51
|
Zhong X, Cui P, Cai Y, Wang L, He X, Long P, Lu K, Yan R, Zhang Y, Pan X, Zhao X, Li W, Zhang H, Zhou Q, Gao P. Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metab 2019; 29:979-992.e4. [PMID: 30527743 DOI: 10.1016/j.cmet.2018.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/14/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
While the pluripotency of stem cells is known to determine the fate of embryonic development, the mechanisms underlying the acquisition and maintenance of full pluripotency largely remain elusive. Here, we show that the balance between mitochondrial fission and fusion is critical for the full pluripotency of stem cells. By analyzing induced pluripotent stem cells with differential developmental potential, we found that excess mitochondrial fission is associated with an impaired embryonic developmental potential. We further uncover that the disruption of mitochondrial dynamics impairs the differentiation and embryonic development of pluripotent stem cells; most notably, pluripotent stem cells that display excess mitochondrial fission fail to produce live-born offspring by tetraploid complementation. Mechanistically, excess mitochondrial fission increases cytosolic Ca2+ entry and CaMKII activity, leading to ubiquitin-mediated proteasomal degradation of β-Catenin protein. Our results reveal a previously unappreciated fundamental role for mitochondrial dynamics in determining the full pluripotency and embryonic developmental potential of pluripotent stem cells.
Collapse
Affiliation(s)
- Xiuying Zhong
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peng Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei 230022, China
| | - Lihua Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoping He
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peipei Long
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangyang Lu
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei 230022, China
| | - Ronghui Yan
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100853, China
| | - Xiaoyang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huafeng Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
52
|
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
53
|
Princz A, Kounakis K, Tavernarakis N. Mitochondrial contributions to neuronal development and function. Biol Chem 2019; 399:723-739. [PMID: 29476663 DOI: 10.1515/hsz-2017-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| |
Collapse
|
54
|
Tapias V, McCoy JL, Greenamyre JT. Phenothiazine normalizes the NADH/NAD + ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson's disease. Redox Biol 2019; 24:101164. [PMID: 30925294 PMCID: PMC6440170 DOI: 10.1016/j.redox.2019.101164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Impaired mitochondrial function has been associated with the etiopathogenesis of Parkinson's disease (PD). Sustained inhibition of complex I produces mitochondrial dysfunction, which is related to oxidative injury and nigrostriatal dopamine (DA) neurodegeneration. This study aimed to identify disease-modifying treatments for PD. Unsubstituted phenothiazine (PTZ) is a small and uncharged aromatic imine that readily crosses the blood-brain barrier. PTZ lacks significant DA receptor-binding activity and, in the nanomolar range, exhibits protective effects via its potent free radical scavenging and anti-inflammatory activities. Given that DAergic neurons are highly vulnerable to oxidative damage and inflammation, we hypothesized that administration of PTZ might confer neuroprotection in different experimental models of PD. Our findings showed that PTZ rescues rotenone (ROT) toxicity in primary ventral midbrain neuronal cultures by preserving neuronal integrity and reducing protein thiol oxidation. Long-term treatment with PTZ improved animal weight, survival rate, and behavioral deficits in ROT-lesioned rats. PTZ protected DA content and fiber density in the striatum and DA neurons in the SN against the deleterious effects of ROT. Mitochondrial dysfunction, axonal impairment, oxidative insult, and inflammatory response were attenuated with PTZ therapy. Furthermore, we have provided a new insight into the molecular mechanism underlying the neuroprotective effects of PTZ.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jennifer L McCoy
- Department of Neurology, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Timothy Greenamyre
- Department of Neurology, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
55
|
Braganza A, Quesnelle K, Bickta J, Reyes C, Wang Y, Jessup M, St Croix C, Arlotti J, Singh SV, Shiva S. Myoglobin induces mitochondrial fusion, thereby inhibiting breast cancer cell proliferation. J Biol Chem 2019; 294:7269-7282. [PMID: 30872402 DOI: 10.1074/jbc.ra118.006673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/21/2019] [Indexed: 01/11/2023] Open
Abstract
Myoglobin is a monomeric heme protein expressed ubiquitously in skeletal and cardiac muscle and is traditionally considered to function as an oxygen reservoir for mitochondria during hypoxia. It is now well established that low concentrations of myoglobin are aberrantly expressed in a significant proportion of breast cancer tumors. Despite being expressed only at low levels in these tumors, myoglobin is associated with attenuated tumor growth and a better prognosis in breast cancer patients, but the mechanism of this myoglobin-mediated protection against further cancer growth remains unclear. Herein, we report a signaling pathway by which myoglobin regulates mitochondrial dynamics and thereby decreases cell proliferation. We demonstrate in vitro that expression of human myoglobin in MDA-MB-231, MDA-MB-468, and MCF7 breast cancer cells induces mitochondrial hyperfusion by up-regulating mitofusins 1 and 2, the predominant catalysts of mitochondrial fusion. This hyperfusion causes cell cycle arrest and subsequent inhibition of cell proliferation. Mechanistically, increased mitofusin expression was due to myoglobin-dependent free-radical production, leading to the oxidation and degradation of the E3 ubiquitin ligase parkin. We recapitulated this pathway in a murine model in which myoglobin-expressing xenografts exhibited decreased tumor volume with increased mitofusin, markers of cell cycle arrest, and decreased parkin expression. Furthermore, in human triple-negative breast tumor tissues, mitofusin and myoglobin levels were positively correlated. Collectively, these results elucidate a new function for myoglobin as a modulator of mitochondrial dynamics and reveal a novel pathway by which myoglobin decreases breast cancer cell proliferation and tumor growth by up-regulating mitofusin levels.
Collapse
Affiliation(s)
| | | | - Janelle Bickta
- the Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Christopher Reyes
- the Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15261
| | - Yinna Wang
- From the Vascular Medicine Institute and
| | | | | | - Julie Arlotti
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Shivendra V Singh
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Sruti Shiva
- From the Vascular Medicine Institute and .,Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
56
|
Reduced mitochondrial fusion and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. Nat Neurosci 2019; 22:386-400. [PMID: 30742117 PMCID: PMC6556892 DOI: 10.1038/s41593-019-0338-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022]
Abstract
Fragile X syndrome results from a loss of the RNA-binding protein fragile X mental retardation protein (FMRP). How FMRP regulates neuronal development and function remains unclear. Here we show that FMRP-deficient immature neurons exhibit impaired dendritic maturation, altered expression of mitochondrial genes, fragmented mitochondria, impaired mitochondrial function, and increased oxidative stress. Enhancing mitochondrial fusion partially rescued dendritic abnormalities in FMRP-deficient immature neurons. We show that FMRP deficiency leads to reduced Htt mRNA and protein levels and that HTT mediates FMRP regulation of mitochondrial fusion and dendritic maturation. Mice with hippocampal Htt knockdown and Fmr1-knockout mice showed similar behavioral deficits that could be rescued by treatment with a mitochondrial fusion compound. Our data unveil mitochondrial dysfunction as a contributor to the impaired dendritic maturation of FMRP-deficient neurons and suggest a role for interactions between FMRP and HTT in the pathogenesis of fragile X syndrome.
Collapse
|
57
|
Naik PP, Birbrair A, Bhutia SK. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci 2019; 76:27-43. [PMID: 30267101 PMCID: PMC11105479 DOI: 10.1007/s00018-018-2922-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
"Cellular reprogramming" facilitates the generation of desired cellular phenotype through the cell fate transition by affecting the mitochondrial dynamics and metabolic reshuffle in the embryonic and somatic stem cells. Interestingly, both the processes of differentiation and dedifferentiation witness a drastic and dynamic alteration in the morphology, number, distribution, and respiratory capacity of mitochondria, which are tightly regulated by the fission/fusion cycle, and mitochondrial clearance through autophagy following mitochondrial fission. Intriguingly, mitophagy is said to be essential in the differentiation of stem cells into various lineages such as erythrocytes, eye lenses, neurites, myotubes, and M1 macrophages. Mitophagy is also believed to play a central role in the dedifferentiation of a terminally differentiated cell into an induced pluripotent cell and in the acquisition of 'stemness' in cancer cells. Mitophagy-induced alteration in the mitochondrial dynamics facilitates metabolic shift, either into a glycolytic phenotype or into an OXPHOS phenotype, depending on the cellular demand. Mitophagy-induced rejuvenation of mitochondria regulates the transition of bioenergetics and metabolome, remodeling which facilitates an alteration in their cellular developmental capability. This review describes the detailed mechanism of the process of mitophagy and its association with cellular programming through alteration in the mitochondrial energetics. The metabolic shift post mitophagy is suggested to be a key factor in the cell fate transition during differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
- P.G. Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, 764001, India
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
58
|
Mitochondrial Dynamics in Stem Cells and Differentiation. Int J Mol Sci 2018; 19:ijms19123893. [PMID: 30563106 PMCID: PMC6321186 DOI: 10.3390/ijms19123893] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.
Collapse
|
59
|
Son G, Han J. Roles of mitochondria in neuronal development. BMB Rep 2018; 51:549-556. [PMID: 30269744 PMCID: PMC6283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 04/06/2024] Open
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141,
Korea
| |
Collapse
|
60
|
Shen X, Yeung HT, Lai KO. Application of Human-Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Dev Neurobiol 2018; 79:20-35. [PMID: 30304570 DOI: 10.1002/dneu.22644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.
Collapse
Affiliation(s)
- Xuting Shen
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Hoi Ting Yeung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kwok-On Lai
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
61
|
Ribeiro MF, Genebra T, Rego AC, Rodrigues CMP, Solá S. Amyloid β Peptide Compromises Neural Stem Cell Fate by Irreversibly Disturbing Mitochondrial Oxidative State and Blocking Mitochondrial Biogenesis and Dynamics. Mol Neurobiol 2018; 56:3922-3936. [PMID: 30225776 DOI: 10.1007/s12035-018-1342-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the accumulation of amyloid β peptide (Aβ). Although most AD mouse models present a decline in neurogenesis, they express mutated genes which regulate neurogenesis per se and are not present in most AD patients, thus masking the real impact of Aβ on adult neurogenesis. Mitochondrion, a well-known target of Aβ in neurons, is a main regulator of neural stem cell (NSC) fate. Here, we aimed to investigate the impact of Aβ on NSC mitochondria and cell fate decisions, namely whether and how Aβ affects neurogenesis. NSC fate and mitochondrial parameters, including biogenesis, dynamics, and oxidative stress, were evaluated. Our results showed that Aβ impaired NSC viability and proliferation and indirectly blocked neurogenic differentiation, by disrupting mitochondrial signaling of self-renewing NSCs. Importantly, Aβ decreased ATP levels, generated oxidative stress, and affected the radical scavenger system through SOD2 and SIRT3. Aβ also reduced mtDNA and mitochondrial biogenesis proteins, such as Tfam, PGC-1α, and NRF1, and inhibited activation of PGC-1α-positive regulator CREB. Moreover, Aβ triggered mitochondrial fragmentation in self-renewing NSCs and reduced mitochondrial fusion proteins, such as Mfn2 and ERRα. Notably, Aβ compromised NSC commitment and survival by irreversibly impairing mitochondria and thwarting any neurogenic rescue through mitochondrial biogenesis, dynamics, or radical scavenger system. Altogether, this study brings new perspective to rethink the molecular targets relevant for endogenous NSC-based strategies in AD.
Collapse
Affiliation(s)
- Maria Filipe Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Tânia Genebra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
62
|
Arrázola MS, Andraini T, Szelechowski M, Mouledous L, Arnauné-Pelloquin L, Davezac N, Belenguer P, Rampon C, Miquel MC. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res 2018; 36:257-267. [PMID: 30215161 DOI: 10.1007/s12640-018-9942-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France. .,Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Trinovita Andraini
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Physiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Noélie Davezac
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
63
|
Che Y, Wang ZP, Yuan Y, Zhang N, Jin YG, Wan CX, Tang QZ. Role of autophagy in a model of obesity: A long‑term high fat diet induces cardiac dysfunction. Mol Med Rep 2018; 18:3251-3261. [PMID: 30066870 PMCID: PMC6102660 DOI: 10.3892/mmr.2018.9301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity may induce end-organ damage through metabolic syndrome, and autophagy serves a vital role in the pathogenesis of metabolic syndrome. The purpose of the present study was to define the roles of autophagy and mitophagy in high fat diet (HFD)-induced cardiomyopathy. Male, 8 week-old C57BL/6 mice were fed either a HFD (60% kcal) or a diet of normal chow (NC; 10% kcal) for 42 weeks. Glucose tolerance tests were performed during the feeding regimes. Blood samples were collected for assaying serum triglyceride with the glycerol-3-phosphate oxidase phenol and aminophenazone (PAP) method and total cholesterol was tested with the cholesterol oxidase-PAP method. Myocardial function was assessed using echocardiography and hemodynamic analyses. Western blot analysis was employed to evaluate endoplasmic reticulum stress (ERS), autophagy and mitochondrial function. Electron microscopy was used to assess the number of lipid droplets and the degree of autophagy within the myocardium. The body weight and adipose tissue weight of mice fed the HFD were increased compared with the NC mice. The serum levels of blood glucose, total cholesterol and triglyceride were significantly increased following 42 weeks of HFD feeding. The results of the glucose tolerance tests additionally demonstrated metabolic dysregulation in HFD mice. In addition, HFD mice exhibited hemodynamic and echocardiographic evidence of impaired diastolic and systolic function, including alterations in the cardiac output, end-diastolic pressure, end-diastolic volume and left ventricular relaxation time constant (tau) following HFD intake. Furthermore, a HFD resulted in increased ERS, and a downregulation of the autophagy and mitophagy level. The present study investigated cardiac function in obese HFD-fed mice. These results aid the pursuit of novel therapeutic targets to combat obesity-associated cardiomyopathy.
Collapse
Affiliation(s)
- Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhao-Peng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chun-Xia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
64
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
65
|
Lisowski P, Kannan P, Mlody B, Prigione A. Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 2018; 19:embr.201745432. [PMID: 29661859 DOI: 10.15252/embr.201745432] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell-based medical applications.
Collapse
Affiliation(s)
- Pawel Lisowski
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Centre for Preclinical Research and Technology (CePT), Warsaw Medical University, Warsaw, Poland
| | - Preethi Kannan
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany
| | | |
Collapse
|
66
|
Yu Q, Du F, Douglas JT, Yu H, Yan SS, Yan SF. Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2018; 59:223-239. [PMID: 28598851 DOI: 10.3233/jad-170283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Loss of synapse and synaptic dysfunction contribute importantly to cognitive impairment in Alzheimer's disease (AD). Mitochondrial dysfunction and oxidative stress are early pathological features in AD-affected brain. However, the effect of AD mitochondria on synaptogenesis remains to be determined. Using human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were transferred from platelets of patients with sporadic AD or age-matched non-AD subjects with relatively normal cognition, we provide the first evidence of mitochondrial dysfunction compromises synaptic development and formation of synapse in AD cybrid cells in response to chemical-induced neuronal differentiation. Compared to non-AD control cybrids, AD cybrid cells showed synaptic loss which was evidenced by a significant reduction in expression of two synaptic marker proteins: synaptophysin (presynaptic marker) and postsynaptic density protein-95, and neuronal proteins (MAP-2 and NeuN) upon neuronal differentiation. In parallel, AD-mediated synaptic deficits correlate to mitochondrial dysfunction and oxidative stress as well as activation of p38 MAP kinase. Notably, inhibition of p38 MAP kinase by pharmacological specific p38 inhibitor significantly increased synaptic density, improved mitochondrial function, and reduced oxidative stress. These results suggest that activation of p38 MAP kinase signaling pathway contributes to AD-mediated impairment in neurogenesis, possibly by inhibiting the neuronal differentiation. Our results provide new insight into the crosstalk of dysfunctional AD mitochondria to synaptic formation and maturation via activation of p38 MAP kinase. Therefore, blockade of p38 MAP kinase signal transduction could be a potential therapeutic strategy for AD by alleviating loss of synapses.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China.,Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Fang Du
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Laboratory, Molecular Structures group, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Shirley ShiDu Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Shi Fang Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
67
|
Astrocytes Attenuate Mitochondrial Dysfunctions in Human Dopaminergic Neurons Derived from iPSC. Stem Cell Reports 2018; 10:366-374. [PMID: 29396183 PMCID: PMC5830955 DOI: 10.1016/j.stemcr.2017.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Astrocytes, the most populous glial cell type in the brain, are critical for regulating the brain microenvironment. In various neurodegenerative diseases, astrocytes determine the progression and outcome of the neuropathological process. We have recently revealed the direct involvement of mitochondrial function in human pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neuronal differentiation. Using the astroglial-neuronal co-culture system, we show here that astrocytes effectively rescue defects in neurogenesis of DA neurons with mitochondrial respiratory chain disruption. Co-culture of astrocytes with defective DA neurons completely restored mitochondrial functions and dynamics insulted by mitochondrial toxins. These results suggest the significance of astroglia in maintaining mitochondrial development and bioenergetics during differentiation of hiPSC-derived DA neurons. Our study also provides an active astroglial-neuronal interaction model for future investigation of mitochondrial involvement in neurogenesis and neurodegenerative diseases. Role of astrocyte on the development of hiPSC-derived dopaminergic neuron Astrocyte protects dopaminergic neurogenesis by powering up mitochondrial respiration Astrocyte restores mitochondrial function and dynamics in dopaminergic neuron Evidence of astroglial and neuronal interaction during dopaminergic neurogenesis
Collapse
|
68
|
Du F, Yu Q, Yan S, Hu G, Lue LF, Walker DG, Wu L, Yan SF, Tieu K, Yan SS. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain 2017; 140:3233-3251. [PMID: 29077793 PMCID: PMC5841141 DOI: 10.1093/brain/awx258] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease-affected brain. Memory impairment in Alzheimer's disease is a manifestation of brain pathologies such as accumulation of amyloid-β peptide and mitochondrial damage. The underlying pathogenic mechanisms and effective disease-modifying therapies for Alzheimer's disease remain elusive. Here, we demonstrate for the first time that decreased PTEN-induced putative kinase 1 (PINK1) expression is associated with Alzheimer's disease pathology. Restoring neuronal PINK1 function strikingly reduces amyloid-β levels, amyloid-associated pathology, oxidative stress, as well as mitochondrial and synaptic dysfunction. In contrast, PINK1-deficient mAPP mice augmented cerebral amyloid-β accumulation, mitochondrial abnormalities, impairments in learning and memory, as well as synaptic plasticity at an earlier age than mAPP mice. Notably, gene therapy-mediated PINK1 overexpression promotes the clearance of damaged mitochondria by augmenting autophagy signalling via activation of autophagy receptors (OPTN and NDP52), thereby alleviating amyloid-β-induced loss of synapses and cognitive decline in Alzheimer's disease mice. Loss of PINK1 activity or blockade of PINK1-mediated signalling (OPTN or NDP52) fails to reverse amyloid-β-induced detrimental effects. Our findings highlight a novel mechanism by which PINK1-dependent signalling promotes the rescue of amyloid pathology and amyloid-β-mediated mitochondrial and synaptic dysfunctions in a manner requiring activation of autophagy receptor OPTN or NDP52. Thus, activation of PINK1 may represent a new therapeutic avenue for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Fang Du
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Gang Hu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Lih-Fen Lue
- Arizona State University, Tempe, AZ85281, USA
| | | | - Long Wu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Shi Fang Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| | - Kim Tieu
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, 33199, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, 66047, USA
| |
Collapse
|
69
|
Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C, Dolga AM. Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 2017; 3:17076. [PMID: 29367884 PMCID: PMC5672593 DOI: 10.1038/cddiscovery.2017.76] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/20/2023] Open
Abstract
The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and intracellular Ca2+ homeostasis. The chaperone glucose-regulated protein 75 (GRP75) is a key protein expressed at the MAM interface which regulates ER–mitochondrial Ca2+ transfer. Previous studies revealed that modulation of GRP75 expression largely affected mitochondrial integrity and vulnerability to cell death. In the present study, we show that genetic ablation of GRP75, by weakening ER–mitochondrial junctions, provided protection against mitochondrial dysfunction and cell death in a model of glutamate-induced oxidative stress. Interestingly, GRP75 silencing attenuated both cytosolic and mitochondrial Ca2+ overload in conditions of oxidative stress, blocked the formation of reactive oxygen species and preserved mitochondrial respiration. These data revealed a major role for GRP75 in regulating mitochondrial function, Ca2+ and redox homeostasis. In line, GRP75 overexpression enhanced oxidative cell death induced by glutamate. Overall, our findings suggest weakening ER–mitochondrial connectivity by GRP75 inhibition as a novel protective approach in paradigms of oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Isabell Metz
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Nadia Bendridi
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, Oullins, France
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
70
|
Morgan AH, Andrews ZB, Davies JS. Less is more: Caloric regulation of neurogenesis and adult brain function. J Neuroendocrinol 2017; 29. [PMID: 28771924 DOI: 10.1111/jne.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Calorie intake is essential for regulating normal physiological processes and is fundamental to maintaining life. Indeed, both extremes of calorie intake result in increased morbidity and mortality. In this review, we discuss the effect of calorie intake on adult brain function, with an emphasis on the beneficial effects of mild calorie restriction. Recent findings relating to the regenerative and protective effects of the gastrointestinal hormone, ghrelin, suggest that it may underlie the beneficial effects of calorie restriction. We discuss the putative cellular mechanisms underlying the action of ghrelin and their possible role in supporting healthy brain ageing.
Collapse
Affiliation(s)
- A H Morgan
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| | - Z B Andrews
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
71
|
Xu G, Lu H, Dong Y, Shapoval D, Soriano S, Liu X, Zhang Y, Xie Z. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth 2017; 119:481-491. [DOI: 10.1093/bja/aex071] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
|
72
|
Prior R, Van Helleputte L, Benoy V, Van Den Bosch L. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 2017; 105:300-320. [DOI: 10.1016/j.nbd.2017.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/29/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
|
73
|
Khacho M, Slack RS. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn 2017. [PMID: 28643345 DOI: 10.1002/dvdy.24538] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
74
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
75
|
Abstract
Cancer and stem cells appear to share a common metabolic profile that is characterized by high utilization of glucose through aerobic glycolysis. In the presence of sufficient nutrients, this metabolic strategy provides sufficient cellular ATP while additionally providing important metabolites necessary for the biosynthetic demands of continuous cell proliferation. Recent studies indicate that this metabolic profile is dependent on genes that regulate the fusion and fission of mitochondria. High levels of mitochondrial fission activity are associated with high proliferation and invasiveness in some cancer cells and with self-renewal and resistance to differentiation in some stem cells. These observations reveal new ways in which mitochondria regulate cell physiology, through their effects on metabolism and cell signaling.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA.
| |
Collapse
|
76
|
Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:341-361. [PMID: 28253990 DOI: 10.1016/bs.pmbts.2016.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are well-known cellular organelles that play a vital role in cellular bioenergetics, heme biosynthesis, thermogenesis, calcium homeostasis, lipid catabolism, and other metabolic activities. Given the extensive role of mitochondria in cell function, mitochondrial dysfunction plays a part in many diseases, including diabetes and Alzheimer's disease (AD). In most cases, there is overwhelming evidence that impaired mitochondrial function is a causative factor in these diseases. Studying mitochondrial function in diseased cells vs healthy cells may reveal the modified mechanisms and molecular components involved in specific disease states. In this chapter, we provide a concise overview of the major recent findings on mitochondrial abnormalities and their link to synaptic dysfunction relevant to neurodegeneration and cognitive decline in AD and diabetes. Our increased understanding of the role of mitochondrial perturbation indicates that the development of specific small molecules targeting aberrant mitochondrial function could provide therapeutic benefits for the brain in combating aging-related dementia and neurodegenerative diseases by powering up brain energy and improving synaptic function and transmission.
Collapse
Affiliation(s)
- F Akhter
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - D Chen
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S F Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S S Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|