51
|
Rosenthal MD, Patel J, Staton K, Martindale RG, Moore FA, Upchurch GR. Can Specialized Pro-resolving Mediators Deliver Benefit Originally Expected from Fish Oil? Curr Gastroenterol Rep 2018; 20:40. [PMID: 30078085 DOI: 10.1007/s11894-018-0647-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW Fish oil (FO) supplementation has historically been used by individuals suffering from cardiovascular disease and other inflammatory processes. However, a meta-analysis of several large randomized control trials (RCTs) suggested FO conferred no benefit in reducing cardiovascular risk. Skeptics surmised that the lack of benefit was related to FO dose or drug interactions; therefore, the widely accepted practice of FO consumption was brought into question. RECENT FINDINGS Thereafter, Serhan et al. identified specialized pro-resolving mediators (SPMs) to be one of the bioactive components and mechanisms of action of FO. SPMs are thought to enhance resolution of inflammation, as opposed to classic anti-inflammatory agents which inhibit inflammatory pathways. Numerous diseases, including persistent Inflammation, immunosuppression, and catabolic syndrome (PICS), are rooted in a burden of chronic inflammation. SPMs are gaining traction as potential therapeutic agents used to resolve inflammation in cardiovascular disorders, inflammatory bowel disease, sepsis, pancreatitis, and acute respiratory distress syndrome (ARDS). This narrative reviews the history of FO and the various studies that made the health benefits of FO inconclusive, as well as an overview of SPMs and their use in specific disease states.
Collapse
Affiliation(s)
- Martin D Rosenthal
- Department of Surgery, Division of Trauma and Acute Care Surgery, University of Florida College of Medicine, PO Box 10019, Gainesville, FL, 32610-0019, USA.
| | - Jayshil Patel
- Department of Medicine, Division of Pulmonary Critical Care, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kyle Staton
- Department of Surgery, Division of Trauma and Acute Care Surgery, University of Florida College of Medicine, PO Box 10019, Gainesville, FL, 32610-0019, USA
| | - Robert G Martindale
- Department of Surgery, Division Gastroenterology Surgery, Oregon Health Science University, Portland, OR, USA
| | - Frederick A Moore
- Department of Surgery, Division of Trauma and Acute Care Surgery, University of Florida College of Medicine, PO Box 10019, Gainesville, FL, 32610-0019, USA
| | - Gilbert R Upchurch
- Department of Surgery, Division of Vascular Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
52
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
53
|
Dalli J, Serhan CN. Identification and structure elucidation of the pro-resolving mediators provides novel leads for resolution pharmacology. Br J Pharmacol 2018; 176:1024-1037. [PMID: 29679485 PMCID: PMC6451074 DOI: 10.1111/bph.14336] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases are a major socio‐economic burden, with the incidence of such conditions on the rise, especially in western societies. For decades, the primary treatment paradigm for many of these conditions was to develop drugs that inhibit or antagonize the production and biological actions of molecules that were thought to be the culprits in propagating disease; these include cytokines and eicosanoids. This approach is effective in controlling disease propagation; however, long‐term exposure to these anti‐inflammatories is also associated with many side effects, some of which are severe, including immune‐suppression. The discovery that termination of self‐limited acute inflammation is an active process orchestrated by endogenous mediators, including the essential fatty acid‐derived resolvins, protectins and maresins, has provided novel opportunities for the design of therapeutics that control inflammation with a lower burden of side effects. This is because at variance to anti‐inflammatories, pro‐resolving mediators do not completely inhibit inflammatory responses; instead, these mediators reprogramme the immune response to accelerate the termination of inflammation, facilitating the regain of function. The scope of this review is to highlight the biological actions of these autacoids and their potential utility as lead compounds in developing resolution pharmacology‐based therapeutics. Linked Articles This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesia, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Pistorius K, Souza PR, De Matteis R, Austin-Williams S, Primdahl KG, Vik A, Mazzacuva F, Colas RA, Marques RM, Hansen TV, Dalli J. PD n-3 DPA Pathway Regulates Human Monocyte Differentiation and Macrophage Function. Cell Chem Biol 2018; 25:749-760.e9. [PMID: 29805036 PMCID: PMC6024030 DOI: 10.1016/j.chembiol.2018.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 01/03/2023]
Abstract
Macrophages are central in orchestrating the clearance of apoptotic cells and cellular debris during inflammation, with the mechanism(s) regulating this process remaining of interest. Herein, we found that the n-3 docosapentaenoic acid-derived protectin (PDn-3 DPA) biosynthetic pathway regulated the differentiation of human monocytes, altering macrophage phenotype, efferocytosis, and bacterial phagocytosis. Using lipid mediator profiling, human primary cells and recombinant enzymes we found that human 15-lipoxygenases initiate the PDn-3 DPA pathway catalyzing the formation of an allylic epoxide. The complete stereochemistry of this epoxide was determined using stereocontrolled total organic synthesis as 16S,17S-epoxy-7Z,10Z,12E,14E,19Z-docosapentaenoic acid (16S,17S-ePDn-3 DPA). This intermediate was enzymatically converted by epoxide hydrolases to PD1n-3 DPA and PD2n-3 DPA, with epoxide hydrolase 2 converting 16S,17S-ePDn-3 DPA to PD2n-3 DPA in human monocytes. Taken together these results establish the PDn-3 DPA biosynthetic pathway in human monocytes and macrophages and its role in regulating macrophage resolution responses. PDn-3 DPA regulates human monocyte-derived macrophage differentiation and function Evidence for the formation and complete stereochemistry of 16S,17S-ePDn-3 DPA EPHX2 converts 16S,17S-ePDn-3 DPA to PD2n-3 DPA in human monocytes
Collapse
Affiliation(s)
- Kimberly Pistorius
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Patricia R Souza
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Roberta De Matteis
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shani Austin-Williams
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Karoline G Primdahl
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Anders Vik
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Francesca Mazzacuva
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Romain A Colas
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Raquel M Marques
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Trond V Hansen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Jesmond Dalli
- William Harvey Research Institute and John Vane Science Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
55
|
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128:2657-2669. [PMID: 29757195 DOI: 10.1172/jci97943] [Citation(s) in RCA: 829] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Countless times each day, the acute inflammatory response protects us from invading microbes, injuries, and insults from within, as in surgery-induced tissue injury. These challenges go unnoticed because they are self-limited and naturally resolve without progressing to chronic inflammation. Peripheral blood markers of inflammation are present in many common diseases, including inflammatory bowel disease, cardiovascular disease, neurodegenerative disease, and cancer. While acute inflammation is protective, excessive swarming of neutrophils amplifies collateral tissue damage and inflammation. Hence, understanding the mechanisms that control the resolution of acute inflammation provides insight into preventing and treating inflammatory diseases in multiple organs. This Review focuses on the resolution phase of inflammation with identification of specialized pro-resolving mediators (SPMs) that involve three separate biosynthetic and potent mediator families, which are defined using the first quantitative resolution indices to score this vital process. These are the resolvins, protectins, and maresins: bioactive metabolomes that each stimulate self-limited innate responses, enhance innate microbial killing and clearance, and are organ-protective. We briefly address biosynthesis of SPMs and their activation of endogenous resolution programs as terrain for new therapeutic approaches that are not, by definition, immunosuppressive, but rather new immunoresolvent therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
56
|
Zhang L, Terrando N, Xu ZZ, Bang S, Jordt SE, Maixner W, Serhan CN, Ji RR. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Front Pharmacol 2018; 9:412. [PMID: 29765320 PMCID: PMC5938385 DOI: 10.3389/fphar.2018.00412] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Physiology, Center of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Sangsu Bang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Sven-Eric Jordt
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Neurology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
57
|
Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci 2018; 203:255-267. [PMID: 29715470 DOI: 10.1016/j.lfs.2018.04.049] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
58
|
Abstract
The stereoselective synthesis of resolvin D4 (RvD4) was achieved using the Wittig reaction of the C1-C10 dienal with the known C11-C22 phosphonium salt. The ( S, E)-enantiomer ( S)-10, corresponding to the C1-C8 part, was synthesized in 95% ee by the asymmetric transfer hydrogenation reaction of the corresponding acetylenic ketone followed by Red-Al reduction. Sharpless epoxidation of this alcohol using Ti(O- i-Pr)4/l-(+)-DIPT as a catalyst produced anti epoxy alcohol with >99% ee as the sole product in 82% yield. A subsequent functional group manipulation, including removal of the PMB group, produced the alcohol, which upon Swern oxidation afforded anti 4-hydroxy-5-TBS-oxy enal via epoxide ring opening of the resulting aldehyde. The Horner-Wadsworth-Emmons reaction was used to add the C9-C10 enal part to this aldehyde, and the resulting dienal was subjected to the Wittig reaction with C11-C22 phosphonium salt to furnish the entire structure of RvD4. Conversion of the primary alcohol to the methyl ester and deprotection of the three TBS groups with TBAF afforded 5,17-dihydroxy-γ-lactone, which was hydrolyzed to RvD4. Additionally, anti-4,5-dihydroxydodecanoic acid, a model compound of RvD4, in CD3OD was observed to be stable at room temperature for several weeks, whereas 20% of the acid in CDCl3 was converted into the γ-lactone after 24 h at rt.
Collapse
Affiliation(s)
- Masao Morita
- Department of Bioengineering , Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259 , Midori-ku, Yokohama 226-8501 , Japan
| | - Yuichi Kobayashi
- Department of Bioengineering , Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259 , Midori-ku, Yokohama 226-8501 , Japan
| |
Collapse
|
59
|
Hellmann J, Sansbury BE, Wong B, Li X, Singh M, Nuutila K, Chiang N, Eriksson E, Serhan CN, Spite M. Biosynthesis of D-Series Resolvins in Skin Provides Insights into their Role in Tissue Repair. J Invest Dermatol 2018; 138:2051-2060. [PMID: 29559341 DOI: 10.1016/j.jid.2018.03.1498] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 12/23/2022]
Abstract
Cutaneous injury causes underlying tissue damage that must be quickly repaired to minimize exposure to pathogens and to restore barrier function. While the role of growth factors in tissue repair is established, the role of lipid mediators in skin repair has not been investigated extensively. Using a mass spectrometry-based lipid mediator metabolomics approach, we identified D-series resolvins and related pro-resolving lipid mediators during skin injury in mice and pigs. Differentiation of human epidermal keratinocytes increased expression of 15-lipoxygenase and stereospecific production of 17S-hydroxydocosahexaenoic acid, the common upstream biosynthetic marker and precursor of D-series resolvins. In human and pig skin, specific receptors for D-series resolvins were expressed in the epidermal layer and mice deficient in RvD1 receptor Alx/Fpr2 showed an endogenous defect in re-epithelialization. Topical application of D-series resolvins expedited re-epithelialization during skin injury and they enhanced migration of human epidermal keratinocytes in a receptor-dependent manner. The enhancement of re-epithelialization by RvD2 was lost in mice genetically deficient in its receptor and migration of keratinocytes stimulated with RvD2 was associated with activation of the PI3K-AKT-mTOR-S6 pathway, blockade of which prevented its pro-migratory actions. Collectively, these results demonstrate that resolvins have direct roles in the tissue repair program.
Collapse
Affiliation(s)
- Jason Hellmann
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian E Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Blenda Wong
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mansher Singh
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elof Eriksson
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
60
|
Winkler JW, Libreros S, De La Rosa X, Sansbury BE, Norris PC, Chiang N, Fichtner D, Keyes GS, Wourms N, Spite M, Serhan CN. Structural insights into Resolvin D4 actions and further metabolites via a new total organic synthesis and validation. J Leukoc Biol 2018; 103:10.1002/JLB.3MI0617-254R. [PMID: 29377345 PMCID: PMC6136982 DOI: 10.1002/jlb.3mi0617-254r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Local production and downstream metabolism of specialized proresolving lipid mediators (SPMs) are pivotal in regulating their biological actions during resolution of inflammation. Resolvin D4 (RvD4: 4S,5R,17S-trihydroxydocosa-6E,8E,10Z,13Z,15E,19Z hexaenoic acid) is one of the more recently elucidated SPMs with complete stereochemistry biosynthesized from docosahexaenoic acid . Here, we report a new multimilligram commercial synthesis that afforded enough material for matching, validation, and further evaluation of RvD4 functions. Using LC-MS-MS profiling, RvD4 was identified at bioactive amounts in human (1 pg/mL) and mouse bone marrow (12 pg/femur and tibia). In mouse bone marrow, ischemia increased the formation of RvD4 > 37-fold (455 pg/femur and tibia). Two separate mouse ischemic injury models were used, where RvD4 reduced second organ reperfusion lung injury > 50%, demonstrating organ protection. Structure-function relationships of RvD4 demonstrated > 40% increase in neutrophil and monocyte phagocytic function in human whole blood in comparison with 2 separate trans-containing double bond isomers that were inactive. These 2 isomers were prepared by organic synthesis: 4S,5R,17S-trihydroxydocosa-6E,8E,10E,13Z,15E,19Z-hexaenoic acid (10-trans-RvD4), a natural isomer, and 4S,5R,17S-trihydroxydocosa-6E,8E,10E,13E,15E,19Z-hexaenoic acid (10,13-trans-RvD4), a rogue isomer. Compared to leukotriene B4 , D-series resolvins (RvD1, RvD2, RvD3, RvD4, or RvD5) did not stimulate human neutrophil chemotaxis monitored via real-time microfluidics chambers. A novel 17-oxo-containing-RvD4 product of eicosanoid oxidoreductase was identified with human bone marrow cells. Comparison of 17-oxo-RvD4 to RvD4 demonstrated that with human leukocytes 17-oxo-RvD4 was inactive. Together, these provide commercial-scale synthesis that permitted a second independent validation of RvD4 complete stereochemical structure as well as evidence for RvD4 regulation in tissues and its stereoselective phagocyte responses.
Collapse
Affiliation(s)
- Jeremy W. Winkler
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | - Xavier De La Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | - Brian E. Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | - Paul C. Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | | | | | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Building for Transformative Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 U.S.A
| |
Collapse
|
61
|
Kim SH, Zhong X, Kim W, Kim K, Suh YG, Kim C, Joe Y, Chung HT, Cha YN, Surh YJ. Taurine chloramine potentiates phagocytic activity of peritoneal macrophages through up-regulation of dectin-1 mediated by heme oxygenase-1-derived carbon monoxide. FASEB J 2018; 32:2246-2257. [PMID: 29247123 DOI: 10.1096/fj.201700817r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resolution of inflammation that occurs after microbial infection or tissue damage is an important physiologic process in maintaining or restoring host homeostasis. Taurine chloramine (TauCl) is formed by a reaction between taurine and hypochlorite in leukocytes, and it is especially abundant in activated neutrophils that encounter an oxidative burst. As neutrophils undergo apoptosis, TauCl is released to the extracellular matrix at the inflamed sites, thereby affecting coexisting macrophages in the inflammatory microenvironment. In this study, we investigated the role of TauCl in phagocytosis by macrophages during resolution of fungal infection-induced inflammation. We found that exogenous TauCl substantially increased the phagocytic efficiency of macrophages through up-regulation of dectin-1, a receptor for fungal β-1,3-glucans, which is present on the membrane of macrophages. Our previous studies demonstrated the induction of heme oxygenase-1 (HO-1) expression in murine peritoneal macrophages treated with TauCl. In the present study, knocking out HO-1 or pharmacologic inhibition of HO-1 with zinc protoporphyrin IX attenuated the TauCl-induced expression of dectin-1 and subsequent phagocytosis. Furthermore, carbon monoxide (CO), a by-product of the HO-1-catalyzed reaction, induced expression of dectin-1 and potentiated phagocytic capability of the macrophages, which appeared to be mediated through up-regulation of peroxisome proliferator-activated receptor γ. Taken together, induction of HO-1 expression and subsequent CO production by TauCl are essential for phagocytosis of fungi by macrophages. Our results suggest that TauCl has important roles in host defense against fungal infection and has therapeutic potential in the management of inflammatory diseases.-Kim, S. H., Zhong, X., Kim, W., Kim, K., Suh, Y.-G., Kim, C., Joe, Y., Chung, H. T., Cha, Y.-N., Surh, Y.-J. Taurine chloramine potentiates phagocytic activity of peritoneal macrophages through up-regulation of dectin-1 mediated by heme oxygenase-1-derived carbon monoxide.
Collapse
Affiliation(s)
- Seung Hyeon Kim
- Tumor Microenvironment Global Core Research Center, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.,Cancer Research Institute Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Tumor Microenvironment Global Core Research Center, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Kyeojin Kim
- Tumor Microenvironment Global Core Research Center, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young-Ger Suh
- Tumor Microenvironment Global Core Research Center, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Chaekyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon, South Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Young-Nam Cha
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.,Cancer Research Institute Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
62
|
Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 2017; 58:114-129. [PMID: 28336292 PMCID: PMC5623601 DOI: 10.1016/j.mam.2017.03.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
The acute inflammatory response is host-protective to contain foreign invaders. Many of today's pharmacopeia that block pro-inflammatory chemical mediators can cause serious unwanted side effects such as immune suppression. Uncontrolled inflammation is now considered a pathophysiologic basis associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity and asthma, as well as the classic inflammatory diseases, e.g. arthritis, periodontal diseases. The inflammatory response is designated to be a self-limited process that produces a superfamily of chemical mediators that stimulate resolution of inflammatory responses. Specialized proresolving mediators (SPM) uncovered in recent years are endogenous mediators that include omega-3-derived families resolvins, protectins and maresins, as well as arachidonic acid-derived (n-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via novel mechanisms. Here, we review recent evidence from human and preclinical animal studies, together with the structural and functional elucidation of SPM indicating the SPM as physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. These results suggest that it is time to develop immunoresolvents as agonists for testing resolution pharmacology in nutrition and health as well as in human diseases and during surgery.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
63
|
Serhan CN. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol Aspects Med 2017; 58:1-11. [PMID: 28263773 PMCID: PMC5582020 DOI: 10.1016/j.mam.2017.03.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
It is with great pleasure that I write this foreword and introduction to this Special Issue dedicated to the protective actions of the pro-resolving mediators and edited by my colleague Dr. Jesmond Dalli. Many of my collaborators and colleagues that helped to uncover the actions and clinical potential of the resolvins and other specialized proresolving mediators (SPM), namely, the superfamily of pro-resolving mediators that includes the resolvin (E-series, D-series and DPA-derived), protectin and maresin families, as well as the arachidonic acid-derived lipoxins, join me in this special issue. They have given contributions that present exciting new results on the remarkable actions and potency of these unique molecules, the SPM moving forward the importance of their mediators and pathways in human biology. Each contribution to this issue is presented by world authorities in their respective fields covering discoveries that demonstrate the importance and impact of resolution mediators in biology, medicine and surgery. While some of the authors were students and/or fellows with me and others, they are today the founding "resolutionists" of a new era of appreciation of autacoid biosynthesis and metabolomics in human health and disease with their rigorous attention to experimental detail and discovery. The chapters of this issue are filled with exciting new discoveries demonstrating the dynamics and potential of resolution mediators.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
64
|
Dalli J, Serhan CN. Pro-Resolving Mediators in Regulating and Conferring Macrophage Function. Front Immunol 2017; 8:1400. [PMID: 29163481 PMCID: PMC5671941 DOI: 10.3389/fimmu.2017.01400] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Macrophages are central in coordinating the host response to both sterile and infective insults. Clearance of apoptotic cells and cellular debris is a key biological action preformed by macrophages that paves the way to the resolution of local inflammation, repair and regeneration of damaged tissues, and re-establishment of function. The essential fatty acid-derived autacoids termed specialized pro-resolving mediators (SPM) play central roles in promoting these processes. In the present article, we will review the role of microvesicles in controlling macrophage efferocytosis and SPM production. We will also discuss the role of both apoptotic cells and microvesicles in providing substrate for transcellular biosynthesis of several SPM families during efferocyotsis. In addition, this article will discuss the biological actions of the recently uncovered macrophage-derived SPM termed maresins. These mediators are produced via 14-lipoxygenation of docosahexaenoic acid that is either enzymatically converted to mediators carrying two hydroxyl groups or to autacoids that are peptide-lipid conjugates, coined maresin conjugates in tissue regeneration. The formation of these mediators is temporally regulated during acute self-limited infectious-inflammation where they promote the uptake and clearance of apoptotic cells, regulate several aspects of the tissue repair and regeneration, and display potent anti-nociceptive actions.
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
65
|
Specialized Proresolving Mediators Rescue Infant Mice from Lethal Citrobacter rodentium Infection and Promote Immunity against Reinfection. Infect Immun 2017; 85:IAI.00464-17. [PMID: 28694292 DOI: 10.1128/iai.00464-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Infants are generally highly susceptible to oral pathogens. Intestinal infection and the associated diarrhea are significant global causes of morbidity and mortality in infants. Among the enteric pathogens, enteropathogenic Escherichia coli (EPEC) stands out as showing the highest risk for infection-induced death in infants ≤12 months old. We have developed an experimental model of infant infection with EPEC, using the mouse-specific pathogen Citrobacter rodentium Our murine infant model is similar to EPEC infection in human infants since infant mice are much more susceptible to C. rodentium infection than adult mice; infants infected with 50-fold fewer bacteria than the standard adult dose uniformly succumbed to the infection. Infant infection is characterized by high early and sustained bacterial titers and profound intestinal inflammation associated with extensive necrosis and systemic dissemination of the bacteria. Therefore, it seems likely that infant deaths result from sepsis secondary to intestinal damage. Recently, specialized proresolving mediators (SPM) have been found to exert profound beneficial effects in adult models of infection. Thus, we investigated the actions of two proresolving lipid mediators, resolvin D1 (RvD1) and resolvin D5 (RvD5), on the course of infection in infants. Strikingly, postinfection treatment with RvD1 and RvD5 reduced bacterial loads, mitigated inflammation, and rescued the infants from death. Furthermore, postinfection treatment with RvD1 and RvD5 led to protection from reinfection associated with C. rodentium-specific IgG responses comparable to those in adults. These results indicate that SPM may provide novel therapeutic tools for the treatment of pathological intestinal infections in infants.
Collapse
|
66
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
67
|
Norris PC, Libreros S, Chiang N, Serhan CN. A cluster of immunoresolvents links coagulation to innate host defense in human blood. Sci Signal 2017; 10:10/490/eaan1471. [PMID: 28765512 DOI: 10.1126/scisignal.aan1471] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blood coagulation is a protective response that prevents excessive bleeding upon blood vessel injury. We investigated the relationship between coagulation and the resolution of inflammation and infection by lipid mediators (LMs) through metabololipidomics-based profiling of human whole blood (WB) during coagulation. We identified temporal clusters of endogenously produced prothrombotic and proinflammatory LMs (eicosanoids), as well as specialized proresolving mediators (SPMs). In addition to eicosanoids, a specific SPM cluster was identified that consisted of resolvin E1 (RvE1), RvD1, RvD5, lipoxin B4, and maresin 1, each of which was present at bioactive concentrations (0.1 to 1 nM). Removal of adenosine from the coagulating blood markedly enhanced the amounts of SPMs produced and further increased the biosynthesis of RvD3, RvD4, and RvD6. The cyclooxygenase inhibitors celecoxib and indomethacin, which block the production of thromboxanes and prostanoids, did not block the production of clot-driven SPMs. Unbiased mass cytometry analysis demonstrated that the SPM cluster produced in human blood targeted leukocytes at the single-cell level, directly activating ERK and CREB signaling in neutrophils and CD14+ monocytes. Treatment of human WB with the components of this SPM cluster enhanced both the phagocytosis and killing of Escherichia coli by leukocytes. Together, these data identify a proresolving LM circuit, including endogenous molecular brakes and accelerators, which promoted host defense. These temporal LM-SPM clusters can provide accessible metabolomic profiles for precision and personalized medicine.
Collapse
Affiliation(s)
- Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
68
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
69
|
Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology. Circ Res 2017; 119:113-30. [PMID: 27340271 DOI: 10.1161/circresaha.116.307308] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Acute inflammation is a host-protective response that is mounted in response to tissue injury and infection. Initiated and perpetuated by exogenous and endogenous mediators, acute inflammation must be resolved for tissue repair to proceed and for homeostasis to be restored. Resolution of inflammation is an actively regulated process governed by an array of mediators as diverse as those that initiate inflammation. Among these, resolvins have emerged as a genus of evolutionarily conserved proresolving mediators that act on specific cellular receptors to regulate leukocyte trafficking and blunt production of inflammatory mediators, while also promoting clearance of dead cells and tissue repair. Given that chronic unresolved inflammation is emerging as a central causative factor in the development of cardiovascular diseases, an understanding of the endogenous processes that govern normal resolution of acute inflammation is critical for determining why sterile maladaptive cardiovascular inflammation perpetuates. Here, we provide an overview of the process of resolution with a focus on the enzymatic biosynthesis and receptor-dependent actions of resolvins and related proresolving mediators in immunity, thrombosis, and vascular biology. We discuss how nutritional and current therapeutic approaches modulate resolution and propose that harnessing resolution concepts could potentially lead to the development of new approaches for treating chronic cardiovascular inflammation in a manner that is not host disruptive.
Collapse
Affiliation(s)
- Brian E Sansbury
- From the Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Matthew Spite
- From the Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
70
|
Dalli J. Does promoting resolution instead of inhibiting inflammation represent the new paradigm in treating infections? Mol Aspects Med 2017; 58:12-20. [PMID: 28365269 DOI: 10.1016/j.mam.2017.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Infections arise when the host response is overwhelmed by pathogens leading to organ dysfunction. In some instances patients progress to more severe conditions, including septic shock, that are associated with increased mortality. Current strategies in treating infections aim at either blocking inflammation using inhibitors to pro-inflammatory molecules and/or inhibiting bacterial growth using antibiotics. These approaches find their origins in studies conducted by Joseph Lister who demonstrated that applying carbolic acid to wounds promoted wound healing without suppuration, reducing both the necessity of amputation and mortality. While this approach is still applicable to certain infections, inhibition of the immune response is also associated with increased mortality, especially in septic patients. In many instances sepsis survivors succumb later to persistent, recurrent, nosocomial and secondary infections. This, together with a rise in resistance to many frontline antibiotics, has prompted a search for alternative ways to treat infections. Recent studies investigating processes engaged by the host response during self-resolving infections identified a novel group of mediators, termed as specialized pro-resolving mediators (SPM). These molecules, produced via the enzymatic conversion of essential fatty acids, actively reprogram the immune response to promote clearance of invading pathogens, and counter-regulate the production of inflammation-initiating molecules. Furthermore, recent studies also demonstrate that these mediators promote tissue repair and regeneration, essential processes in the re-establishment of barrier and prevention of re-infection. The scope of the present review is to discuss the evidence underpinning the endogenous protective roles of these novel mediators, as well as the evidence demonstrating that dysregulation in their production and actions contribute to disease pathogenesis in infections. This review will also discuss the potential of resolution pharmacology-based approaches in developing new therapeutics for combatting infections that do not interfere with the immune response.
Collapse
Affiliation(s)
- Jesmond Dalli
- Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| |
Collapse
|
71
|
Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 2017; 31:1273-1288. [PMID: 28087575 PMCID: PMC5349794 DOI: 10.1096/fj.201601222r] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Practitioners of ancient societies from the time of Hippocrates and earlier recognized and treated the signs of inflammation, heat, redness, swelling, and pain with agents that block or inhibit proinflammatory chemical mediators. More selective drugs are available today, but this therapeutic concept has not changed. Because the acute inflammatory response is host protective to contain foreign invaders, much of today's pharmacopeia can cause serious unwanted side effects, such as immune suppression. Uncontrolled inflammation is now considered pathophysiologic and is associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity, and asthma, as well as classic inflammatory diseases (e.g., arthritis and periodontal diseases). The inflammatory response, when self-limited, produces a superfamily of chemical mediators that stimulate resolution of the response. Specialized proresolving mediators (SPMs), identified in recent years, are endogenous mediators that include the n-3-derived families resolvins, protectins, and maresins, as well as arachidonic acid-derived (n-6) lipoxins, which promote resolution of inflammation, clearance of microbes, reduction of pain, and promotion of tissue regeneration via novel mechanisms. Aspirin and statins have a positive impact on these resolution pathways, producing epimeric forms of specific SPMs, whereas other drugs can disrupt timely resolution. In this article, evidence from recent human and preclinical animal studies is reviewed, indicating that SPMs are physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. The findings suggest that it is time to challenge current treatment practices-namely, using inhibitors and antagonists alone-and to develop immunoresolvents as agonists to test resolution pharmacology and their role in catabasis for their therapeutic potential.-Serhan, C. N. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
72
|
Munguia J, Nizet V. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs. Trends Pharmacol Sci 2017; 38:473-488. [PMID: 28283200 DOI: 10.1016/j.tips.2017.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/17/2023]
Abstract
The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms.
Collapse
Affiliation(s)
- Jason Munguia
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
73
|
Buechler C, Pohl R, Aslanidis C. Pro-Resolving Molecules-New Approaches to Treat Sepsis? Int J Mol Sci 2017; 18:ijms18030476. [PMID: 28241480 PMCID: PMC5372492 DOI: 10.3390/ijms18030476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a complex response of the body to exogenous and endogenous insults. Chronic and systemic diseases are attributed to uncontrolled inflammation. Molecules involved in the initiation of inflammation are very well studied while pathways regulating its resolution are insufficiently investigated. Approaches to down-modulate mediators relevant for the onset and duration of inflammation are successful in some chronic diseases, while all of them have failed in sepsis patients. Inflammation and immune suppression characterize sepsis, indicating that anti-inflammatory strategies alone are inappropriate for its therapy. Heme oxygenase 1 is a sensitive marker for oxidative stress and is upregulated in inflammation. Carbon monoxide, which is produced by this enzyme, initiates multiple anti-inflammatory and pro-resolving activities with higher production of omega-3 fatty acid-derived lipid metabolites being one of its protective actions. Pro-resolving lipids named maresins, resolvins and protectins originate from the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid while lipoxins are derived from arachidonic acid. These endogenously produced lipids do not simply limit inflammation but actively contribute to its resolution, and thus provide an opportunity to combat chronic inflammatory diseases and eventually sepsis.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93042 Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93042 Regensburg, Germany.
| |
Collapse
|
74
|
Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie 2017; 136:12-20. [PMID: 28087294 DOI: 10.1016/j.biochi.2017.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid that is recognized as a beneficial dietary constituent and as a source of the anti-inflammatory specialized proresolving mediators (SPM): resolvins, protectins and maresins. Apart from SPMs, other metabolites of DHA also exert potent biological effects. This article summarizes current knowledge on the metabolic pathways involved in generation of DHA metabolites. Over 70 biologically active metabolites have been described, but are often discussed separately within specific research areas. This review follows DHA metabolism and attempts to integrate the diverse DHA metabolites emphasizing those with identified biological effects. DHA metabolites could be divided into DHA-derived SPMs, DHA epoxides, electrophilic oxo-derivatives (EFOX) of DHA, neuroprostanes, ethanolamines, acylglycerols, docosahexaenoyl amides of amino acids or neurotransmitters, and branched DHA esters of hydroxy fatty acids. These bioactive metabolites have pleiotropic effects that include augmenting energy expenditure, stimulating lipid catabolism, modulating the immune response, helping to resolve inflammation, and promoting wound healing and tissue regeneration. As a result they have been shown to exert many beneficial actions: neuroprotection, anti-hypertension, anti-hyperalgesia, anti-arrhythmia, anti-tumorigenesis etc. Given the chemical structure of DHA, the number and geometry of double bonds, and the panel of enzymes metabolizing DHA, it is also likely that novel bioactive derivatives will be identified in the future.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
75
|
Ogawa N, Kobayashi Y. Synthesis of Unsaturated Lipid Mediators having Anti-inflammatory Actions. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.1002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yuichi Kobayashi
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
76
|
Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect 2016; 73:523-535. [DOI: 10.1016/j.jinf.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
|
77
|
Arnardottir HH, Dalli J, Norling LV, Colas RA, Perretti M, Serhan CN. Resolvin D3 Is Dysregulated in Arthritis and Reduces Arthritic Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2362-8. [PMID: 27534559 DOI: 10.4049/jimmunol.1502268] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
Uncontrolled inflammation is a unifying component of many chronic inflammatory diseases, such as arthritis. Resolvins (Rvs) are a new family from the endogenous specialized proresolving mediators (SPMs) that actively stimulate resolution of inflammation. In this study, using lipid mediator metabololipidomics with murine joints we found a temporal regulation of endogenous SPMs during self-resolving inflammatory arthritis. The SPMs present in self-resolving arthritic joints include the D-series Rvs, for example, RvD1, RvD2, RvD3, and RvD4. Of note, RvD3 levels were reduced in inflamed joints from mice with delayed-resolving arthritis when compared with self-resolving inflammatory arthritis. RvD3 was also reduced in serum from rheumatoid arthritis patients compared with healthy controls. RvD3 administration reduced joint leukocytes as well as paw joint eicosanoids, clinical scores, and edema. Taken together, these findings provide evidence for dysregulated endogenous RvD3 levels in inflamed paw joints and its potent actions in reducing murine arthritis.
Collapse
Affiliation(s)
- Hildur H Arnardottir
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Lucy V Norling
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
78
|
DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice. PLoS One 2016; 11:e0160870. [PMID: 27513579 PMCID: PMC4981459 DOI: 10.1371/journal.pone.0160870] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/26/2016] [Indexed: 01/17/2023] Open
Abstract
Background and Purpose Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. Methods 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4–5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8–9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Results Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Conclusions Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA.
Collapse
|
79
|
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 2016; 38:425-48. [PMID: 27116944 PMCID: PMC4896979 DOI: 10.1007/s00281-016-0560-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered.
Collapse
Affiliation(s)
- C T Robb
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - K H Regan
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|