51
|
Prostate cancer chemoprevention in men of African descent: current state of the art and opportunities for future research. Cancer Causes Control 2013; 24:1465-80. [PMID: 23737026 DOI: 10.1007/s10552-013-0241-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 05/25/2013] [Indexed: 01/13/2023]
Abstract
Prostate cancer is the most frequently diagnosed malignancy in men. However, African American/Black men are 60 % more likely to be diagnosed with and 2.4 times more likely to die from prostate cancer, compared to Non-Hispanic White men. Despite the increased burden of this malignancy, no evidence-based recommendation regarding prostate cancer screening exists for the high-risk population. Moreover, in addition to screening and detection, African American men may constitute a prime population for chemoprevention. Early detection and chemoprevention may thus represent an integral part of prostate cancer control in this population. Importantly, recent research has elucidated biological differences in the prostate tumors of African American compared to European American men. The latter may enable a more favorable response in African American men to specific chemopreventive agents that target relevant signal transduction pathways. Based on this evolving evidence, the aims of this review are threefold. First, we aim to summarize the biological differences that were reported in the prostate tumors of African American and European American men. Second, we will review the single- and multi-target chemopreventive agents placing specific emphasis on the pathways implicated in prostate carcinogenesis. And lastly, we will discuss the most promising nutraceutical chemopreventive compounds. Our review underscores the promise of chemoprevention in prostate cancer control, as well as provides justification for further investment in this filed to ultimately reduce prostate cancer morbidity and mortality in this high-risk population of African American men.
Collapse
|
52
|
Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells. Cancers (Basel) 2013; 5:617-38. [PMID: 24216994 PMCID: PMC3730333 DOI: 10.3390/cancers5020617] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/14/2013] [Accepted: 05/15/2013] [Indexed: 11/17/2022] Open
Abstract
Osteopontin and MMP9 are implicated in angiogenesis and cancer progression. The objective of this study is to gain insight into the molecular mechanisms underlying angiogenesis, and to elucidate the role of osteopontin in this process. We report here that osteopontin/αvβ3 signaling pathway which involves ERK1/2 phosphorylation regulates the expression of VEGF. An inhibitor to MEK or curcumin significantly suppressed the phosphorylation of ERK1/2 and expression of VEGF. MMP9 knockdown reduces the secretion but not the expression of VEGF. Moreover, MMP9 knockdown increases the release of angiostatin, a key protein that suppresses angiogenesis. Conditioned media from PC3 cells treated with curcumin or MEK inhibitor inhibited tube formation in vitro in human microvascular endothelial cells. Similar inhibitory effect on tube formation was found with conditioned media collected from PC3 cells expressing mutant-osteopontin at integrin-binding site and knockdown of osteopontin or MMP9. We conclude that MMP9 activation is associated with angiogenesis via regulation of secretion of VEGF and angiostatin in PC3 cells. Curcumin is thus a potential drug for cancer treatment because it demonstrated anti-angiogenic and anti-invasive properties.
Collapse
|
53
|
Jia QA, Wang ZM, Ren ZG, Bu Y, Xie XY, Wang YH, Zhang L, Zhang QB, Xue TC, Deng LF, Tang ZY. Herbal compound "Songyou Yin" attenuates hepatoma cell invasiveness and metastasis through downregulation of cytokines secreted by activated hepatic stellate cells. Altern Ther Health Med 2013; 13:89. [PMID: 23622143 PMCID: PMC3639812 DOI: 10.1186/1472-6882-13-89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
Background Activated hepatic stellate cells (aHSCs) play an important role in the progression of hepatocellular carcinoma (HCC). Here, we determined if cytokines secreted in response to the herbal compound “Songyou Yin” (SYY) treatment of aHSCs could influence invasiveness and metastatic capabilities of hepatoma cells. Methods Primary rat hepatic stellate cells (HSCs) were isolated, activated, divided into SYY treated and untreated (nSYY) groups, and conditioned media (CM-SYY and CM-nSYY, respectively) were collected. The hepatoma cell line, McA-RH7777 was cultured for 4 weeks with SYY, CM-SYY, and CM-nSYY, designated McA-SYY, McA-SYYCM and McA-nSYYCM. The invasiveness and metastatic capabilities were evaluated using Matrigel invasion assay in vitro and pulmonary metastasis in vivo. Matrix metalloproteinase-2 (MMP-2), MMP-9, E-cadherin, N-cadherin, and vimentin protein levels in McA-SYYCM and McA-nSYYCM were evaluated by Western blot. Cytokine levels in conditioned media were tested using enzyme-linked immunosorbent assay (ELISA). Results Matrigel invasion assay indicated that the number of McA-SYYCM cells passing through the basement membrane was less than in McA-nSYYCM cells (P < 0.01). Similar results were also observed in vivo for lung metastasis. McA-SYYCM cells showed less pulmonary metastasis capabilities than McA-nSYYCM cells (P < 0.001). The reduced expression of MMP-2 and reversed epithelial to mesenchymal transition with E-cadherin upregulation, and N-cadherin and vimentin downregulation were also found in McA-SYYCM compared to McA-nSYYCM. Metastasis-promoting cytokines hepatocyte growth factor, interleukin-6, transforming growth factor-β1, and vascular endothelial growth factor were markedly decreased in CM-SYY compared to CM-nSYY. Conclusions SYY attenuates hepatoma cell invasiveness and metastasis capabilities through downregulating cytokines secreted by activated hepatic stellate cells.
Collapse
|
54
|
Cheng TS, Chen WC, Lin YY, Tsai CH, Liao CI, Shyu HY, Ko CJ, Tzeng SF, Huang CY, Yang PC, Hsiao PW, Lee MS. Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res (Phila) 2013; 6:495-505. [PMID: 23466486 DOI: 10.1158/1940-6207.capr-12-0293-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Curcumin has been shown to possess potent chemopreventive and antitumor effects on prostate cancer. However, the molecular mechanism involved in curcumin's ability to suppress prostate cancer cell invasion, tumor growth, and metastasis is not yet well understood. In this study, we have shown that curcumin can suppress epidermal growth factor (EGF)- stimulated and heregulin-stimulated PC-3 cell invasion, as well as androgen-induced LNCaP cell invasion. Curcumin treatment significantly resulted in reduced matrix metalloproteinase 9 activity and downregulation of cellular matriptase, a membrane-anchored serine protease with oncogenic roles in tumor formation and invasion. Our data further show that curcumin is able to inhibit the induction effects of androgens and EGF on matriptase activation, as well as to reduce the activated levels of matriptase after its overexpression, thus suggesting that curcumin may interrupt diverse signal pathways to block the protease. Furthermore, the reduction of activated matriptase in cells by curcumin was also partly due to curcumin's effect on promoting the shedding of matriptase into an extracellular environment, but not via altering matriptase gene expression. In addition, curcumin significantly suppressed the invasive ability of prostate cancer cells induced by matriptase overexpression. In xenograft model, curcumin not only inhibits prostate cancer tumor growth and metastasis but also downregulates matriptase activity in vivo. Overall, the data indicate that curcumin exhibits a suppressive effect on prostate cancer cell invasion, tumor growth, and metastasis, at least in part via downregulating matriptase function.
Collapse
Affiliation(s)
- Tai-Shan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, R817, 8F, No. 1, Section 1, Jen-Ai Rd., Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors 2013; 39:37-55. [PMID: 22996381 DOI: 10.1002/biof.1041] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
56
|
Kumar N, Chornokur G. Molecular Targeted Therapies Using Botanicals for Prostate Cancer Chemoprevention. TRANSLATIONAL MEDICINE (SUNNYVALE, CALIF.) 2012; Suppl 2:005. [PMID: 24527269 PMCID: PMC3920581 DOI: 10.4172/2161-1025.s2-005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In spite of the large number of botanicals demonstrating promise as potential cancer chemopreventive agents, most have failed to prove effectiveness in clinical trials. Critical requirements for moving botanical agents to recommendation for clinical use include adopting a systematic, molecular-target based approach and utilizing the same ethical and rigorous methods that are used to evaluate other pharmacological agents. Preliminary data on a mechanistic rationale for chemoprevention activity as observed from epidemiological, in vitro and preclinical studies, phase I data of safety in suitable cohorts, duration of intervention based on time to progression of pre-neoplastic disease to cancer and using a valid panel of biomarkers representing the hypothesized carcinogenesis pathway for measuring efficacy must inform the design of clinical trials. Botanicals have been shown to influence multiple biochemical and molecular cascades that inhibit mutagenesis, proliferation, induce apoptosis, suppress the formation and growth of human cancers, thus modulating several hallmarks of carcinogenesis. These agents appear promising in their potential to make a dramatic impact in cancer prevention and treatment, with a significantly superior safety profile than most agents evaluated to date. The goal of this paper is to provide models of translational research based on the current evidence of promising botanicals with a specific focus on targeted therapies for PCa chemoprevention.
Collapse
Affiliation(s)
- Nagi Kumar
- Department of Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Florida, USA ; University of South Florida College of Medicine, Florida, USA
| | - Ganna Chornokur
- Department of Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Florida, USA
| |
Collapse
|
57
|
Pratheeshkumar P, Son YO, Budhraja A, Wang X, Ding S, Wang L, Hitron A, Lee JC, Kim D, Divya SP, Chen G, Zhang Z, Luo J, Shi X. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One 2012; 7:e52279. [PMID: 23300633 PMCID: PMC3534088 DOI: 10.1371/journal.pone.0052279] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Young-Ok Son
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xin Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Songze Ding
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lei Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Andrew Hitron
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Donghern Kim
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sasidharan Padmaja Divya
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Gang Chen
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jia Luo
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
58
|
Abstract
There is a need for developing improved therapeutic options for the management of prostate cancer, able to inhibit proliferation of precancerous and malignant lesions and/or to improve the effectiveness of conventional chemopreventive and chemotherapeutic agents. In this perspective, application of nanotechnology based strategies for the delivery of natural compounds for effective management of the disease is being actively researched. Here, after highlighting the most promising natural compounds for chemoprevention and chemotherapy of prostate cancer, the state of the art nanotherapeutics and the recent proof-of-concept of "nanochemoprevention", as well as the clinical development of promising targeted nanoprototypes for use in the prostate cancer treatment are being discussed.
Collapse
|
59
|
Horie S. Chemoprevention of prostate cancer: soy isoflavones and curcumin. Korean J Urol 2012; 53:665-72. [PMID: 23136625 PMCID: PMC3490085 DOI: 10.4111/kju.2012.53.10.665] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/28/2012] [Indexed: 01/26/2023] Open
Abstract
The burden of increasing morbidity and mortality due to prostate cancer imposes a need for new, effective measures of prevention in daily life. The influence of lifestyle on carcinogenesis in Asian men who migrate to Western cultures supports a causal role for dietary, environmental, and genetic factors in the epidemiology of prostate cancer. Chemoprevention, a prophylactic approach that uses nontoxic natural or synthetic compounds to reverse, inhibit, or prevent cancer by targeting specific steps in the carcinogenic pathway, is gaining traction among health care practitioners. Soy isoflavones and curcumin, staples of the Asian diet, have shown promise as functional factors for the chemoprevention of prostate cancer because of their ability to modulate multiple intracellular signaling pathways, including cellular proliferation, apoptosis, inflammation, and androgen receptor signaling. Recent evidence has revealed the DNA damage response (DDR) to be one of the earliest events in the multistep progression of human epithelial carcinomas to invasive malignancy. Soy isoflavones and curcumin activate the DDR, providing an opportunity and rationale for the clinical application of these nutraceuticals in the chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- Shigeo Horie
- Department of Urology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
60
|
Limonta P, Montagnani Marelli M, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev 2012; 33:784-811. [PMID: 22778172 DOI: 10.1210/er.2012-1014] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crucial role of pituitary GnRH receptors (GnRH-R) in the control of reproductive functions is well established. These receptors are the target of GnRH agonists (through receptor desensitization) and antagonists (through receptor blockade) for the treatment of steroid-dependent pathologies, including hormone-dependent tumors. It has also become increasingly clear that GnRH-R are expressed in cancer tissues, either related (i.e. prostate, breast, endometrial, and ovarian cancers) or unrelated (i.e. melanoma, glioblastoma, lung, and pancreatic cancers) to the reproductive system. In hormone-related tumors, GnRH-R appear to be expressed even when the tumor has escaped steroid dependence (such as castration-resistant prostate cancer). These receptors are coupled to a G(αi)-mediated intracellular signaling pathway. Activation of tumor GnRH-R by means of GnRH agonists elicits a strong antiproliferative, antimetastatic, and antiangiogenic (more recently demonstrated) activity. Interestingly, GnRH antagonists have also been shown to elicit a direct antitumor effect; thus, these compounds behave as antagonists of GnRH-R at the pituitary level and as agonists of the same receptors expressed in tumors. According to the ligand-induced selective-signaling theory, GnRH-R might assume various conformations, endowed with different activities for GnRH analogs and with different intracellular signaling pathways, according to the cell context. Based on these consistent experimental observations, tumor GnRH-R are now considered a very interesting candidate for novel molecular, GnRH analog-based, targeted strategies for the treatment of tumors expressing these receptors. These agents include GnRH agonists and antagonists, GnRH analog-based cytotoxic (i.e. doxorubicin) or nutraceutic (i.e. curcumin) hybrids, and GnRH-R-targeted nanoparticles delivering anticancer compounds.
Collapse
Affiliation(s)
- Patrizia Limonta
- Section of Biomedicine and Endocrinology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
61
|
Kumar D, Kumar M, Saravanan C, Singh SK. Curcumin: a potential candidate for matrix metalloproteinase inhibitors. Expert Opin Ther Targets 2012; 16:959-72. [PMID: 22913284 DOI: 10.1517/14728222.2012.710603] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. AREAS COVERED Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? EXPERT OPINION Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.
Collapse
Affiliation(s)
- Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology, Varanasi-221005, India
| | | | | | | |
Collapse
|
62
|
Hussain A, Harish G, Prabhu SA, Mohsin J, Khan MA, Rizvi TA, Sharma C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitors of matrix metalloproteinase-1 expression. Cancer Epidemiol 2012; 36:e387-93. [PMID: 22884883 DOI: 10.1016/j.canep.2012.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/14/2012] [Accepted: 07/10/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND One of the most challenging stumbling blocks for the treatment of cancer is the ability of cancer cells to break the natural barriers and spread from its site of origin to non-adjacent regional and distant sites, accounting for high cancer mortality rates. Gamut experimental and epidemiological data advocate the use of pharmacological or nutritional interventions to inhibit or delay various stage(s) of cancer such as invasion and metastasis. Genistein, a promising chemopreventive agent, has gained considerable attention for its powerful anti-carcinogenic, anti-angiogenic and chemosensitizing activities. METHODS In this study, the cytotoxic potential of genistein on HeLa cells by cell viability assay and the mode of cell death induced by genistein were determined by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Moreover, to establish its inhibitory effect on migration of HeLa cells, scratch wound assay was performed and these results were correlated with the expression of genes involved in invasion and migration (MMP-9 and TIMP-1) by RT-PCR. RESULTS The exposure of HeLa cells to genistein resulted in significant dose- and time-dependent growth inhibition, which was found to be mediated by apoptosis and cell cycle arrest at G(2)/M phase. In addition, it induced migration-inhibition in a time-dependent manner by modulating the expression of MMP-9 and TIMP-1. CONCLUSION Our results signify that genistein may be an effective anti-neoplastic agent to prevent cancer cell growth and invasion and metastasis. Therefore therapeutic strategies utilizing genistein could be developed to substantially reduce cancer morbidity and mortality.
Collapse
Affiliation(s)
- Arif Hussain
- Department of Biotechnology, Manipal University, PO Box 345050, Dubai, United Arab Emirates
| | | | | | | | | | | | | |
Collapse
|
63
|
Sun M, Su X, Ding B, He X, Liu X, Yu A, Lou H, Zhai G. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond) 2012; 7:1085-100. [PMID: 22846093 DOI: 10.2217/nnm.12.80] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Curcumin (CUR), a bioactive component of turmeric, which is a commonly used spice and nutritional supplement, is isolated from the rhizomes of Curcuma longa Linn. (Zingiberaceae). In recent years, the potential pharmacological actions of CUR in inflammatory disorders, cardiovascular disease, cancer, Alzheimer’s disease and neurological disorders have been shown. However, the clinical application of CUR is severely limited by its main drawbacks such as instability, low solubility, poor bioavailability and rapid metabolism. Multifarious nanotechnology-based delivery approaches have been used to enhance the oral bioavailability, biological activity or tissue-targeting ability of CUR. This article reviews potential novel drug delivery systems for CUR including liposomes, polymeric nanoparticles, solid lipid nanoparticles, micelles, nanogels, nanosuspensions, nanoemulsions, complexes and dendrimer/dimer, which provide promising results for CUR to improve its biological activities.
Collapse
Affiliation(s)
- Min Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Department of Pharmacy, Central Hospital of Zibo, Zibo 255036, China
| | - Xun Su
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Buyun Ding
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiuli He
- Department of Pharmacy, The Affiliated Hospital of Shandong Medical Institution, Jinan 250031, China
| | - Xiuju Liu
- Department of Pharmacy, Shandong Province Hospital, Jinan 250022, China
| | - Aihua Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
64
|
Polyphenols: key issues involved in chemoprevention of prostate cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:632959. [PMID: 22690272 PMCID: PMC3368543 DOI: 10.1155/2012/632959] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/21/2012] [Accepted: 03/28/2012] [Indexed: 12/11/2022]
Abstract
Prostate cancer is is the most common solid neoplasm and it is now recognized as one of the most important medical problems facing the male population. Due to its long latency and its identifiable preneoplastic lesions, prostate cancer is an ideal target tumor for chemoprevention. Different compounds are available and certainly polyphenols represent those with efficacy against prostate cancer. This review take a look at activity and properties of major polyphenolic substances, such as epigallocatechin-3-gallate, curcumin, resveratrol and the flavonoids quercetin and genistein. Although the current studies are limited, mechanisms of action of polyphenols added with the lack of side effects show a a start for future strategies in prostate chemoprevention.
Collapse
|
65
|
Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 2012; 38:76-87. [DOI: 10.1016/j.ctrv.2011.03.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 03/03/2011] [Accepted: 03/13/2011] [Indexed: 02/07/2023]
|
66
|
Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med 2011; 6:31. [PMID: 21859497 PMCID: PMC3177878 DOI: 10.1186/1749-8546-6-31] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 08/23/2011] [Indexed: 02/08/2023] Open
Abstract
Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive, antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin encompass the members of epidermal growth factor receptors (EGFR and erbB2), sonic hedgehog (SHH)/GLIs and Wnt/β-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-κB) and signal transducers and activators of transcription (STATs). In counterbalance, the high metabolic instability and poor systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance, eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and chemotherapeutic treatments for patients with various aggressive and lethal cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
67
|
Tung YT, Chen HL, Lai CW, Shen CJ, Lai YW, Chen CM. Curcumin reduces pulmonary tumorigenesis in vascular endothelial growth factor (VEGF)-overexpressing transgenic mice. Mol Nutr Food Res 2011; 55:1036-43. [DOI: 10.1002/mnfr.201000654] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/13/2011] [Accepted: 02/22/2011] [Indexed: 11/06/2022]
|
68
|
Wu W, Shen J, Banerjee P, Zhou S. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials 2010; 32:598-609. [PMID: 20933280 DOI: 10.1016/j.biomaterials.2010.08.112] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/31/2010] [Indexed: 12/28/2022]
Abstract
We design a class of water-dispersible hybrid nanogels for intracellular delivery of hydrophobic curcumin. The core-shell structured hybrid nanogels were synthesized by coating the Ag/Au bimetallic nanoparticles (NPs) with a hydrophobic polystyrene (PS) gel layer as inner shell, and a subsequent thin hydrophilic nonlinear poly(ethylene glycol) (PEG)-based gel layer as outer shell. The uniqueness of these hybrid nanogels lies in the integration of the functional building blocks for combined curcumin and photothermal therapy to significantly improve the therapeutic efficacy. The Ag/Au core NPs cannot only emit strong fluorescence for imaging and monitoring at the cellular level, but also exhibit strong absorption in the near-infrared (NIR) region for photothermal conversion. While the inner PS gel layer is introduced to provide strong hydrophobic interactions with curcumin for high drug loading yields, the external nontoxic and thermo-responsive PEG analog gel layer is designed to trigger the release of the pre-loaded curcumin either by variation of surrounding temperature or exogenous irradiation with NIR light. Such designed multifunctional hybrid nanogels are well suited for in vivo studies and clinical trials, thereby likely to bring this promising natural medicine of curcumin to the forefront of therapeutic agents for cancers and other diseases.
Collapse
Affiliation(s)
- Weitai Wu
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|
69
|
Aung CS, Hill MM, Bastiani M, Parton RG, Parat MO. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur J Cell Biol 2010; 90:136-42. [PMID: 20732728 DOI: 10.1016/j.ejcb.2010.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/28/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022] Open
Abstract
Caveolae are specialized plasma membrane subdomains with a distinct lipid and protein composition, which play an essential role in cell physiology by performing trafficking and signalling functions. The structure and functions of caveolae have been shown to require caveolin-1, a major protein component of caveolae. Caveolin-1 expression and secretion are increased in metastatic prostate cancer, and caveolin-1 seems to contribute to prostate cancer growth and metastasis. Recently, a cytoplasmic protein named PTRF (Polymerase I and Transcript Release Factor) or cavin-1 was found to be required, in concert with caveolin-1, for the formation and functions of caveolae. Genetic ablation of PTRF results in loss of caveolae while caveolin-1 is still expressed, albeit at reduced level, but associates with flat plasma membrane. In metastatic PC3 prostate cancer cells that express abundant caveolin-1 but no PTRF, heterologous PTRF expression restores caveola formation and caveolin-1 distribution (Hill et al., 2008; Cell 132, 113-124). We now show that PTRF/cavin-1-expressing PC3 cells exhibit decreased migration, and that this effect is mediated by reduced MMP9 production. PTRF/cavin-1, and to a lesser extent, cavin-2, -3, and -4 all decreased MMP9. We further show that the PTRF/cavin-1-mediated reduction of MMP9 production is independent of caveola formation. Taken together, our results suggest that PTRF/cavin-1 expression alters prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Cho Sanda Aung
- University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | | | |
Collapse
|
70
|
Bisht S, Mizuma M, Feldmann G, Ottenhof N, Hong SM, Pramanik D, Chenna V, Karikari C, Sharma R, Goggins MG, Rudek MA, Ravi R, Maitra A, Maitra A. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 2010; 9:2255-64. [PMID: 20647339 PMCID: PMC2942082 DOI: 10.1158/1535-7163.mct-10-0172] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin or diferuloylmethane is a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa). A large volume (several hundreds) of published reports has established the anticancer and chemopreventative properties of curcumin in preclinical models of every known major cancer type. Nevertheless, the clinical translation of curcumin has been significantly hampered due to its poor systemic bioavailability, which mandates that patients consume up to 8 to 10 g of the free drug orally each day to achieve detectable levels in circulation. We have engineered a polymeric nanoparticle encapsulated curcumin formulation (NanoCurc) that shows remarkably higher systemic bioavailability in plasma and tissues compared with free curcumin upon parenteral administration. In xenograft models of human pancreatic cancer established in athymic mice, administration of parenteral NanoCurc significantly inhibits primary tumor growth in both subcutaneous and orthotopic settings. The combination of parenteral NanoCurc with gemcitabine results in enhanced tumor growth inhibition versus either single agent, suggesting an additive therapeutic influence in vivo. Furthermore, this combination completely abrogates systemic metastases in orthotopic pancreatic cancer xenograft models. Tumor growth inhibition is accompanied by significant reduction in activation of nuclear factor-kappaB, as well as significant reduction in expression of matrix metalloproteinase-9 and cyclin D1, in xenografts treated with NanoCurc and gemcitabine. NanoCurc is a promising new formulation that is able to overcome a major impediment for the clinical translation of curcumin to cancer patients by improving systemic bioavailability, and by extension, therapeutic efficacy.
Collapse
Affiliation(s)
- Savita Bisht
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Masamichi Mizuma
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Georg Feldmann
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Internal Medicine III, Center of Integrated Oncology Cologne-Bonn, University of Bonn, Germany
| | - Niki Ottenhof
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | | | - Dipankar Pramanik
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Venugopal Chenna
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Collins Karikari
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rajni Sharma
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Michael G. Goggins
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rajani Ravi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | - Anirban Maitra
- The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
71
|
Lu C, Song E, Hu DN, Chen M, Xue C, Rosen R, McCormick SA. Curcumin Induces Cell Death in Human Uveal Melanoma Cells through Mitochondrial Pathway. Curr Eye Res 2010; 35:352-60. [DOI: 10.3109/02713680903521944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
72
|
Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. Eur J Pharmacol 2010; 627:8-15. [DOI: 10.1016/j.ejphar.2009.09.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022]
|
73
|
Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2010; 2:128-62. [PMID: 22069551 PMCID: PMC3206621 DOI: 10.3390/toxins2010128] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 02/07/2023] Open
Abstract
As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments.
Collapse
|
74
|
|
75
|
Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem 2009; 336:85-95. [DOI: 10.1007/s11010-009-0269-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 09/15/2009] [Indexed: 01/15/2023]
|
76
|
Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M. Chemopreventive potential of curcumin in prostate cancer. GENES AND NUTRITION 2009; 5:61-74. [PMID: 19806380 DOI: 10.1007/s12263-009-0152-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an overview of the chemopreventive potential of curcumin (diferuloylmethane), a well-known natural compound that exhibits therapeutic promise for prostate cancer. In fact, it interferes with prostate cancer proliferation and metastasis development through the down-regulation of androgen receptor and epidermal growth factor receptor, but also through the induction of cell cycle arrest. It regulates the inflammatory response through the inhibition of pro-inflammatory mediators and the NF-kappaB signaling pathway. These results are consistent with this compound's ability to up-induce pro-apoptotic proteins and to down-regulate the anti-apoptotic counterparts. Alone or in combination with TRAIL-mediated immunotherapy or radiotherapy, curcumin is also reported to be a good inducer of prostate cancer cell death by apoptosis. Curcumin appears thus as a non-toxic alternative for prostate cancer prevention, treatment or co-treatment.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, 2540 Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
77
|
Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 2009; 125:1-8. [PMID: 19326431 DOI: 10.1002/ijc.24336] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing interest in the use of phytochemicals to reduce prostate cancer led us to investigate 2 potential agents, curcumin and resveratrol as preventive agents. However, there is concern about the bioavailability of these agents pertinent to the poor absorption and thereby limiting its clinical use. With the view to improve their bioavailability, we used the liposome encapsulated curcumin, and resveratrol individually and in combination in male B6C3F1/J mice. Further, we examined the chemopreventive effect of liposome encapsulated curcumin and resveratrol in combination in prostate-specific PTEN knockout mice. In vitro assays using PTEN-CaP8 cancer cells were performed to investigate the combined effects curcumin with resveratrol on (i) cell growth, apoptosis and cell cycle (ii) impact on activated p-Akt, cyclin D1, m-TOR and androgen receptor (AR) proteins involved in tumor progression. HPLC analysis of serum and prostate tissues showed a significant increase in curcumin level when liposome encapsulated curcumin coadministered with liposomal resveratrol (p < 0.001). Combination of liposomal forms of curcumin and resveratrol significantly decreased prostatic adenocarcinoma in vivo (p < 0.001). In vitro studies revealed that curcumin plus resveratrol effectively inhibit cell growth and induced apoptosis. Molecular targets activated due to the loss of phosphatase and tensin homolog (PTEN) including p-Akt, cyclin D1, mammalian target of rapamycin and AR were downregulated by these agents in combination. Findings from this study for the first time provide evidence on phytochemicals in combination to enhance chemopreventive efficacy in prostate cancer. These findings clearly suggest that phytochemicals in combination may reduce prostate cancer incidence due to the loss of the tumor suppressor gene PTEN.
Collapse
Affiliation(s)
- Narayanan K Narayanan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | | | | | | |
Collapse
|
78
|
Purkayastha S, Berliner A, Fernando SS, Ranasinghe B, Ray I, Tariq H, Banerjee P. Curcumin blocks brain tumor formation. Brain Res 2009; 1266:130-8. [DOI: 10.1016/j.brainres.2009.01.066] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 10/21/2022]
|
79
|
Huang XY, Wang L, Huang ZL, Zheng Q, Li QS, Tang ZY. Herbal extract "Songyou Yin" inhibits tumor growth and prolongs survival in nude mice bearing human hepatocellular carcinoma xenograft with high metastatic potential. J Cancer Res Clin Oncol 2009; 135:1245-55. [PMID: 19277711 DOI: 10.1007/s00432-009-0566-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/16/2009] [Indexed: 12/20/2022]
Abstract
PURPOSE Chinese herbs have become a focus of interest in cancer treatment. This study evaluates the effect of the herbal compound extract "Songyou Yin" (containing Salvia miltiorrhiza Bge.-danshen and other four herbs) on hepatocellular carcinoma (HCC). METHODS Human HCC cell line MHCC97H with high-metastatic potential was employed for in vitro study. In vivo study was conducted in nude mice bearing HCC orthotopic xenograft with MHCC97H. RESULTS In vitro, "Songyou Yin" caused dramatic attenuation of tumor proliferation by induction of apoptosis that was associated with caspase-3 activation, and inhibit invasiveness of MHCC97H via reducing matrix metalloproteinase-2 (MMP2) activity. In vivo, "Songyou Yin" minimized cancer-related body weight loss of mice bearing tumors without distinct toxicity, and inhibited tumor growth with stepwise increased dosage of "Songyou Yin" and accorded with the expression of proliferating cell nuclear antigen. Moreover, "Songyou Yin" inhibited tumor growth was associated with an increased TUNEL-positive apoptosis as well as a decreased microvessel density and vascular endothelial growth factor (VEGF) abundance, and inhibited tumor invasion via down-regulation of MMP2. The lung metastatic extent was decreased (p < 0.01, compared with control). The life span of nude mice bearing xenografts was 75.0 +/- 3.9 days in "Songyou Yin" group, whereas it was 52.0 +/- 2.3 days in the control (p < 0.001). CONCLUSIONS Nontoxic herbal compound extract "Songyou Yin" inhibited tumor growth and prolonged survival, via inducing apoptosis and down-regulation of MMP2 and VEGF, which indicated its potential use in patients with advanced HCC.
Collapse
Affiliation(s)
- Xiu-Yan Huang
- Department of General Surgery, The 6th People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | |
Collapse
|
80
|
Goel A, Jhurani S, Aggarwal BB. Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 2009; 52:1010-30. [PMID: 18384098 DOI: 10.1002/mnfr.200700354] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although traditional medicines have been used for thousands of years, for most such medicines neither the active component nor their molecular targets have been very well identified. Curcumin, a yellow component of turmeric or curry powder, however, is an exception. Although inhibitors of cyclooxygenase-2, HER2, tumor necrosis factor, EGFR, Bcr-abl, proteosome, and vascular endothelial cell growth factor have been approved for human use by the United States Food and Drug Administration (FDA), curcumin as a single agent can down-regulate all these targets. Curcumin can also activate apoptosis, down-regulate cell survival gene products, and up-regulate p53, p21, and p27. Although curcumin is poorly absorbed after ingestion, multiple studies have suggested that even low levels of physiologically achievable concentrations of curcumin may be sufficient for its chemopreventive and chemotherapeutic activity. Thus, curcumin regulates multiple targets (multitargeted therapy), which is needed for treatment of most diseases, and it is inexpensive and has been found to be safe in human clinical trials. The present article reviews the key molecular mechanisms of curcumin action and compares this to some of the single-targeted therapies currently available for human cancer.
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
81
|
López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52 Suppl 1:S103-27. [PMID: 18496811 DOI: 10.1002/mnfr.200700238] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that curcumin, the major active constituent of the dietary spice turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that curcumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. In vitro studies have demonstrated that curcumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor effects in people with precancerous lesions or who are at a high risk for developing cancer. This seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemoprevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effectiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo cancer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are also discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Sevilla, Spain.
| |
Collapse
|
82
|
Barve A, Khor TO, Hao X, Keum YS, Yang CS, Reddy B, Kong ANT. Murine prostate cancer inhibition by dietary phytochemicals--curcumin and phenyethylisothiocyanate. Pharm Res 2008; 25:2181-9. [PMID: 18437538 PMCID: PMC3465714 DOI: 10.1007/s11095-008-9574-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Prior studies from our laboratory have demonstrated the efficacy of a combined treatment of low doses of dietary agents curcumin and phenylethylisothiocyanate in effectively suppressing prostate cancer in vitro in human prostate cancer PC3 cells as well as in vivo in immunodeficient mice implanted with PC3 cells. Hence, this study was undertaken to examine the potential chemopreventive properties of the two agents against transgenic adenocarcinoma of the mouse prostate. MATERIALS AND METHODS The efficacy of AIN-76A diet supplemented with 2% curcumin or 0.05% PEITC or a combination of 1% curcumin and 0.025% PEITC for periods of 10 and 16 weeks was tested against adenocarcinoma of the mouse prostate. Immunohistochemistry and Western blot analysis were used to examine the expression of proliferation and apoptotic biomarkers. All statistical tests were two-sided. RESULTS Supplementing AIN-76A diet with dietary phytochemicals curcumin or PEITC either alone or in combination, significantly decreased incidence of prostate tumor formation (P = 0.0064). Immunohistochemistry revealed a significant inhibition of high-grade PIN (P = 0.0006, 0.000069, 0.00029 for a treatment period of 10 weeks and P = 0.02582, 0.022179, 0.0317 for a treatment period of 16 weeks) along with decreased proliferation and increased apoptotic index in the curcumin, PEITC or curcumin and PEITC treated animals, respectively. Furthermore, Western blot analysis revealed that downregulation of the Akt signaling pathway may in part play a role in decreasing cell proliferation ultimately retarding prostate tumor formation. CONCLUSION Our data lucidly evidence the chemopreventive merits of dietary phytochemicals curcumin and PEITC in suppressing prostate adenocarcinoma.
Collapse
Affiliation(s)
- Avantika Barve
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett 2008; 267:133-64. [DOI: 10.1016/j.canlet.2008.03.025] [Citation(s) in RCA: 752] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/07/2023]
|
84
|
Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 2008; 269:199-225. [PMID: 18479807 DOI: 10.1016/j.canlet.2008.03.009] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/16/2008] [Accepted: 03/03/2008] [Indexed: 12/23/2022]
Abstract
Because most cancers are caused by dysregulation of as many as 500 different genes, agents that target multiple gene products are needed for prevention and treatment of cancer. Curcumin, a yellow coloring agent in turmeric, has been shown to interact with a wide variety of proteins and modify their expression and activity. These include inflammatory cytokines and enzymes, transcription factors, and gene products linked with cell survival, proliferation, invasion, and angiogenesis. Curcumin has been found to inhibit the proliferation of various tumor cells in culture, prevents carcinogen-induced cancers in rodents, and inhibits the growth of human tumors in xenotransplant or orthotransplant animal models either alone or in combination with chemotherapeutic agents or radiation. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. These aspects of curcumin are discussed further in detail in this review.
Collapse
|
85
|
Abstract
Curcumin (diferuloylmethane) is an orange-yellow component of turmeric (Curcuma longa), a spice often found in curry powder. In recent years, considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders without any side effects. It is one of the major curcuminoids of turmeric, which impart its characteristic yellow colour. It was used in ancient times on the Indian subcontinent to treat various illnesses such as rheumatism, body ache, skin diseases, intestinal worms, diarrhoea, intermittent fevers, hepatic disorders, biliousness, urinary discharges, dyspepsia, inflammations, constipation, leukoderma, amenorrhea, and colic. Curcumin has the potential to treat a wide variety of inflammatory diseases including cancer, diabetes, cardiovascular diseases, arthritis, Alzheimer's disease, psoriasis, etc, through modulation of numerous molecular targets. This article reviews the use of curcumin for the chemoprevention and treatment of various diseases.
Collapse
Affiliation(s)
- Leelavinothan Pari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | |
Collapse
|
86
|
Bhat TA, Singh RP. Tumor angiogenesis – A potential target in cancer chemoprevention. Food Chem Toxicol 2008; 46:1334-45. [DOI: 10.1016/j.fct.2007.08.032] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 07/06/2007] [Accepted: 08/22/2007] [Indexed: 01/11/2023]
|
87
|
Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 2008; 10:511-45. [PMID: 18370854 DOI: 10.1089/ars.2007.1769] [Citation(s) in RCA: 437] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin is a natural polyphenol used in ancient Asian medicine. Since the first article referring to the use of curcumin to treat human disease was published in The Lancet in 1937, >2,600 research studies using curcumin or turmeric have been published in English language journals. The mechanisms implicated in the inhibition of tumorigenesis by curcumin are diverse and appear to involve a combination of antiinflammatory, antioxidant, immunomodulatory, proapoptotic, and antiangiogenic properties via pleiotropic effects on genes and cell-signaling pathways at multiple levels. The potentially adverse sequelae of curcumin's effects on proapoptotic genes, particularly p53, represent a cause for current debate. When curcumin is combined with some cytotoxic drugs or certain other diet-derived polyphenols, synergistic effects have been demonstrated. Although curcumin's low systemic bioavailability after oral dosing may limit access of sufficient concentrations for pharmacologic effects in tissues outside the gastrointestinal tract, chemical analogues and novel delivery methods are in preclinical development to overcome this barrier. This article provides an overview of the extensive published literature on the use of curcumin as a therapy for malignant and inflammatory diseases and its potential use in the treatment of degenerative neurologic diseases, cystic fibrosis, and cardiovascular diseases. Despite the breadth of the coverage, particular emphasis is placed on the prevention and treatment of human cancers.
Collapse
|
88
|
Abstract
It is estimated that nearly one-third of all cancer deaths in the United States could be prevented through appropriate dietary modification. Various dietary antioxidants have shown considerable promise as effective agents for cancer prevention by reducing oxidative stress which has been implicated in the development of many diseases, including cancer. Therefore, for reducing the incidence of cancer, modifications in dietary habits, especially by increasing consumption of fruits and vegetables rich in antioxidants, are increasingly advocated. Accumulating research evidence suggests that many dietary factors may be used alone or in combination with traditional chemotherapeutic agents to prevent the occurrence of cancer, their metastatic spread, or even to treat cancer. The reduced cancer risk and lack of toxicity associated with high intake of fruits and vegetables suggest that specific concentrations of antioxidant agents from these dietary sources may produce cancer chemopreventive effects without causing significant levels of toxicity. This review presents an extensive analysis of the key findings from studies on the effects of dietary antioxidants such as tea polyphenols, curcumin, genistein, resveratrol, lycopene, pomegranate, and lupeol against cancers of the skin, prostate, breast, lung, and liver. This research is also leading to the identification of novel cancer drug targets.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
89
|
Pucheault M. Natural products: chemical instruments to apprehend biological symphony. Org Biomol Chem 2007; 6:424-32. [PMID: 18219406 DOI: 10.1039/b713022h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As a striking variety of biological activities are elicited by natural products, these chemicals have been used for decades to study biological phenomena. Understanding how these products interfere with normal cell functions at a molecular level led to a wide range of discoveries including new signaling pathways and proteins. Moreover, as natural products often act as chemical inhibitors, such studies often allow the identification of their binding partners as relevant targets for drug design. This article aims to emphasize how natural products or engineered analogs can be used as chemical tools to apprehend some biological problems from the point of view of a chemical biologist.
Collapse
Affiliation(s)
- Mathieu Pucheault
- CPM UMR 6510, CNRS, Case 1003-Campus de Beaulieu, Université de Rennes, 1-35042, Rennes Cedex, France.
| |
Collapse
|
90
|
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic. Biochem Pharmacol 2007; 75:787-809. [PMID: 17900536 DOI: 10.1016/j.bcp.2007.08.016] [Citation(s) in RCA: 1481] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 02/06/2023]
Abstract
Although turmeric (Curcuma longa; an Indian spice) has been described in Ayurveda, as a treatment for inflammatory diseases and is referred by different names in different cultures, the active principle called curcumin or diferuloylmethane, a yellow pigment present in turmeric (curry powder) has been shown to exhibit numerous activities. Extensive research over the last half century has revealed several important functions of curcumin. It binds to a variety of proteins and inhibits the activity of various kinases. By modulating the activation of various transcription factors, curcumin regulates the expression of inflammatory enzymes, cytokines, adhesion molecules, and cell survival proteins. Curcumin also downregulates cyclin D1, cyclin E and MDM2; and upregulates p21, p27, and p53. Various preclinical cell culture and animal studies suggest that curcumin has potential as an antiproliferative, anti-invasive, and antiangiogenic agent; as a mediator of chemoresistance and radioresistance; as a chemopreventive agent; and as a therapeutic agent in wound healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary disease, and arthritis. Pilot phase I clinical trials have shown curcumin to be safe even when consumed at a daily dose of 12g for 3 months. Other clinical trials suggest a potential therapeutic role for curcumin in diseases such as familial adenomatous polyposis, inflammatory bowel disease, ulcerative colitis, colon cancer, pancreatic cancer, hypercholesteremia, atherosclerosis, pancreatitis, psoriasis, chronic anterior uveitis and arthritis. Thus, curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may prove to be "Curecumin".
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | | | | |
Collapse
|
91
|
Surh YJ, Chun KS. CANCER CHEMOPREVENTIVE EFFECTS OF CURCUMIN. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:149-72. [PMID: 17569209 DOI: 10.1007/978-0-387-46401-5_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemoprevention, which is referred to as the use of nontoxic natural or synthetic chemicals to intervene in multistage carcinogenesis, has emerged as a promising and pragmatic medical approach to reduce the risk of cancer. Numerous components of edible plants, collectively termed "phytochemicals" have been reported to possess substantial chemopreventive properties. Curcumin, a yellow coloring ingredient derived from Curcuma longa L. (Zingiberaceae), is one of the most extensively investigated and well-defined chemopreventive phytochemicals. Curcumin has been shown to protect against skin, oral, intestinal, and colon carcinogenesis and also to suppress angiogenesis and metastasis in a variety animal tumor models. It also inhibits the proliferation of cancer cells by arresting them in the various phases of the cell cycle and by inducing apoptosis. Moreover, curcumin has a capability to inhibit carcinogen bioactivation via suppression of specific cytochrome P450 isozymes, as well as to induce the activity or expression of phase II carcinogen detoxifying enzymes. Well-designed intervention studies are necessary to assess the chemopreventive efficacy of curcumin in normal individuals as well as high-risk groups. Sufficient data from pharmacodynamic as well as mechanistic studies are necessary to advocate clinical evaluation of curcumin for its chemopreventive potential.
Collapse
Affiliation(s)
- Young-Joon Surh
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, South Korea.
| | | |
Collapse
|
92
|
Kuttan G, Kumar KBH, Guruvayoorappan C, Kuttan R. Antitumor, anti-invasion, and antimetastatic effects of curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:173-84. [PMID: 17569210 DOI: 10.1007/978-0-387-46401-5_6] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Curcumin was found to be cytotoxic in nature to a wide variety of tumor cell lines of different tissue origin. The action of curcumin is dependent on with the cell type, the concentration of curcumin (IC50: 2-40 microg/mL), and the time of the treatment. The major mechanism by which curcumin induces cytotoxicity is the induction of apoptosis. Curcumin decreased the expression of antiapoptotic members of the Bcl-2 family and elevated the expression of p53, Bax, procaspases 3, 8, and 9. Curcumin prevents the entry of nuclear factor KB (NF-KB) into the nucleus there by decreasing the expression of cell cycle regulatory proteins and survival factors such as Bcl-2 and survivin. Curcumin arrested the cell cycle by preventing the expression of cyclin D1, cdk-1 and cdc-25. Curcumin inhibited the growth of transplantable tumors in different animal models and increased the life span of tumor-harboring animals. Curcumin inhibits metastasis of tumor cells as shown in in vitro as well as in vivo models, and the possible mechanism is the inhibition of matrix metalloproteases. Curcumin was found to suppress the expression of cyclooxygenase-2, vascular endothelial growth factor, and intercellular adhesion molecule- and elevated the expression of antimetastatic proteins, the tissue inhibitor of metalloproteases-2, nonmetastatic gene 23, and Ecadherin. These results indicate that curcumin acts at various stages of tumor cell progression.
Collapse
Affiliation(s)
- Girija Kuttan
- Department of Immunology, Amala Cancer Research Centre, Thrissur Kerala, India.
| | | | | | | |
Collapse
|
93
|
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, Texas, USA
| | | | | |
Collapse
|
94
|
Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, Zhang X. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neurooncol 2007; 85:263-70. [PMID: 17594054 DOI: 10.1007/s11060-007-9421-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Gliomas are the most common and lethal primary tumors of the central nervous system (CNS). Despite current rigorous treatment protocols, effect of chemotherapy has failed to improve patient outcome significantly. Curcumin is a potent antioxidant that possesses both anti-inflammatory and anti-tumor activities, can suppress the initiation, promotion, and metastasis of different tumors. Its anti-tumor properties in various cancer models and negligible toxicity in normal cells make it a promising chemotherapeutic candidate. But the effect and the molecular mechanism of curcumin on gliomas are still recognized limitedly. The goal of the study is to elucidate the inhibitory effect and possible mechanisms of curcumin on glioma. After the treatment of curcumin, glioma cells U251 growth in vitro were significantly inhibited in a dose-dependent manner, and the low dose of curcumin induced G2/M cell cycle arrest. The high dose of curcumin not only enhanced G2/M cell cycle arrest, but also induced S phase of cell cycle arrest. But no obvious pre-G1 peak was observed at the different doses of curcumin. Genome DNA electrophoresis further confirmed that no DNA ladder was formed after the treatment of curcumin in U251 cells. Results of Western blot analysis demonstrated that ING4 expression was almost undetectable in U251 cells, but significantly up-regulated during cell cycle arrest induced by curcumin, and p53 expression was up-regulated followed by induction of p21 WAF-1/CIP-1 and ING4. The results demonstrate that curcumin exerts inhibitory action on glioma cell growth and proliferation via induction of cell cycle arrest instead of induction of apoptosis in a p53-dependent manner, and ING4 possibly is in part involved in the signal pathways.
Collapse
Affiliation(s)
- Enyu Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University (Neurosurgical Institute of Chinese PLA), Xian, PR China
| | | | | | | | | | | | | |
Collapse
|
95
|
Tamler R, Mechanick JI. Dietary supplements and nutraceuticals in the management of andrologic disorders. Endocrinol Metab Clin North Am 2007; 36:533-52. [PMID: 17543734 DOI: 10.1016/j.ecl.2007.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Dietary supplements and nutraceuticals are commonly used by men with erectile dysfunction, decreased libido, BPH, and concerns about developing prostate cancer. Many preparations do not contain the advertised dosages of the active ingredient or are contaminated. Dietary supplements and nutraceuticals, particularly those addressing erectile dysfunction and libido, need to undergo rigorous testing before they can be wholeheartedly recommended.
Collapse
Affiliation(s)
- Ronald Tamler
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1055, New York, NY 10029, USA.
| | | |
Collapse
|
96
|
Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett 2007; 255:170-81. [PMID: 17448598 DOI: 10.1016/j.canlet.2007.03.005] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The most practical approach to reduce the morbidity and mortality of cancer is to delay the process of carcinogenesis through the use of chemopreventive agents. This necessitates that safer compounds, especially those derived from natural sources must be critically examined for chemoprevention. A spice common to India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa. Pre-clinical studies in a variety of cancer cell lines including breast, cervical, colon, gastric, hepatic, leukemia, oral epithelial, ovarian, pancreatic, and prostate have consistently shown that curcumin possesses anti-cancer activity in vitro and in pre-clinical animal models. The robust activity of curcumin in colorectal cancer has led to five phase I clinical trials being completed showing the safety and tolerability of curcumin in colorectal cancer patients. To date clinical trials have not identified a maximum tolerated dose of curcumin in humans with clinical trials using doses up to 8000mg per day. The success of these trials has led to the development of phase II trials that are currently enrolling patients. Overwhelming in vitro evidence and completed clinical trials suggests that curcumin may prove to be useful for the chemoprevention of colon cancer in humans. This review will focus on describing the pre-clinical and clinical evidence of curcumin as a chemopreventive compound in colorectal cancer.
Collapse
Affiliation(s)
- Jeremy James Johnson
- University of Wisconsin, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705-2222, USA.
| | | |
Collapse
|
97
|
Bachmeier B, Nerlich AG, Iancu CM, Cilli M, Schleicher E, Vené R, Dell'Eva R, Jochum M, Albini A, Pfeffer U. The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem 2007; 19:137-52. [PMID: 17310108 DOI: 10.1159/000099202] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2007] [Indexed: 11/19/2022] Open
Abstract
Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitroand in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA-MB-231 cells in correlation with reduced activation of the survival pathway NFkappaB, as a consequence of diminished IotakappaB and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NFkappa B activity and transcriptional downregulation of AP-1. NFkappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NFkappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NFkappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible.
Collapse
Affiliation(s)
- Beatrice Bachmeier
- Department of Clinical Chemistry and Clinical Biochemistry, Surgical Hospital, Ludwig-Maximilians-University Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Ramer R, Eichele K, Hinz B. Upregulation of tissue inhibitor of matrix metalloproteinases-1 confers the anti-invasive action of cisplatin on human cancer cells. Oncogene 2007; 26:5822-7. [PMID: 17369856 DOI: 10.1038/sj.onc.1210358] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer cell invasion is one of the crucial events in local spreading, growth and metastasis of tumors. The present study investigates the mechanism underlying the anti-invasive action of the chemotherapeutic cisplatin. In human cervical carcinoma cells (HeLa), cisplatin caused a time- and concentration-dependent suppression of cell invasion through Matrigel. Inhibition of invasion was accompanied by upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), whereas levels of matrix metalloproteinase-2 (MMP-2), MMP-9 and TIMP-2 remained unchanged. Cisplatin's effects on TIMP-1 expression and invasion were associated with phosphorylations of p38 and p42/44 mitogen-activated protein kinases and were abrogated by specific inhibitors of both pathways. The impact of TIMP-1 in the anti-invasive action of cisplatin was proven by transfecting cells with small interfering RNA targeting TIMP-1, which completely reversed suppression of invasion by cisplatin. A functional relevance of TIMP-1 upregulation was substantiated by findings showing a concentration-dependent inhibition of Matrigel invasion by recombinant TIMP-1. The essential role of TIMP-1 in the anti-invasive action of cisplatin was confirmed using another human cervical carcinoma cell line (C33A) and human lung carcinoma cells (A549). Altogether, our data demonstrate a hitherto unknown mechanism by which cisplatin exerts its antimetastatic properties on highly invasive cancer cells.
Collapse
Affiliation(s)
- R Ramer
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
99
|
Siddiqui IA, Afaq F, Adhami VM, Mukhtar H. Prevention of prostate cancer through custom tailoring of chemopreventive regimen. Chem Biol Interact 2007; 171:122-32. [PMID: 17403520 DOI: 10.1016/j.cbi.2007.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 02/19/2007] [Accepted: 03/02/2007] [Indexed: 01/11/2023]
Abstract
One practical way to control cancer is through chemoprevention, which refers to the administration of synthetic or naturally occurring agents to block, reverse or delay the process of carcinogenesis. For a variety of reasons, the most important of which is human acceptance, for chemopreventive intervention naturally occurring diet-based agents are preferred over synthetic agents. For a long time, the prevailing mantra of cancer chemoprevention has been: "Find effective agents with acceptable or no toxicity and use them in preventing cancer in relatively healthy people or individuals at high risk for developing cancer". In pursuing this goal many naturally occurring phytochemicals capable of affording protection against carcinogenesis in preclinical settings in experimental animals have been described. However, clinical trials of single agents have yielded disappointing results. Since carcinogenesis is a multistage phenomenon in which many normal cellular pathways become aberrant, it is unlikely that one agent could prove effective in preventing cancer. This review underscores the need to build an armamentarium of naturally occurring chemopreventive substances that could prevent or slow down the development and progression of prostate cancer. Thus, the new effective approach for cancer prevention "building a customized mechanism-based chemoprevention cocktail of naturally occurring substances" is advocated.
Collapse
Affiliation(s)
- Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | | | | | | |
Collapse
|