)
- Maxine S Emmett
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, Bristol Heart Institute, School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
77
|
Xu J, Zhang C, He Y, Wu H, Wang Z, Song W, Li W, He W, Cai S, Zhan W. Lymphatic endothelial cell-secreted CXCL1 stimulates lymphangiogenesis and metastasis of gastric cancer. Int J Cancer 2011; 130:787-97. [PMID: 21387301 DOI: 10.1002/ijc.26035] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 01/12/2023]
Abstract
Lymph node metastasis is a significant factor in gastric cancer prognosis. It is well known that cancer cells secrete lymphangiogenic factors, thereby promoting lymphangiogenesis. However, the effects of lymphatic endothelial cell (LEC)-secreted factors on the process of lymphangiogenesis and tumor cell metastasis remain unclear. We established an animal model and successfully isolated LECs from afferent lymph vessels of sentinel lymph nodes (SLNs) in animal models. A microarray analysis was performed to characterize gene expression profile in afferent LECs induced by metastatic cancer cells. There were significant differences in 846 genes between normal LECs and LECs with lymph node metastasis. Among these genes, we found that expression of CXCL1 was upregulated, which was confirmed by quantitative reverse-transcriptase polymerase chain reaction. In a coculture system, gastric cancer cells induced CXCL1 secretion from LECs, which was associated with the NF-κB pathway. CXCL1 stimulated LECs migration and tube formation involving FAK-ERK1/2-RhoA activation and reorganization of F-actin. In human gastric cancer specimens, CXCR2 expression was positively correlated with TNM (Tumor, node, metastasis) stage and lymphatic vessel density. These results suggested that LECs of afferent SLNs had specific expression profiles, which were distinct from those of normal lymphatic vessels and appeared to promote metastasis. The expression pattern described in our study, including CXCL1 in LECs and its receptor CXCR2 in cancer cells, offers a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jianbo Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
79
|
Wu X, Takekoshi T, Sullivan A, Hwang ST. Inflammation and tumor microenvironment in lymph node metastasis. Cancers (Basel) 2011; 3:927-44. [PMID: 24212647 PMCID: PMC3756397 DOI: 10.3390/cancers3010927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022] Open
Abstract
In nearly all human cancers, the presence of lymph node (LN) metastasis increases clinical staging and portends worse prognosis (compared to patients without LN metastasis). Herein, principally reviewing experimental and clinical data related to malignant melanoma, we discuss diverse factors that are mechanistically involved in LN metastasis. We highlight recent data that link tumor microenvironment, including inflammation (at the cellular and cytokine levels) and tumor-induced lymphangiogenesis, with nodal metastasis. Many of the newly identified genes that appear to influence LN metastasis facilitate general motility, chemotactic, or invasive properties that also increase the ability of cancer cells to disseminate and survive at distant organ sites. These new biomarkers will help predict clinical outcome and point to novel future therapies in metastatic melanoma as well as other cancers.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
80
|
Shieh AC. Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 2011; 39:1379-89. [PMID: 21253819 DOI: 10.1007/s10439-011-0252-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/12/2011] [Indexed: 12/17/2022]
Abstract
The importance of the tumor microenvironment in cancer progression is indisputable, yet a key component of the microenvironment--biomechanical forces--remains poorly understood. Tumor growth and progression is paralleled by a host of physical changes in the tumor microenvironment, such as growth-induced solid stresses, increased matrix stiffness, high fluid pressure, and increased interstitial flow. These changes to the biomechanical microenvironment promote tumorigenesis and tumor cell invasion and induce stromal cells--such as fibroblasts, immune cells, and endothelial cells--to change behavior and support cancer progression. This review highlights what we currently know about the biomechanical forces generated in the tumor microenvironment, how they arise, and how these forces can dramatically influence cell behavior, drawing not only upon studies directly related to cancer and tumor cells, but also work in other fields that have shown the effects of these types of mechanical forces vis-à-vis cell behaviors relevant to the tumor microenvironment. By understanding how all of these biomechanical forces can affect tumor cells, stromal cells, and tumor-stromal crosstalk, as well as alter how tumor and stromal cells perceive other extracellular signals in the tumor microenvironment, we can develop new approaches for diagnosis, prognosis, and ultimately treatment of cancer.
Collapse
Affiliation(s)
- Adrian C Shieh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104-2875, USA.
| |
Collapse
|
81
|
Decoding melanoma metastasis. Cancers (Basel) 2010; 3:126-63. [PMID: 24212610 PMCID: PMC3756353 DOI: 10.3390/cancers3010126] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of morbidity and mortality associated with melanoma. Evidence suggests melanoma has a predilection for metastasis to particular organs. Experimental analyses have begun to shed light on the mechanisms regulating melanoma metastasis and organ specificity, but these analyses are complicated by observations of metastatic dormancy and dissemination of melanocytes that are not yet fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the site of the primary tumor and the site of metastasis, play important roles in mediating the metastatic process. As metastasis research moves forward, paradigms explaining melanoma metastasis as a step-wise process must also reflect the temporal complexity and heterogeneity in progression of this disease. Genetic drivers of melanoma as well as extrinsic regulators of disease spread, particularly those that mediate metastasis to specific organs, must also be incorporated into newer models of melanoma metastasis.
Collapse
|
82
|
Yin X, Truty J, Lawrence R, Johns SC, Srinivasan RS, Handel TM, Fuster MM. A critical role for lymphatic endothelial heparan sulfate in lymph node metastasis. Mol Cancer 2010; 9:316. [PMID: 21172016 PMCID: PMC3019167 DOI: 10.1186/1476-4598-9-316] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/20/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lymph node metastasis constitutes a key event in tumor progression. The molecular control of this process is poorly understood. Heparan sulfate is a linear polysaccharide consisting of unique sulfate-modified disaccharide repeats that allow the glycan to bind a variety of proteins, including chemokines. While some chemokines may drive lymphatic trafficking of tumor cells, the functional and genetic importance of heparan sulfate as a possible mediator of chemokine actions in lymphatic metastasis has not been reported. RESULTS We applied a loss-of-function genetic approach employing lymphatic endothelial conditional mutations in heparan sulfate biosynthesis to study the effects on tumor-lymphatic trafficking and lymph node metastasis. Lymphatic endothelial deficiency in N-deacetylase/N-sulfotransferase-1 (Ndst1), a key enzyme involved in sulfating nascent heparan sulfate chains, resulted in altered lymph node metastasis in tumor-bearing gene targeted mice. This occurred in mice harboring either a pan-endothelial Ndst1 mutation or an inducible lymphatic-endothelial specific mutation in Ndst1. In addition to a marked reduction in tumor metastases to the regional lymph nodes in mutant mice, specific immuno-localization of CCL21, a heparin-binding chemokine known to regulate leukocyte and possibly tumor-cell traffic, showed a marked reduction in its ability to associate with tumor cells in mutant lymph nodes. In vitro modified chemotaxis studies targeting heparan sulfate biosynthesis in lymphatic endothelial cells revealed that heparan sulfate secreted by lymphatic endothelium is required for CCL21-dependent directional migration of murine as well as human lung carcinoma cells toward the targeted lymphatic endothelium. Lymphatic heparan sulfate was also required for binding of CCL21 to its receptor CCR7 on tumor cells as well as the activation of migration signaling pathways in tumor cells exposed to lymphatic conditioned medium. Finally, lymphatic cell-surface heparan sulfate facilitated receptor-dependent binding and concentration of CCL21 on the lymphatic endothelium, thereby serving as a mechanism to generate lymphatic chemokine gradients. CONCLUSIONS This work demonstrates the genetic importance of host lymphatic heparan sulfate in mediating chemokine dependent tumor-cell traffic in the lymphatic microenvironment. The impact on chemokine dependent lymphatic metastasis may guide novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Yin
- Department of Medicine, Division of Pulmonary and Critical Care, University of California San Diego, La Jolla, CA 92037 USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Sotiropoulou N, Bravou V, Kounelis S, Damaskou V, Papaspirou E, Papadaki H. Tumour expression of lymphangiogenic growth factors but not lymphatic vessel density is implicated in human cervical cancer progression. Pathology 2010; 42:629-36. [DOI: 10.3109/00313025.2010.522174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
84
|
Hillman LA, Garrett LD, de Lorimier LP, Charney SC, Borst LB, Fan TM. Biological behavior of oral and perioral mast cell tumors in dogs: 44 cases (1996-2006). J Am Vet Med Assoc 2010; 237:936-42. [PMID: 20946081 DOI: 10.2460/javma.237.8.936] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe clinical outcome of dogs with mast cell tumors (MCTs) arising from the oral mucosa, oral mucocutaneous junction, or perioral region of the muzzle and evaluate the potential role of the chemokine receptor type 7 (CCR7) in the biological behavior of these tumors. DESIGN Retrospective case series. ANIMALS 44 dogs with MCTs of the oral mucosa (n=14), oral mucocutaneous junction (19), or perioral region of the muzzle (11). PROCEDURES Medical records were reviewed for information on signalment, regional metastasis, treatments, cause of death, and survival time. Twenty of the 44 cases had stored histologic samples available for immunohistochemical staining for CCR7 RESULTS For all dogs, median survival time was 52 months. Twenty-six (59%) dogs had regional lymph node metastasis on admission. Median survival time for dogs with lymph node metastasis was 14 months, whereas median survival time was not reached for dogs without lymph node metastasis. Intensity of staining for CCR7 was not significantly associated with the presence of regional lymph node metastasis or survival time. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that in dogs with MCTs arising from the oral mucosa, oral mucocutaneous junction, or perioral region of the muzzle, the presence of regional lymph node metastasis at the time of diagnosis was a negative prognostic factor. However, prolonged survival times could be achieved with treatment. In addition, CCR7 expression in the primary tumor was not significantly associated with the presence of regional lymph node metastasis or survival time.
Collapse
Affiliation(s)
- Lorin A Hillman
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
85
|
Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K, Kim I, Koh GY. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 2010; 70:10411-21. [PMID: 21056990 DOI: 10.1158/0008-5472.can-10-2591] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly metastatic and chemotherapy-resistant properties of malignant melanomas stand as challenging barriers to successful treatment; yet, the mechanisms responsible for their aggressive characteristics are not fully defined. We show that a distinct population expressing CD133 (Prominin-1), which is highly enriched after administration of a chemotherapeutic drug, dacarbazine, has enhanced metastatic potential in vivo. CD133(+) tumor cells are located close to tumor-associated lymphatic vessels in metastatic organs such as the regional lymph nodes and lung. Lymphatic endothelial cells promote the migratory activity of a CD133(+) subset to target organs and regulation of lymphatic growth efficiently modulates the metastasis of CD133(+) tumor cells. We found that lymphatic vessels in metastatic tissues stimulate chemokine receptor 4 (CXCR4)(+)/CD133(+) cell metastasis to target organs by secretion of stromal cell-derived factor-1 (SDF-1). The CXCR4(+)/CD133(+) cells exhibited higher metastatic activity compared with CXCR4(-)/CD133(+) cells and, importantly, blockade of CXCR4 coupled with dacarbazine efficiently inhibited both tumor growth and metastasis; dacarbazine alone could not attenuate tumor metastasis. The current study demonstrates a previously unidentified role of the lymphatic microenvironment in facilitating metastasis of chemoresistant melanoma cells via a specific chemotactic axis, SDF-1/CXCR4. Our findings suggest that targeting the SDF-1/CXCR4 axis in addition to dacarbazine treatment could therapeutically block chemoresistant CD133(+) cell metastasis toward a lymphatic metastatic niche.
Collapse
Affiliation(s)
- Minah Kim
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Mellor RH, Hubert CE, Stanton AWB, Tate N, Akhras V, Smith A, Burnand KG, Jeffery S, Mäkinen T, Levick JR, Mortimer PS. Lymphatic dysfunction, not aplasia, underlies Milroy disease. Microcirculation 2010; 17:281-96. [PMID: 20536741 DOI: 10.1111/j.1549-8719.2010.00030.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Milroy disease is an inherited autosomal dominant lymphoedema caused by mutations in the gene for vascular endothelial growth factor receptor-3 (VEGFR-3, also known as FLT4). The phenotype has to date been ascribed to lymphatic aplasia. We further investigated the structural and functional defects underlying the phenotype in humans. METHODS The skin of the swollen foot and the non-swollen forearm was examined by (i) fluorescence microlymphangiography, to quantify functional initial lymphatic density in vivo; and (ii) podoplanin and LYVE-1 immunohistochemistry of biopsies, to quantify structural lymphatic density. Leg vein function was assessed by colour Doppler duplex ultrasound. RESULTS Milroy patients exhibited profound (86-91%) functional failure of the initial lymphatics in the foot; the forearm was unimpaired. Dermal lymphatics were present in biopsies but density was reduced by 51-61% (foot) and 26-33% (forearm). Saphenous venous reflux was present in 9/10 individuals with VEGFR3 mutations, including two carriers. CONCLUSION We propose that VEGFR3 mutations in humans cause lymphoedema through a failure of tissue protein and fluid absorption. This is due to a profound functional failure of initial lymphatics and is not explained by microlymphatic hypoplasia alone. The superficial venous valve reflux indicates the dual role of VEGFR-3 in lymphatic and venous development.
Collapse
Affiliation(s)
- Russell H Mellor
- Cardiac & Vascular Sciences (Dermatology), St George's Hospital Medical School, University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Bougatef F, Menashi S, Khayati F, Naïmi B, Porcher R, Podgorniak MP, Millot G, Janin A, Calvo F, Lebbé C, Mourah S. EMMPRIN promotes melanoma cells malignant properties through a HIF-2alpha mediated up-regulation of VEGF-receptor-2. PLoS One 2010; 5:e12265. [PMID: 20824203 PMCID: PMC2930842 DOI: 10.1371/journal.pone.0012265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022] Open
Abstract
EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2) in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2α and its translocation to the nucleus where it forms heterodimers with HIF-1β. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2α localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2α/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion.
Collapse
Affiliation(s)
- Faten Bougatef
- Inserm, UMR-S 940 Laboratoire de Pharmacologie, Paris, France
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
| | - Suzanne Menashi
- CNRS-UMR 7149, Laboratoire CRRET, Créteil, France
- Université Paris12–94000, Créteil, France
| | - Farah Khayati
- Inserm, UMR-S 940 Laboratoire de Pharmacologie, Paris, France
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
| | | | - Raphaël Porcher
- Université Paris 7- Denis Diderot, Paris, France
- Inserm, U717, Department of Biostatistics and Medical Data Processing, Paris, France
| | - Marie-Pierre Podgorniak
- Inserm, UMR-S 940 Laboratoire de Pharmacologie, Paris, France
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
| | - Guy Millot
- Inserm, UMR-S 940 Laboratoire de Pharmacologie, Paris, France
- Université Paris 7- Denis Diderot, Paris, France
| | - Anne Janin
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
- Inserm, U728, Paris, France
| | - Fabien Calvo
- Inserm, UMR-S 940 Laboratoire de Pharmacologie, Paris, France
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbé
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
- Department of Dermatology Hôpital Saint Louis, Paris, France
| | - Samia Mourah
- Inserm, UMR-S 940 Laboratoire de Pharmacologie, Paris, France
- Université Paris 7- Denis Diderot, Paris, France
- AP-HP, Hôpital Saint-Louis, Paris, France
- * E-mail:
| |
Collapse
|
88
|
Madsen CD, Sahai E. Cancer dissemination--lessons from leukocytes. Dev Cell 2010; 19:13-26. [PMID: 20643347 DOI: 10.1016/j.devcel.2010.06.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/21/2022]
Abstract
Cancer cells can move through tissues in a variety of different ways. In some cases, an epithelial-to-mesenchymal transition enables cancer cells to acquire fibroblast-like migratory properties. However, it is also becoming apparent that some cancer cells move in an amoeboid way similar to leukocytes. This theme will be the focus of the review, where we will discuss the similarities and differences between the mechanisms used by cancer cells and leukocytes to cross parenchymal basement membranes, move through interstitial tissue, and enter and exit the vasculature. Further, we propose that the ability to switch between different migratory mechanisms is critical for cells to relocate from one tissue to another.
Collapse
Affiliation(s)
- Chris D Madsen
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
89
|
Lanati S, Dunn DB, Roussigné M, Emmett MS, Carriere V, Jullien D, Budge J, Fryer J, Erard M, Cailler F, Girard JP, Bates DO. Chemotrap-1: an engineered soluble receptor that blocks chemokine-induced migration of metastatic cancer cells in vivo. Cancer Res 2010; 70:8138-48. [PMID: 20736366 DOI: 10.1158/0008-5472.can-10-0175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer and dendritic cells recognize and migrate toward chemokines secreted from lymphatics and use this mechanism to invade the lymphatic system, and cancer cells metastasize through it. The lymphatic-secreted chemokine ligand CCL21 has been identified as a key regulatory molecule in the switch to a metastatic phenotype in melanoma and breast cancer cells. However, it is not known whether CCL21 inhibition is a potential therapeutic strategy for inhibition of metastasis. Here, we describe an engineered CCL21-soluble inhibitor, Chemotrap-1, which inhibits migration of metastatic melanoma cells in vivo. Two-hybrid, pull-down, and coimmunoprecipitation assays allowed us to identify a naturally occurring human zinc finger protein with CCL21 chemokine-binding properties. Further analyses revealed a short peptide (∼70 amino acids), with a predicted coiled-coil structure, which is sufficient for association with CCL21. This CCL21 chemokine-binding peptide was then fused to the Fc region of human IgG1 to generate Chemotrap-1, a human chemokine-binding Fc fusion protein. Surface plasmon resonance and chemotaxis assays showed that Chemotrap-1 binds CCL21 and inhibits CCL21-induced migration of melanoma cells in vitro with subnanomolar affinity. In addition, Chemotrap-1 blocked migration of melanoma cells toward lymphatic endothelial cells in vitro and in vivo. Finally, Chemotrap-1 strongly reduced lymphatic invasion, tracking, and metastasis of CCR7-expressing melanoma cells in vivo. Together, these results show that CCL21 chemokine inhibition by Chemotrap-1 is a potential therapeutic strategy for metastasis and provide further support for the hypothesis that lymphatic-mediated metastasis is a chemokine-dependent process.
Collapse
Affiliation(s)
- Silvia Lanati
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Datta K, Muders M, Zhang H, Tindall DJ. Mechanism of lymph node metastasis in prostate cancer. Future Oncol 2010; 6:823-36. [PMID: 20465393 DOI: 10.2217/fon.10.33] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Detection of lymph node metastases indicates poor prognosis for prostate cancer patients. Therefore, elucidation of the mechanism(s) of lymph node metastasis is important to understand the progression of prostate cancer and also to develop therapeutic interventions. In this article, the known mechanisms for lymph node metastasis are discussed and the involvement of lymphatic vessels in prostate cancer lymph node metastasis is comprehensively summarized. In addition, contradictory findings regarding the importance of lymphangiogenesis in facilitating lymph node metastasis in prostate cancer are pointed out and reconcilation is attempted.
Collapse
Affiliation(s)
- Kaustubh Datta
- Department of Biochemistry & Molecular Biology, Gugg 17-93, Mayo Clinic Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
91
|
Emmett MS, Symonds KE, Rigby H, Cook MG, Price R, Metcalfe C, Orlando A, Bates DO. Prediction of melanoma metastasis by the Shields index based on lymphatic vessel density. BMC Cancer 2010; 10:208. [PMID: 20478045 PMCID: PMC2891632 DOI: 10.1186/1471-2407-10-208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 05/17/2010] [Indexed: 02/05/2023] Open
Abstract
Background Melanoma usually presents as an initial skin lesion without evidence of metastasis. A significant proportion of patients develop subsequent local, regional or distant metastasis, sometimes many years after the initial lesion was removed. The current most effective staging method to identify early regional metastasis is sentinel lymph node biopsy (SLNB), which is invasive, not without morbidity and, while improving staging, may not improve overall survival. Lymphatic density, Breslow's thickness and the presence or absence of lymphatic invasion combined has been proposed to be a prognostic index of metastasis, by Shields et al in a patient group. Methods Here we undertook a retrospective analysis of 102 malignant melanomas from patients with more than five years follow-up to evaluate the Shields' index and compare with existing indicators. Results The Shields' index accurately predicted outcome in 90% of patients with metastases and 84% without metastases. For these, the Shields index was more predictive than thickness or lymphatic density. Alternate lymphatic measurement (hot spot analysis) was also effective when combined into the Shields index in a cohort of 24 patients. Conclusions These results show the Shields index, a non-invasive analysis based on immunohistochemistry of lymphatics surrounding primary lesions that can accurately predict outcome, is a simple, useful prognostic tool in malignant melanoma.
Collapse
Affiliation(s)
- Maxine S Emmett
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Liersch R, Biermann C, Mesters RM, Berdel WE. Lymphangiogenesis in cancer: current perspectives. Recent Results Cancer Res 2010; 180:115-35. [PMID: 20033381 DOI: 10.1007/978-3-540-78281-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the lymphatic system has been initially described in the sixteenth century, basic research has been limited. Despite its importance for the maintenance of tissue fluid homeostasis and for the afferent immune response, research of the molecular mechanisms of lymphatic vessel formation and function has for a long time been hampered. One reason could be because of the difficulties of visibility due to the lack of lymphatic markers. But since the discovery of several molecules specifically expressed in lymphatic endothelial cells, a rediscovery of the lymphatic vasculature has taken place. New scientific insights has facilitated detailed analysis of the nature and organization of the lymphatic system in physiological and pathophysiological conditions, such as in chronic inflammation and metastatic cancer spread. Knowledge about the molecules that control lymphangiogenesis and tumor-associated lymphangiogenesis is now expanding, allowing better opportunities for the development of drugs interfering with the relevant signaling pathways. Advances in our understanding of the mechanisms have translated into a number of novel therapeutic studies.
Collapse
Affiliation(s)
- Rüediger Liersch
- Department of Medicine, Hematology/Oncology, University Hospital Münster, Albert-Schweitzer-str. 33, 48129, Münster, Germany.
| | | | | | | |
Collapse
|
93
|
|
94
|
Valero T, Steele S, Neumüller K, Bracher A, Niederleithner H, Pehamberger H, Petzelbauer P, Loewe R. Combination of dacarbazine and dimethylfumarate efficiently reduces melanoma lymph node metastasis. J Invest Dermatol 2009; 130:1087-94. [PMID: 19940857 DOI: 10.1038/jid.2009.368] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dimethylfumarate (DMF) has been shown to reduce melanoma growth and metastasis in animal models. We addressed the question of whether DMF is as effective in its antitumor activity as the US Food and Drug Administration-approved alkylating agent dacarbazine (DTIC). We also tested the possibility of an improved antitumoral effect when both therapeutics were used together. Using our severe combined immunodeficiency (SCID) mouse model, in which xenografted human melanoma cells metastasize from primary skin sites to sentinel nodes, we show that these treatments, alone or in combination, reduce tumor growth at primary sites. Our main finding was that metastasis to sentinel nodes is significantly delayed only in mice treated with a combination of DTIC and DMF. Subsequent experiments were able to show that a combination of DTIC/DMF significantly reduced lymph vessel density in primary tumors as examined by real-time PCR and immunohistochemistry. In addition, DTIC/DMF treatment significantly impaired melanoma cell migration in vitro. In vivo, DTIC/DMF therapy significantly reduced mRNA expression and protein concentration of the promigratory chemokines CXCL2 and CXCL11. In addition, our data suggest that this xenotransplantation model is suitable for preclinical testing of various combinations of antimelanoma agents.
Collapse
Affiliation(s)
- Teresa Valero
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Yamashita M, Iwama N, Date F, Shibata N, Miki H, Yamauchi K, Sawai T, Sato S, Takahashi T, Ono M. Macrophages participate in lymphangiogenesis in idiopathic diffuse alveolar damage through CCL19-CCR7 signal. Hum Pathol 2009; 40:1553-63. [PMID: 19540558 DOI: 10.1016/j.humpath.2009.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 01/13/2023]
Affiliation(s)
- Masahiro Yamashita
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Metastasis is a characteristic trait of most tumour types and the cause for the majority of cancer deaths. Many tumour types, including melanoma and breast and prostate cancers, first metastasize via lymphatic vessels to their regional lymph nodes. Although the connection between lymph node metastases and shorter survival times of patients was made decades ago, the active involvement of the lymphatic system in cancer, metastasis has been unravelled only recently, after molecular markers of lymphatic vessels were identified. A growing body of evidence indicates that tumour-induced lymphangiogenesis is a predictive indicator of metastasis to lymph nodes and might also be a target for prevention of metastasis. This article reviews the current understanding of lymphangiogenesis in cancer anti-lymphangiogenic strategies for prevention and therapy of metastatic disease, quantification of lymphangiogenesis for the prognosis and diagnosis of metastasis and in vivo imaging technologies for the assessment of lymphatic vessels, drainage and lymph nodes.
Collapse
Affiliation(s)
- Viviane Mumprecht
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
97
|
Abstract
In this article we survey more than three centuries of observation and research into tumor-associated lymphatic vessels, and their role in the metastatic spread of cancer. This historical overview documents how questions regarding tumor lymphatics have been central to concepts about the process of metastasis, and how this has subsequently influenced the clinical treatment of cancer. In turn, we show how analysis of the efficacy of these treatments has challenged long-standing notions regarding the tumor lymphatics. Starting with the discovery of VEGFR-3 and its ligands VEGF-C and VEGF-D, we also review how the rapid developments over the last 15 years in the molecular analysis of the lymphatic system and in particular lymphangiogenesis have contributed to this debate. Finally we speculate on how apparently paradoxical bodies of evidence regarding the role of tumor lymphatics in determining patterns of metastatic spread might be reconciled.
Collapse
|
98
|
Royston D, Jackson DG. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J Pathol 2009; 217:608-19. [PMID: 19253334 DOI: 10.1002/path.2517] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The invasion of lymphatic vessels by colorectal cancer (CRC) and its subsequent spread to draining lymph nodes is a key determinant of prognosis in this common and frequently fatal malignancy. Although tumoural lymphangiogenesis is assumed to contribute to this process, review of the current literature fails to support any notion of a simple correlation between lymphatic vessel density and CRC metastasis. Furthermore, attempts to correlate the expression of various lymphangiogenic growth factors, most notably VEGF-C and VEGF-D, with the lymphatic metastasis of CRC have provided contradictory results. Recent evidence from animal and human models of tumour metastasis suggests that complex functional and biochemical interactions between the microvasculature of tumours and other cell types within the tumour microenvironment may play a pivotal role in the behaviour of commonly metastasizing tumours. Indeed, previous insights into tumoural blood vessels have provided candidate markers of tumoural angiogenesis that are currently the subject of intense investigation as future therapeutic targets. In this review article we survey the current evidence relating lymphangiogenesis and lymphangiogenic growth factor production to metastasis by CRC, and attempt to provide some insight into the apparent discrepancies within the literature. In particular, we also discuss some new and provocative insights into the properties of tumoural lymphatics suggesting that they have specific expression profiles distinct from those of normal lymphatic vessels and that appear to promote metastasis. These findings raise the exciting prospect of future biomarkers of lymphatic metastasis and identify potential targets for new generation anti-tumour therapies.
Collapse
Affiliation(s)
- Daniel Royston
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | |
Collapse
|
99
|
Lahat G, Lazar A, Wang X, Wang WL, Zhu QS, Hunt KK, Pollock RE, Lev D. Increased vascular endothelial growth factor-C expression is insufficient to induce lymphatic metastasis in human soft-tissue sarcomas. Clin Cancer Res 2009; 15:2637-46. [PMID: 19351758 DOI: 10.1158/1078-0432.ccr-08-2442] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Unlike carcinomas, soft-tissue sarcoma (STS) rarely exhibit lymphatic spread. Consequently, we examined expression and function of vascular endothelial growth factor (VEGF)-C and STS-associated lymphatic vessel density (LVD) components of this process. EXPERIMENTAL DESIGN VEGF-C and VEGF-A mRNA and VEGF-C protein expression were evaluated in STS, STS cell lines, and breast cancers (reverse transcription-PCR, quantitative reverse transcription-PCR, and ELISA). STS cell conditioned medium after VEGF-C knockdown was examined for endothelial cell proliferation and migration effects (MTS and migration assays). Paraffin-embedded human lymph node-negative and lymph node-positive STS and lymph node-negative and lymph node-positive breast cancers were examined for VEGF-C, D2-40, and CD31 expression (immunohistochemistry). LVD differences were analyzed by Wilcoxon rank-sum tests. RESULTS STS and breast cancer VEGF-C expression was comparable and higher than normal tissue levels. STS cells secreted functional VEGF-C: STS conditioned medium induced lymphatic endothelial cell proliferation and migration, which was abrogated by STS cell VEGF-C knockdown. STS and breast cancer intratumoral LVD was similar. STS peritumoral LVD (PT-LVD) was reduced versus breast cancer PT-LVD (P < 0.001). Significantly higher PT-LVD was observed in lymph node-positive versus lymph node-negative STS; lymphatic spreading STS subtypes also had higher LVD. STS VEGF-C expression and PT-LVD lacked correlation, and many lymph node-negative STS had high PT-LVD, suggesting complexity in this metastatic process. CONCLUSIONS Compared with breast cancers, STS exhibited lower PT-LVD independent of VEGF-C expression, which may underlie STS lymph node metastasis rarity. Moreover, lymphatic vessels appear necessary but not sufficient to sustain STS lymphatic spread. Examining STS "nonlymphatic" dissemination may help elucidate mechanisms of lymphatic spread, insights critically important to cancer metastasis control.
Collapse
Affiliation(s)
- Guy Lahat
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Eccles SA, Court W, Patterson L, Sanderson S. In vitro assays for endothelial cell functions related to angiogenesis: proliferation, motility, tubular differentiation, and proteolysis. Methods Mol Biol 2009; 467:159-81. [PMID: 19301670 DOI: 10.1007/978-1-59745-241-0_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter covers the breakdown of the process of angiogenesis into simple assays to measure discrete endothelial cell functions. The techniques described are suitable for studying stimulators or inhibitors of angiogenesis and determining which aspect of the process is modulated. The procedures outlined are robust and straightforward but cannot cover the complexity of the angiogenic process as a whole, incorporating as it does myriad positive and negative signals, three-dimensional interactions with host tissues and many accessory cells, including fibroblasts, macrophages, pericytes, and platelets. The extent to which in vitro assays predict responses in vivo (e.g., wound healing, tumor angiogenesis, or surrogate techniques such as Matrigel plugs, sponge implants, corneal assays, etc.) remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Centre for Cancer Therapeutics, McElwain Laboratories, Institute of Cancer Research, Surrey, UK
| | | | | | | |
Collapse
|