51
|
Glass SB, Gonzalez-Fajardo L, Beringhs AO, Lu X. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy. Antioxid Redox Signal 2019; 30:747-761. [PMID: 28990403 DOI: 10.1089/ars.2017.7370] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE The overabundance of reactive oxygen species (ROS) and antioxidants in cancer cells represents a challenge for therapeutic intervention, while also providing an opportunity for the development of new strategies to improve clinical therapeutic outcomes. Recent Advances: Nanotechnology has advanced tremendously in recent decades and now offers many potential opportunities to leverage altered redox status to improve conventional therapies. Highly tunable nanoparticle delivery systems have shown great promise for improving the following: (i) chemotherapy via selective redox-sensitive drug release in tumor cells and limited systemic toxicity; (ii) photodynamic therapy via enhancing photoactivation and/or ROS production; and (iii) radiation therapy via enhancing ROS production. Great progress has also been made regarding novel nanoparticle-mediated therapies to enhance tumor cell death via ROS generation and angiogenic inhibition. CRITICAL ISSUES Current anticancer therapies are limited by systemic side effects and resistance. The inherent heterogeneity and hypoxic status of solid tumors impose significant barriers for even the most rationally designed nanoparticle systems. In addition, few comprehensive biodistribution and toxicity evaluations exist, and clinical efficacy remains to be established. The practicality of many nanoparticle systems is compromised by variable in vivo responses and scale-up difficulties due to complicated chemistry and prohibitive manufacturing costs. FUTURE DIRECTIONS As nanoparticle design continues to advance, improved therapeutic efficacy will likely follow. Actively targeted systems may improve distribution specificity but more positive clinical demonstrations are needed. Further investigation into systemic and intracellular distribution as well as toxicity will improve understanding of how these nanoparticle systems can be applied to improve existing therapies.
Collapse
Affiliation(s)
- Sterling B Glass
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | | | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
52
|
Abstract
The electromagnetic spectrum contains different frequency bands useful for medical imaging and therapy. Short wavelengths (ionizing radiation) are commonly used for radiological and radionuclide imaging and for cancer radiation therapy. Intermediate wavelengths (optical radiation) are useful for more localized imaging and for photodynamic therapy (PDT). Finally, longer wavelengths are the basis for magnetic resonance imaging and for hyperthermia treatments. Recently, there has been a surge of interest for new biomedical methods that synergize optical and ionizing radiation by exploiting the ability of ionizing radiation to stimulate optical emissions. These physical phenomena, together known as radioluminescence, are being used for applications as diverse as radionuclide imaging, radiation therapy monitoring, phototherapy, and nanoparticle-based molecular imaging. This review provides a comprehensive treatment of the physics of radioluminescence and includes simple analytical models to estimate the luminescence yield of scintillators and nanoscintillators, Cherenkov radiation, air fluorescence, and biologically endogenous radioluminescence. Examples of methods that use radioluminescence for diagnostic or therapeutic applications are reviewed and analyzed in light of these quantitative physical models of radioluminescence.
Collapse
Affiliation(s)
- Justin Klein
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Portland, OR 97201
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| |
Collapse
|
53
|
Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy. J Colloid Interface Sci 2019; 536:586-597. [DOI: 10.1016/j.jcis.2018.10.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022]
|
54
|
Sivasubramanian M, Chuang YC, Lo LW. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019; 24:E520. [PMID: 30709030 PMCID: PMC6385004 DOI: 10.3390/molecules24030520] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/03/2022] Open
Abstract
Enthusiasm for photodynamic therapy (PDT) as a potential therapeutic intervention for cancer has increased exponentially in recent decades. Photodynamic therapy constitutes a clinically approved, minimally invasive treatment modality that uses a photosensitizer (light absorbing molecule) and light to kill cancer cells. The principle of PDT is, when irradiated with a light of a suitable wavelength, a photosensitizer absorbs the light energy and generates cytotoxic free radicals through various mechanisms. The overall efficiency of PDT depends on characteristics of activation light and in-situ dosimetry, including the choice of photosensitizer molecule, wavelength of the light, and tumor location and microenvironment, for instance, the use of two-photon laser or an X-ray irradiator as the light source increases tissue-penetration depth, enabling it to achieve deep PDT. In this mini-review, we discuss the various designs and strategies for single, two-photon, and X-ray-mediated PDT for improved clinical outcomes.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
55
|
M SM, Veeranarayanan S, Maekawa T, D SK. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv Drug Deliv Rev 2019; 138:18-40. [PMID: 30321621 DOI: 10.1016/j.addr.2018.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023]
Abstract
Cancer is a highly intelligent system of cells, that works together with the body to thrive and subsequently overwhelm the host in order for its survival. Therefore, treatment regimens should be equally competent to outsmart these cells. Unfortunately, it is not the case with current therapeutic practices, the reason why it is still one of the most deadly adversaries and an imposing challenge to healthcare practitioners and researchers alike. With rapid nanotechnological interventions in the medical arena, the amalgamation of diagnostic and therapeutic functionalities into a single platform, theranostics provides a never before experienced hope of enhancing diagnostic accuracy and therapeutic efficiency. Additionally, the ability of these nanotheranostic agents to perform their actions on-demand, i.e. can be controlled by external stimulus such as light, magnetic field, sound waves and radiation has cemented their position as next generation anti-cancer candidates. Numerous reports exist of such stimuli-responsive theranostic nanomaterials against cancer, but few have broken through to clinical trials, let alone clinical practice. This review sheds light on the pros and cons of a few such theranostic nanomaterials, especially inorganic nanomaterials which do not require any additional chemical moieties to initiate the stimulus. The review will primarily focus on preclinical and clinical trial approved theranostic agents alone, describing their success or failure in the respective stages.
Collapse
Affiliation(s)
- Sheikh Mohamed M
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan
| | | | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| | - Sakthi Kumar D
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| |
Collapse
|
56
|
Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802244. [PMID: 30156333 DOI: 10.1002/adma.201802244] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Nano-radiosensitization has been a hot concept for the past ten years, and the nanomaterial-mediated tumor radiosensitization method is mainly focused on increasing intracellular radiation deposition by high atomic number (high Z) nanomaterials, particularly gold (Au)-mediated radiation enhancement. Recently, various new nanomaterial-mediated radiosensitive approaches have been successively reported, such as catalyzing reactive oxygen species (ROS) generation, consuming intracellular reduced glutathione (GSH), overcoming tumor hypoxia, and various synergistic radiotherapy ways. These strategies may open a new avenue for enhancing the radiotherapeutic effect and avoiding its side effects. Nevertheless, reviews systematically summarizing these newly emerging methods and their radiosensitive mechanisms are still rare. Therefore, the general strategies of nanomaterial-mediated tumor radiosensitization are comprehensively summarized, particularly aiming at introducing the emerging radiosensitive methods. The strategies are divided into three general parts. First, methods on account of the intrinsic radiosensitive properties of nanoradiosensitizers for radiosensitization are highlighted. Then, newly developed synergistic strategies based on multifunctional nanomaterials for enhancing radiotherapy efficacy are emphasized. Third, nanomaterial-mediated radioprotection approaches for increasing the radiotherapeutic ratio are discussed. Importantly, the clinical translation of nanomaterial-mediated tumor radiosensitization is also covered. Finally, further challenges and outlooks in this field are discussed.
Collapse
Affiliation(s)
- Jiani Xie
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Linji Gong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Yong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
57
|
You C, Gao Z, Wu H, Sun K, Ning L, Lin F, Sun B, Wang F. Reactive oxygen species mediated theranostics using a Fenton reaction activable lipo-polymersome. J Mater Chem B 2018; 7:314-323. [PMID: 32254556 DOI: 10.1039/c8tb02947d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, reactive oxygen species (ROS)-induced apoptosis has been widely studied by researchers through various means. Among them, the singlet oxygen produced by the Fenton reaction is particularly effective in killing tumor cells. Although photodynamic therapy (PDT) takes advantage of the spatial-temporal control of ROS production, the design of the Fenton reaction in an ingenious way is still a question worth exploring. Herein, we have designed and prepared a succinic peroxide-filled Fenton reaction activable Pt/Fe3O4@SP-PLGA lipo-polymersome that displays ROS mediated chemodynamic therapy (CDT). The therapeutic element, ˙OH, is generated under NIR irradiation/tumor acidic pH environment through engineering the reaction between succinic peroxide (SP) and iron oxide. Instead of using single endogenous H2O2 or even encapsulation, the conjugation with SP in the Pt/Fe3O4@SP-PLGA lipo-polymersome provides a more stable, high-yielding peroxygen source. The results also showed that after the addition of cisplatin, the amount of ROS production increased significantly. The proof-of-concept design of the Fenton reaction activable Pt/Fe3O4@SP-PLGA lipo-polymersome with enhanced ROS-generation characteristics provides a general approach to afford potent ROS-mediated cancer therapy.
Collapse
Affiliation(s)
- Chaoqun You
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Rojas JEU, Gerbelli BB, Ribeiro AO, Nantes-Cardoso IL, Giuntini F, Alves WA. Silk fibroin hydrogels for potential applications in photodynamic therapy. Biopolymers 2018; 110:e23245. [PMID: 30548859 DOI: 10.1002/bip.23245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
In this study, we prepared translucid hydrogels with different concentrations of silk fibroin, extracted from raw silk fibers, and used them as a matrix to incorporate the photosensitizer 5-(4-aminophenyl)-10,15,20-tris-(4-sulphonatophenyl) porphyrin trisodium for application in photodynamic therapy (PDT). The hydrogels obtained were characterized by rheology, spectrophotometry, and scattering techniques to elucidate the factors involved in the formation of the hydrogel, and to characterize the behavior of silk fibroin (SF) after incorporating of the porphyrin to the matrix. The rheology results demonstrated that the SF hydrogels had a shear thinning behavior. In addition, we were able to verify that the structure of the material was able to be recovered over time after shear deformation. The encapsulation of porphyrins in hydrogels leads to the formation of self-assembled peptide nanostructures that prevent porphyrin aggregation, thereby greatly increasing the generation of singlet oxygen. Also, our findings suggest that porphyrin can diffuse out of the hydrogel and permeate the outer skin layers. This evidence suggests that SF hydrogels could be used as porphyrin encapsulation and as a drug carrier for the sustained release of photosensitizers for PDT.
Collapse
Affiliation(s)
- Jose Eduardo U Rojas
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Barbara B Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Anderson O Ribeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| |
Collapse
|
59
|
Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. NANO TODAY 2018; 23:59-72. [PMID: 31186672 PMCID: PMC6559746 DOI: 10.1016/j.nantod.2018.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomaterials have revolutionized cancer imaging, diagnosis, and treatment. Multifunctional nanoparticles in particular have been designed for targeted cancer therapy by modulating their physicochemical properties to be delivered to the target and activated by internal and/or external stimuli. This review will focus on the fundamental "chemical" design considerations of stimuli-responsive nanosystems to achieve favorable tumor targeting beyond biological barriers and, furthermore, enhance targeted cancer therapy. In addition, we will summarize innovative smart nanosystems responsive to external stimuli (e.g., light, magnetic field, ultrasound, and electric field) and internal stimuli in the tumor microenvironment (e.g., pH, enzyme, redox potential, and oxidative stress).
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shuang Hu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 601141, China
| | - Mi Hyeon Cho
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Suk Ho Hong
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Yongdoo Choi
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
60
|
Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discov Today 2018; 23:1791-1800. [DOI: 10.1016/j.drudis.2018.05.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
|
61
|
Pogue BW, Wilson BC. Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-17. [PMID: 30350489 PMCID: PMC6197862 DOI: 10.1117/1.jbo.23.12.121610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
X-ray and optical technologies are the two central pillars for human imaging and therapy. The strengths of x-rays are deep tissue penetration, effective cytotoxicity, and the ability to image with robust projection and computed-tomography methods. The major limitations of x-ray use are the lack of molecular specificity and the carcinogenic risk. In comparison, optical interactions with tissue are strongly scatter dominated, leading to limited tissue penetration, making imaging and therapy largely restricted to superficial or endoscopically directed tissues. However, optical photon energies are comparable with molecular energy levels, thereby providing the strength of intrinsic molecular specificity. Additionally, optical technologies are highly advanced and diversified, being ubiquitously used throughout medicine as the single largest technology sector. Both have dominant spatial localization value, achieved with optical surface scanning or x-ray internal visualization, where one often is used with the other. Therapeutic delivery can also be enhanced by their synergy, where radio-optical and optical-radio interactions can inform about dose or amplify the clinical therapeutic value. An emerging trend is the integration of nanoparticles to serve as molecular intermediates or energy transducers for imaging and therapy, requiring careful design for the interaction either by scintillation or Cherenkov light, and the nanoscale design is impacted by the choices of optical interaction mechanism. The enhancement of optical molecular sensing or sensitization of tissue using x-rays as the energy source is an important emerging field combining x-ray tissue penetration in radiation oncology with the molecular specificity and packaging of optical probes or molecular localization. The ways in which x-rays can enable optical procedures, or optics can enable x-ray procedures, provide a range of new opportunities in both diagnostic and therapeutic medicine. Taken together, these two technologies form the basis for the vast majority of diagnostics and therapeutics in use in clinical medicine.
Collapse
Affiliation(s)
- Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian C. Wilson
- University of Toronto, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
62
|
Li Y, Chen R, Zhou H, Shi Y, Qin C, Gao Y, Zhang G, Gao Y, Xiao L, Jia S. Observation of Singlet Oxygen with Single-Molecule Photosensitization by Time-Dependent Photon Statistics. J Phys Chem Lett 2018; 9:5207-5212. [PMID: 30122039 DOI: 10.1021/acs.jpclett.8b02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The singlet oxygen has been widely applied to the treatment of physiological diseases, and the photosensitized generation of singlet oxygen is the main means of its physiological applications. On the basis of the fluctuation of fluorescence field from single photosensitizer, we characterize the generation of singlet oxygen at single molecule level with the time-dependent photon statistical method. By measuring the time-tagged-time-resolved single-molecule fluorescence photons, we analyze the time-dependent Mandel-Q parameter, which has been performed at different oxygen environment. It is shown that the single molecule not only offers an efficient way of generating singlet oxygen in ambient condition but also provides insights for the fluctuation of singlet oxygen in the nanoscale environment. The method of time-dependent photon statistics provides a convenient methodology for observing photosensitizers generating singlet oxygen in real time at single photosensitizer level.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ying Shi
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yajun Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
63
|
Orsi D, Rimoldi T, Pinelli S, Alinovi R, Goldoni M, Benecchi G, Rossi F, Cristofolini L. New CeF 3-ZnO nanocomposites for self-lighted photodynamic therapy that block adenocarcinoma cell life cycle. Nanomedicine (Lond) 2018; 13:2311-2326. [PMID: 30198424 DOI: 10.2217/nnm-2017-0399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To synthesize and characterize the performances of a new all-inorganic nanocomposite (NC) for self-lighted photodynamic therapy against cancer. This NC could allow radiotherapy doses to be reduced, as it enhances the effects of x-rays, generating cytotoxic reactive oxygen species as singlet oxygen. MATERIALS & METHODS The proposed NC combines CeF3 and ZnO; CeF3 absorbs 6-MeV x-rays and activates the photosensitizer ZnO. Characterization is performed by transmission electron microscopy (TEM), scanning-TEM, energy dispersive x-ray spectrometry and fluorescence spectroscopies. Efficiency on human adenocarcinoma cells (A549) was tested by fluorescence spectroscopy, cytofluorimetry, viability assays, clonogenic assays, cell cycle progression assays. RESULTS NC blocks A549's cell cycle before mitosis in the dark. Upon low-dose x-ray irradiation (2 Gy), reactive oxygen species/singlet oxygen are generated, further blocking cell cycle and reducing viability by 18% with respect to the sum of x-ray irradiation and NC dark activity. CONCLUSION These novel NCs promise to reduce doses in radiotherapy, helping to reduce unwanted side effects.
Collapse
Affiliation(s)
- Davide Orsi
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Tiziano Rimoldi
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Silvana Pinelli
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Rossella Alinovi
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Matteo Goldoni
- Department of Medicine & Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanna Benecchi
- Servizio di Fisica Sanitaria, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
| | - Francesca Rossi
- Consiglio Nazionale Ricerche, Istituto dei Materiali per l'Elettronica ed il Magnetismo IMEM-CNR, 43124 Parma, Italy
| | - Luigi Cristofolini
- Department of Mathematical, Physical & Computer Sciences, University of Parma, 43124 Parma, Italy
| |
Collapse
|
64
|
Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat Commun 2018; 9:2713. [PMID: 30006596 PMCID: PMC6045614 DOI: 10.1038/s41467-018-05118-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
Abstract
Liposomes have been well established as an effective drug delivery system, due to simplicity of their preparation and unique characteristics. However conventional liposomes are unsuitable for the on-demand content release, which limits their therapeutic utility. Here we report X-ray-triggerable liposomes incorporating gold nanoparticles and photosensitizer verteporfin. The 6 MeV X-ray radiation induces verteporfin to produce singlet oxygen, which destabilises the liposomal membrane and causes the release of cargos from the liposomal cavity. This triggering strategy is demonstrated by the efficiency of gene silencing in vitro and increased effectiveness of chemotherapy in vivo. Our work indicates the feasibility of a combinatorial treatment and possible synergistic effects in the course of standard radiotherapy combined with chemotherapy delivered via X-ray-triggered liposomes. Importantly, our X-ray-mediated liposome release strategy offers prospects for deep tissue photodynamic therapy, by removing its depth limitation. X-ray radiation has excellent tissue penetration depth, making it a useful trigger for deep tissue cancer therapy. Here, the authors design X-ray triggered drug/gene-loaded liposomes by embedding photosensitizers and gold nanoparticles in the liposome bilayer, and demonstrate their efficacy in cancer and gene therapy.
Collapse
|
65
|
Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomedicine 2018; 13:3553-3570. [PMID: 29950835 PMCID: PMC6016269 DOI: 10.2147/ijn.s164967] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION The depth limitation of conventional photodynamic therapy (PDT) with visible electromagnetic radiation represents a challenge for the treatment of deep-seated tumors. MATERIALS AND METHODS To overcome this issue, we developed an X-ray-induced PDT system where poly(lactide-co-glycolide) (PLGA) polymeric nanoparticles (NPs) incorporating a photosensitizer (PS), verteporfin (VP), were triggered by 6 MeV X-ray radiation to generate cytotoxic singlet oxygen. The X-ray radiation used in this study allows this system to breakthrough the PDT depth barrier due to excellent penetration of 6 MeV X-ray radiation through biological tissue. In addition, the conjugation of our NPs with folic acid moieties enables specific targeting of HCT116 cancer cells that overexpress the folate receptors. We carried out physiochemical characterization of PLGA NPs, such as size distribution, zeta potential, morphology and in vitro release of VP. Cellular uptake activity and cell-killing effect of these NPs were also evaluated. RESULTS AND DISCUSSION Our results indicate that our nanoconstructs triggered by 6 MeV X-ray radiation yield enhanced PDT efficacy compared with the radiation alone. We attributed the X-ray-induced singlet oxygen generation from the PS, VP, to photoexcitation by Cherenkov radiation and/or reactive oxygen species generation facilitated by energetic secondary electrons produced in the tissue. CONCLUSION The cytotoxic effect caused by VP offers the possibility of enhancing the radiation therapy commonly prescribed for the treatment of cancer by simultaneous PDT.
Collapse
Affiliation(s)
- Sandhya Clement
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Wenjie Chen
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
| | - Wei Deng
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
66
|
González-Mancebo D, Becerro AI, Rojas TC, Olivencia A, Corral A, Balcerzyk M, Cantelar E, Cussó F, Ocaña M. Room temperature synthesis of water-dispersible Ln 3+ :CeF 3 (Ln = Nd, Tb) nanoparticles with different morphology as bimodal probes for fluorescence and CT imaging. J Colloid Interface Sci 2018. [DOI: 10.1016/j.jcis.2018.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
67
|
Losytskyy MY, Vretik LO, Kutsevol NV, Nikolaeva OA, Yashchuk VM. Uptake of Chlorin e 6 Photosensitizer by Polystyrene-Diphenyloxazole-Poly(N-Isopropylacrylamide) Hybrid Nanosystem Studied by Electronic Excitation Energy Transfer. NANOSCALE RESEARCH LETTERS 2018; 13:166. [PMID: 29855731 PMCID: PMC5981156 DOI: 10.1186/s11671-018-2584-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/24/2018] [Indexed: 05/29/2023]
Abstract
Polystyrene (PS)-diphenyloxazole (PPO) nanoparticles with attached cross-linked poly-N-isopropylacrylamide (PNIPAM) chains were obtained resulting in PS-PPO-PNIPAM hybrid nanosystems (NS). Fluorescence spectra of chlorin e6 added to PS-PPO-PNIPAM hybrid NS revealed electronic excitation energy transfer (EEET) from PS matrix and encapsulated PPO to chlorin e6. EEET efficiency increased strongly during 1 h after chlorin e6 addition, indicating that uptake of chlorin e6 by PNIPAM part of hybrid NS still proceeds during this time. Heating of PS-PPO-PNIPAM-chlorin e6 NS from 21 to 39 °C results in an enhancement of EEET efficiency; this is consistent with PNIPAM conformation transition that reduces the distance between PS-PPO donors and chlorin e6 acceptors. Meanwhile, a relatively small part of chlorin e6 present in the solution is bound by PNIPAM; thus, further studies in this direction are necessary.
Collapse
Affiliation(s)
- M Yu Losytskyy
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Volodymyrs'ka Str., 64/13, Kyiv, 01601, Ukraine.
| | - L O Vretik
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrs'ka Str., 64/13, Kyiv, 01601, Ukraine
| | - N V Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrs'ka Str., 64/13, Kyiv, 01601, Ukraine
| | - O A Nikolaeva
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrs'ka Str., 64/13, Kyiv, 01601, Ukraine
| | - V M Yashchuk
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Volodymyrs'ka Str., 64/13, Kyiv, 01601, Ukraine
| |
Collapse
|
68
|
Alves LA, Ferreira LB, Pacheco PF, Mendivelso EAC, Teixeira PCN, Faria RX. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget 2018; 9:25342-25354. [PMID: 29861876 PMCID: PMC5982756 DOI: 10.18632/oncotarget.25150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
According to the World Health Organization (WHO), cancer is one of main causes of death worldwide, with 8.2 million people dying from this disease in 2012. Because of this, new forms of treatments or improvement of current treatments are crucial. In this regard, Photodynamic therapy (PDT) has been used to successfully treat cancers that can be easily accessed externally or by fibre-optic endoscopes, such as skin, bladder and esophagus cancers. In addition, this therapy can used alongside radiotherapy and chemotherapy in order to kill cancer cells. The main problem in implementing PDT is penetration of visible light deeper than 10 mm in tissues, due to scattering and absorption by tissue chromophores. Unfortunately, this excludes several internal organs affected by cancer. Another issue in this regard is the use of a selective cancer cell-photosensitizing compound. Nevertheless, several groups have recently developed scintillation nanoparticles, which can be stimulated by X-rays, thereby making this a possible solution for light production in deeper tissues. Alternative approaches have also been developed, such as photosensitizer structure modifications and cell membrane permeabilizing agents. In this context, certain channels lead to transitory plasma membrane permeability changes, such as pannexin, connexin hemmichannels, TRPV1-4 and P2×7, which allow for the non-selective passage of molecules up to 1,000 Da. Herein, we discuss the particular case of the P2×7 receptor-associated pore as a drug delivery system for hydrophilic substances to be applied in PDT, which could also be carried out with other channels. Methylene blue (MB) is a low cost dye used as a prototype photosensitizer, approved for clinical use in several other clinical conditions, as well as photodynamic therapy for fungi infections.
Collapse
Affiliation(s)
- Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Leonardo Braga Ferreira
- Laboratório de Inflamação e Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Paulo Furtado Pacheco
- Laboratório de Toxoplasmose Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, 21045-900, Rio de Janeiro, RJ, Brasil
| | | | - Pedro Celso Nogueira Teixeira
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, 21045-900, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-FIOCRUZ, 21045-900, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
69
|
Kudinov KA, Cooper DR, Ha JK, Hill CK, Nadeau JL, Seuntjens JP, Bradforth SE. Scintillation Yield Estimates of Colloidal Cerium-Doped LaF 3 Nanoparticles and Potential for "Deep PDT". Radiat Res 2018; 190:28-36. [PMID: 29672241 DOI: 10.1667/rr14944.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A hybrid of radiotherapy and photodynamic therapy (PDT) has been proposed in previously reported studies. This approach utilizes scintillating nanoparticles to transfer energy to attached photosensitizers, thus generating singlet oxygen for local killing of malignant cells. Its effectiveness strongly depends upon the scintillation yield of the nanoparticles. Using a liquid scintillator as a reference standard, we estimated the scintillation yield of Ce0.1La0.9F3/LaF3 core/shell nanoparticles at 28.9 mg/ml in water to be 350 photons/MeV under orthovoltage X-ray irradiation. The subsequent singlet oxygen production for a 60 Gy cumulative dose to cells was estimated to be four orders of magnitude lower than the "Niedre killing dose," used as a target value for effective cell killing. Without significant improvements in the radioluminescence properties of the nanoparticles, this approach to "deep PDT" is likely to be ineffective. Additional considerations and alternatives to singlet oxygen are discussed.
Collapse
Affiliation(s)
| | - Daniel R Cooper
- c Medical Physics Unit, Faculty of Medicine, McGill University, Montreal, Canada
| | - Jonathan K Ha
- b Department of Radiation Oncology, Keck Medical School, University of Southern California, Los Angeles, California
| | - Colin K Hill
- b Department of Radiation Oncology, Keck Medical School, University of Southern California, Los Angeles, California
| | - Jay L Nadeau
- d Graduate Aerospace Laboratories, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California
| | - Jan P Seuntjens
- c Medical Physics Unit, Faculty of Medicine, McGill University, Montreal, Canada
| | | |
Collapse
|
70
|
Hubenko K, Yefimova S, Tkacheva T, Maksimchuk P, Borovoy I, Klochkov V, Kavok N, Opolonin O, Malyukin Y. Reactive oxygen species generation in aqueous solutions containing GdVO 4:Eu 3+ nanoparticles and their complexes with methylene blue. NANOSCALE RESEARCH LETTERS 2018; 13:100. [PMID: 29654410 PMCID: PMC5899080 DOI: 10.1186/s11671-018-2514-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.
Collapse
Affiliation(s)
- Kateryna Hubenko
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Tatyana Tkacheva
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Igor Borovoy
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Vladimir Klochkov
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Nataliya Kavok
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Oleksander Opolonin
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Yuri Malyukin
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| |
Collapse
|
71
|
Denkova AG, de Kruijff RM, Serra‐Crespo P. Nanocarrier-Mediated Photochemotherapy and Photoradiotherapy. Adv Healthc Mater 2018; 7:e1701211. [PMID: 29282903 DOI: 10.1002/adhm.201701211] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) both utilize light to induce a therapeutic effect. These therapies are rapidly gaining importance due to the noninvasiveness of light and the limited adverse effect associated with these treatments. However, most preclinical studies show that complete elimination of tumors is rarely observed. Combining PDT and PTT with chemotherapy or radiotherapy can improve the therapeutic outcome and simultaneously decrease side effects of these conventional treatments. Nanocarriers can help to facilitate such a combined treatment. Here, the most recent advancements in the field of photochemotherapy and photoradiotherapy, in which nanocarriers are employed, are reviewed.
Collapse
Affiliation(s)
- Antonia G. Denkova
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Robine M. de Kruijff
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Pablo Serra‐Crespo
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| |
Collapse
|
72
|
Hsu CC, Lin SL, Chang CA. Lanthanide-Doped Core-Shell-Shell Nanocomposite for Dual Photodynamic Therapy and Luminescence Imaging by a Single X-ray Excitation Source. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7859-7870. [PMID: 29405703 DOI: 10.1021/acsami.8b00015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) could be highly selective and noninvasive, with low side effects as an adjuvant therapy for cancer treatment. Because excitation sources such as UV and visible lights for most of the photosensitizers do not penetrate deeply enough into biological tissues, PDT is useful only when the lesions are located within 10 mm below the skin. In addition, there is no prior example of theranostics capable of both PDT and imaging with a single deep-penetrating X-ray excitation source. Here we report a new theranostic scintillator nanoparticle (ScNP) composite in a core-shell-shell arrangement, that is, NaLuF4:Gd(35%),Eu(15%)@NaLuF4:Gd(40%)@NaLuF4:Gd(35%),Tb(15%), which is capable of being excited by a single X-ray radiation source to allow potentially deep tissue PDT and optical imaging with a low dark cytotoxicity and effective photocytotoxicity. With the X-ray excitation, the ScNPs can emit visible light at 543 nm (from Tb3+) to stimulate the loaded rose bengal (RB) photosensitizer and cause death of efficient MDA-MB-231 and MCF-7 cancer cells. The ScNPs can also emit light at 614 and 695 nm (from Eu3+) for luminescence imaging. The middle shell in the core-shell-shell ScNPs is unique to separate the Eu3+ in the core and the Tb3+ in the outer shell to prevent resonance quenching between them and to result in good PDT efficiency. Also, it was demonstrated that although the addition of a mesoporous SiO2 layer resulted in the transfer of 82.7% fluorescence resonance energy between Tb3+ and RB, the subsequent conversion of the energy from RB to generate 1O2 was hampered, although the loaded amount of the RB was almost twice that without the mSiO2 layer. A unique method to compare the wt % and mol % compositions calculated by using the morphological transmission electron microscope images and the inductively coupled plasma elemental analysis data of the core, core-shell, and core-shell-shell ScNPs is also introduced.
Collapse
|
73
|
Sengar P, Juárez P, Verdugo-Meza A, Arellano DL, Jain A, Chauhan K, Hirata GA, Fournier PGJ. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. J Nanobiotechnology 2018; 16:19. [PMID: 29482561 PMCID: PMC5827996 DOI: 10.1186/s12951-018-0344-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Background Photodynamic therapy is a promising cancer therapy modality but its application for deep-seated tumor is mainly hindered by the shallow penetration of visible light. X-ray-mediated photodynamic therapy (PDT) has gained a major attention owing to the limitless penetration of X-rays. However, substantial outcomes have still not been achieved due to the low luminescence efficiency of scintillating nanoparticles and weak energy transfer to the photosensitizer. The present work describes the development of Y2.99Pr0.01Al5O12-based (YP) mesoporous silica coated nanoparticles, multifunctionalized with protoporphyrin IX (PpIX) and folic acid (YPMS@PpIX@FA) for potential application in targeted deep PDT. Results A YP nanophosphor core was synthesized using the sol–gel method to be used as X-ray energy transducer and was then covered with a mesoporous silica layer. The luminescence analysis indicated a good spectral overlap between the PpIX and nanoscintillator at the Soret as well as Q-band region. The comparison of the emission spectra with or without PpIX showed signs of energy transfer, a prerequisite for deep PDT. In vitro studies showed the preferential uptake of the nanocomposite in cancer cells expressing the folate receptorFolr1, validating the targeting efficiency. Direct activation of conjugated PpIX with UVA in vitro induced ROS production causing breast and prostate cancer cell death indicating that the PpIX retained its activity after conjugation to the nanocomposite. The in vivo toxicity analysis showed the good biocompatibility and non-immunogenic response of YPMS@PpIX@FA. Conclusion Our results indicate that YPMS@PpIX@FA nanocomposites are promising candidates for X-ray-mediated PDT of deep-seated tumors. The design of these nanoparticles allows the functionalization with exchangeable targeting ligands thus offering versatility, in order to target various cancer cells, expressing different molecular targets on their surface. Electronic supplementary material The online version of this article (10.1186/s12951-018-0344-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prakhar Sengar
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico.,Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico.,Posgrado en Física de Materiales, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - Patricia Juárez
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Andrea Verdugo-Meza
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Danna L Arellano
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Akhil Jain
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico.,Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico.,Posgrado en Física de Materiales, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
| | - Pierrick G J Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
74
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
75
|
Chen MH, Jenh YJ, Wu SK, Chen YS, Hanagata N, Lin FH. Non-invasive Photodynamic Therapy in Brain Cancer by Use of Tb 3+-Doped LaF 3 Nanoparticles in Combination with Photosensitizer Through X-ray Irradiation: A Proof-of-Concept Study. NANOSCALE RESEARCH LETTERS 2017; 12:62. [PMID: 28110445 PMCID: PMC5253140 DOI: 10.1186/s11671-017-1840-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/07/2017] [Indexed: 05/20/2023]
Abstract
The use of photodynamic therapy (PDT) in the treatment of brain cancer has produced exciting results in clinical trials over the past decade. PDT is based on the concept that a photosensitizer exposed to a specific light wavelength produces the predominant cytotoxic agent, to destroy tumor cells. However, delivering an efficient light source to the brain tumor site is still a challenge. The light source should be delivered by placing external optical fibers into the brain at the time of surgical debulking of the tumor. Consequently, there exists the need for a minimally invasive treatment for brain cancer PDT. In this study, we investigated an attractive non-invasive option on glioma cell line by using Tb3+-doped LaF3 scintillating nanoparticles (LaF3:Tb) in combination with photosensitizer, meso-tetra(4-carboxyphenyl)porphyrin (MTCP), followed by activation with soft X-ray (80 kVp). Scintillating LaF3:Tb nanoparticles, with sizes of approximately 25 nm, were fabricated. The particles have a good dispersibility in aqueous solution and possess high biocompatibility. However, significant cytotoxicity was observed in the glioma cells while the LaF3:Tb nanoparticles with MTCP were exposed under X-ray irradiation. The study has demonstrated a proof of concept as a non-invasive way to treat brain cancer in the future.
Collapse
Affiliation(s)
- Min-Hua Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, 3050047, Japan
| | - Yi-Jhen Jenh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| | - Sheng-Kai Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| | - Yo-Shen Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, 3050047, Japan.
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 0600808, Japan.
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
| |
Collapse
|
76
|
Losytskyy MY, Kuzmenko LV, Shcherbakov OB, Gamaleia NF, Marynin AI, Yashchuk VM. Energy Transfer in Ce 0.85Tb 0.15F 3 Nanoparticles-CTAB Shell-Chlorin e 6 System. NANOSCALE RESEARCH LETTERS 2017; 12:294. [PMID: 28445996 PMCID: PMC5403780 DOI: 10.1186/s11671-017-2077-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/13/2017] [Indexed: 05/12/2023]
Abstract
Formation and electronic excitation energy transfer process in the nanosystem consisting of Ce0.85Tb0.15F3 nanoparticles, cetrimonium bromide (CTAB) surfactant, and chlorin e6 photosensitizer were studied. It was shown that chlorin e6 molecules bind to Ce0.85Tb0.15F3 NP in the presence of CTAB forming thus Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem. We consider that binding occurs via chlorin e6 embedding in the shell of CTAB molecules, formed around NP. In the Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem, electronic excitation energy transfer from Ce3+ to chlorin e6 takes place both directly (with the 0.33 efficiency for 2 μM chlorin e6) and via Tb3+.
Collapse
Affiliation(s)
- Mykhaylo Yu Losytskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine.
| | - Liliia V Kuzmenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Oleksandr B Shcherbakov
- Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Zabolotnogo Str., Kyiv, 03680, Ukraine
| | - Nikolai F Gamaleia
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 45 Vasylkivska Str., Kyiv, 03022, Ukraine
| | - Andrii I Marynin
- National University of Food Technologies, Volodymyrska Str. 68, Kyiv, 01601, Ukraine
| | - Valeriy M Yashchuk
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| |
Collapse
|
77
|
Arrue L, Ratjen L. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem 2017; 12:1908-1916. [DOI: 10.1002/cmdc.201700621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Lily Arrue
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB); Universidad Andres Bello; Av. Republica 239 Santiago Chile
| | - Lars Ratjen
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB); Universidad Andres Bello; Av. Republica 239 Santiago Chile
- Fundación Fraunhofer Chile Research; Mariano Sánchez Fontecilla 310, Piso 14, Las Condes Santiago Chile
| |
Collapse
|
78
|
Chen H, Sun X, Wang GD, Nagata K, Hao Z, Wang A, Li Z, Xie J, Shen B. LiGa 5O 8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. MATERIALS HORIZONS 2017; 4:1092-1101. [PMID: 31528350 PMCID: PMC6746429 DOI: 10.1039/c7mh00442g] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Using X-ray as the irradiation source, a photodynamic therapy process can be initiated from under deep tissues. This technology, referred to as X-ray induced PDT, or X-PDT, holds great potential to treat tumors at internal organs. To this end, one question is how to navigate the treatment to tumors with accuracy with external irradiation. Herein we address the issue with a novel, LiGa5O8: Cr (LGO:Cr)-based nanoscintillator, which emits persistent, near-infrared X-ray luminescence. This permits deep-tissue optical imaging that can be employed to guide irradiation. Specifically, we encapsulated LGO:Cr nanoparticles and a photosensitizer, 2,3-naphthalocyanine, into mesoporous silica nanoparticles. The nanoparticles were conjugated with cetuximab and systemically injected into H1299 orthotopic non-small cell lung cancer tumor models. The nanoconjugates can efficiently home to tumors in the lung, confirmed by monitoring X-ray luminescence from LGO:Cr. Guided by the imaging, external irradiation was applied, leading to efficient tumor suppression while minimally affecting normal tissues. To the best of our knowledge, the present study is the first to demonstrate, with systematically injected nanoparticles, that X-PDT can suppress growth of deep-seated tumors. The imaging guidance is also new to X-PDT, and is significant to the further transformation of the technology.
Collapse
Affiliation(s)
- Hongmin Chen
- Molecular Imaging Research Center (MIRC), TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150028, China
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Geoffrey D. Wang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Koichi Nagata
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zhonglin Hao
- Section of Hematology and Oncology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Andrew Wang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Zibo Li
- ΔDepartment of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Corresponding Author: .
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150028, China
- Corresponding Author: .
| |
Collapse
|
79
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
80
|
Chouikrat R, Baros F, André JC, Vanderesse R, Viana B, Bulin AL, Dujardin C, Arnoux P, Verelst M, Frochot C. A Photosensitizer Lanthanide Nanoparticle Formulation that Induces Singlet Oxygen with Direct Light Excitation, But Not By Photon or X-ray Energy Transfer. Photochem Photobiol 2017; 93:1439-1448. [DOI: 10.1111/php.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rima Chouikrat
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Jean-Claude André
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM); UMR CNRS 7375; Université de Lorraine; Nancy France
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR CNRS 7375; CNRS; Nancy France
| | | | - Anne-Laure Bulin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Christophe Dujardin
- Institut Lumière Matière; UMR5306; Université Lyon 1-CNRS; Villeurbanne France
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| | - Marc Verelst
- UPR 8011; CNRS, Centre d'Elaboration de Matériaux et d'Etudes Structurales; Université de Toulouse (CEMES); Toulouse France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; Université de Lorraine; Nancy France
- Laboratoire Réactions et Génie des Procédés (LRGP); UMR 7274; CNRS; Nancy France
| |
Collapse
|
81
|
Yoshida T, Izougu DC, Iwasawa D, Ogata S, Hasegawa M, Breedlove BK, Cosquer G, Wernsdorfer W, Yamashita M. Multiple Magnetic Relaxation Pathways and Dual-Emission Modulated by a Heterometallic Tb-Pt Bonding Environment. Chemistry 2017; 23:10527-10531. [DOI: 10.1002/chem.201702989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Takefumi Yoshida
- Department of Chemistry; Graduate School of Science; Tohoku University; 6-3 Aza-aoba, Aramaki Sendai 980-8578 Japan
| | - David Chukwuma Izougu
- Department of Chemistry; Graduate School of Science; Tohoku University; 6-3 Aza-aoba, Aramaki Sendai 980-8578 Japan
- Department of Pure & Industrial Chemistry; University of Nigeria; 410001 Nsukka Nigeria
| | - Daichi Iwasawa
- Department of Chemistry and Biological Science; College of Science and Engineering; Aoyama-Gakuin University, Fuchinobe, Chuo-ku, Sagamihara; Kanagawa 252-5258 Japan
| | - Shuhei Ogata
- Department of Chemistry and Biological Science; College of Science and Engineering; Aoyama-Gakuin University, Fuchinobe, Chuo-ku, Sagamihara; Kanagawa 252-5258 Japan
| | - Miki Hasegawa
- Department of Chemistry and Biological Science; College of Science and Engineering; Aoyama-Gakuin University, Fuchinobe, Chuo-ku, Sagamihara; Kanagawa 252-5258 Japan
| | - Brian K. Breedlove
- Department of Chemistry; Graduate School of Science; Tohoku University; 6-3 Aza-aoba, Aramaki Sendai 980-8578 Japan
- CREST(JST); 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | - Goulven Cosquer
- Department of Chemistry; Graduate School of Science; Tohoku University; 6-3 Aza-aoba, Aramaki Sendai 980-8578 Japan
- CREST(JST); 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | | | - Masahiro Yamashita
- Department of Chemistry; Graduate School of Science; Tohoku University; 6-3 Aza-aoba, Aramaki Sendai 980-8578 Japan
- WPI-Advanced Institute for Materials Research; Tohoku University; 2-1-1 Katahira Sendai 980-8577 Japan
- School of Materials Science and Engineering; Nankai University; Tianjin 300350 China
- CREST(JST); 4-1-8 Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
82
|
Zhou Z, Song J, Tian R, Yang Z, Yu G, Lin L, Zhang G, Fan W, Zhang F, Niu G, Nie L, Chen X. Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701181] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Guofeng Zhang
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health; Bethesda MD 20892 USA
| |
Collapse
|
83
|
Zhou Z, Song J, Tian R, Yang Z, Yu G, Lin L, Zhang G, Fan W, Zhang F, Niu G, Nie L, Chen X. Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angew Chem Int Ed Engl 2017; 56:6492-6496. [PMID: 28470979 DOI: 10.1002/anie.201701181] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/07/2017] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS)-induced apoptosis is a widely practiced strategy for cancer therapy. Although photodynamic therapy (PDT) takes advantage of the spatial-temporal control of ROS generation, the meticulous participation of light, photosensitizer, and oxygen greatly hinders the broad application of PDT as a first-line cancer treatment option. An activatable system has been developed that enables tumor-specific singlet oxygen (1 O2 ) generation for cancer therapy, based on a Fenton-like reaction between linoleic acid hydroperoxide (LAHP) tethered on iron oxide nanoparticles (IO NPs) and the released iron(II) ions from IO NPs under acidic-pH condition. The IO-LAHP NPs are able to induce efficient apoptotic cancer cell death both in vitro and in vivo through tumor-specific 1 O2 generation and subsequent ROS mediated mechanism. This study demonstrates the effectiveness of modulating biochemical reactions as a ROS source to exert cancer death.
Collapse
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guofeng Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
84
|
Yesilgul N, Uyar TB, Seven O, Akkaya EU. Singlet Oxygen Generation with Chemical Excitation of an Erythrosine-Luminol Conjugate. ACS OMEGA 2017; 2:1367-1371. [PMID: 30023632 PMCID: PMC6044502 DOI: 10.1021/acsomega.7b00228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/27/2017] [Indexed: 06/08/2023]
Abstract
Chemical generation of singlet oxygen under biologically relevant conditions is very important, considering the role played by singlet oxygen in cancer therapeutics. We now demonstrate that a luminol derivative can be chemically excited and transfer the excitation energy to the covalently attached photosensitizer derived from erythrosin. A photosensitizer module, when excited in this manner, can generate singlet oxygen in solution. As hydrogen peroxide is present in a relatively high concentration in cancer cells, singlet oxygen generation through chemical excitation may evolve into an important therapeutic approach.
Collapse
Affiliation(s)
- Nisa Yesilgul
- Department
of Chemistry and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - T. Bilal Uyar
- Department
of Chemistry and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ozlem Seven
- Department
of Chemistry and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Engin U. Akkaya
- Department
of Chemistry and UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
85
|
Clement S, Chen W, Anwer AG, Goldys EM. Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2145-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
86
|
Clement S, Sobhan M, Deng W, Camilleri E, Goldys EM. Nanoparticle-mediated singlet oxygen generation from photosensitizers. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
87
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
88
|
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45:6597-6626. [PMID: 27722328 PMCID: PMC5118097 DOI: 10.1039/c6cs00271d] [Citation(s) in RCA: 1236] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Collapse
Affiliation(s)
- Zijian Zhou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
89
|
Rimoldi T, Orsi D, Lagonegro P, Ghezzi B, Galli C, Rossi F, Salviati G, Cristofolini L. CeF3-ZnO scintillating nanocomposite for self-lighted photodynamic therapy of cancer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:159. [PMID: 27637929 DOI: 10.1007/s10856-016-5769-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
We report on the synthesis and characterization of a composite nanostructure based on the coupling of cerium fluoride (CeF3) and zinc oxide (ZnO) for applications in self-lighted photodynamic therapy. Self-lighted photodynamic therapy is a novel approach for the treatment of deep cancers by low doses of X-rays. CeF3 is an efficient scintillator: when illuminated by X-rays it emits UV light by fluorescence at 325 nm. In this work, we simulate this effect by exciting directly CeF3 fluorescence by UV radiation. ZnO is photo-activated in cascade, to produce reactive oxygen species. This effect was recently demonstrated in a physical mixture of distinct nanoparticles of CeF3 and ZnO [Radiat. Meas. (2013) 59:139-143]. Oxide surface provides a platform for rational functionalization, e.g., by targeting molecules for specific tumors. Our composite nanostructure is stable in aqueous media with excellent optical coupling between the two components; we characterize its uptake and its good cell viability, with very low intrinsic cytotoxicity in dark.
Collapse
Affiliation(s)
- Tiziano Rimoldi
- Physics and Earth Science Department, Parma University, Parco Area delle Scienze 7/A, Parma, 43124, Italy
| | - Davide Orsi
- Physics and Earth Science Department, Parma University, Parco Area delle Scienze 7/A, Parma, 43124, Italy
| | - Paola Lagonegro
- IMEM-CNR Institute, Parco Area delle Scienze 37/A, Parma, 43124, Italy
| | - Benedetta Ghezzi
- Biomedical, Biotechnological and Translational Sciences, Parma University, via Gramsci 14, Parma, 43124, Italy
| | - Carlo Galli
- Biomedical, Biotechnological and Translational Sciences, Parma University, via Gramsci 14, Parma, 43124, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze 37/A, Parma, 43124, Italy
| | | | - Luigi Cristofolini
- Physics and Earth Science Department, Parma University, Parco Area delle Scienze 7/A, Parma, 43124, Italy.
| |
Collapse
|
90
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|
91
|
Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS NANO 2016; 10:3918-35. [PMID: 27043181 PMCID: PMC4846476 DOI: 10.1021/acsnano.6b01401] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Achieving effective treatment of deep-seated tumors is a major challenge for traditional photodynamic therapy (PDT) due to difficulties in delivering light into the subsurface. Thanks to their great tissue penetration, X-rays hold the potential to become an ideal excitation source for activating photosensitizers (PS) that accumulate in deep tumor tissue. Recently, a wide variety of nanoparticles have been developed for this purpose. The nanoparticles are designed as carriers for loading various kinds of PSs and can facilitate the activation process by transferring energy harvested from X-ray irradiation to the loaded PS. In this review, we focus on recent developments of nanoscintillators with high energy transfer efficiency, their rational designs, as well as potential applications in next-generation PDT. Treatment of deep-seated tumors by using radioisotopes as an internal light source will also be discussed.
Collapse
Affiliation(s)
- Anyanee Kamkaew
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
- Corresponding Author: Feng Chen: ; Weibo Cai:
| | - Yonghua Zhan
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Rebecca L. Majewski
- Department of Biomedical Engineering, University of Wisconsin - Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
- Corresponding Author: Feng Chen: ; Weibo Cai:
| |
Collapse
|
92
|
Abstract
This review summarizes the latest progress in deep photodynamic therapy (PDT), which overcomes the Achilles' heel of PDT.
Collapse
Affiliation(s)
- Wenpei Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- Department of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen 518060
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging
- Department of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen 518060
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
93
|
Deng W, Kautzka Z, Chen W, Goldys E. PLGA nanocomposites loaded with verteporfin and gold nanoparticles for enhanced photodynamic therapy of cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra21997g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enhanced 1O2 generation from PLGA loaded with verteporfin and gold nanoparticles under light illumination has the potential to improve cancer cell-killing effect.
Collapse
Affiliation(s)
- Wei Deng
- Centre of Excellence for Nanoscale Biophotonics
- Macquarie University
- Sydney
- Australia
| | - Zofia Kautzka
- Centre of Excellence for Nanoscale Biophotonics
- Macquarie University
- Sydney
- Australia
| | - Wenjie Chen
- Centre of Excellence for Nanoscale Biophotonics
- Macquarie University
- Sydney
- Australia
| | - Ewa M Goldys
- Centre of Excellence for Nanoscale Biophotonics
- Macquarie University
- Sydney
- Australia
| |
Collapse
|