51
|
Smith SB, Wang J, Cui X, Mysona BA, Zhao J, Bollinger KE. Sigma 1 receptor: A novel therapeutic target in retinal disease. Prog Retin Eye Res 2018; 67:130-149. [PMID: 30075336 PMCID: PMC6557374 DOI: 10.1016/j.preteyeres.2018.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
Abstract
Retinal degenerative diseases are major causes of untreatable blindness worldwide and efficacious treatments for these diseases are sorely needed. A novel target for treatment of retinal disease is the transmembrane protein Sigma 1 Receptor (Sig1R). This enigmatic protein is an evolutionary isolate with no known homology to any other protein. Sig1R was originally thought to be an opioid receptor. That notion has been dispelled and more recent pharmacological and molecular studies suggest that it is a pluripotent modulator with a number of biological functions, many of which are relevant to retinal disease. This review provides an overview of the discovery of Sig1R and early pharmacologic studies that led to the cloning of the Sig1R gene and eventual elucidation of its crystal structure. Studies of Sig1R in the eye were not reported until the late 1990s, but since that time there has been increasing interest in the potential role of Sig1R as a target for retinal disease. Studies have focused on elucidating the mechanism(s) of Sig1R function in retina including calcium regulation, modulation of oxidative stress, ion channel regulation and molecular chaperone activity. Mechanistic studies have been performed in isolated retinal cells, such as Müller glial cells, microglial cells, optic nerve head astrocytes and retinal ganglion cells as well as in the intact retina. Several compelling studies have provided evidence of powerful in vivo neuroprotective effects against ganglion cell loss as well as photoreceptor cell loss. Also described are studies that have examined retinal structure/function in various models of retinal disease in which Sig1R is absent and reveal that these phenotypes are accelerated compared to retinas of animals that express Sig1R. The collective evidence from analysis of studies over the past 20 years is that Sig1R plays a key role in modulating retinal cellular stress and that it holds great promise as a target in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA.
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Xuezhi Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Barbara A Mysona
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Jing Zhao
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA
| | - Kathryn E Bollinger
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University 30912, Augusta, GA, USA
| |
Collapse
|
52
|
Targeting MicroRNA-143 Leads to Inhibition of Glioblastoma Tumor Progression. Cancers (Basel) 2018; 10:cancers10100382. [PMID: 30322013 PMCID: PMC6210372 DOI: 10.3390/cancers10100382] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive of all brain tumors, with a median survival of only 14 months after initial diagnosis. Novel therapeutic approaches are an unmet need for GBM treatment. MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Several dysregulated miRNAs have been identified in all cancer types including GBM. In this study, we aimed to uncover the role of miR-143 in GBM cell lines, patient samples, and mouse models. Quantitative real-time RT-PCR of RNA extracted from formalin-fixed paraffin-embedded (FFPE) samples showed that the relative expression of miR-143 was higher in GBM patients compared to control individuals. Transient transfection of GBM cells with a miR-143 oligonucleotide inhibitor (miR-143-inh) resulted in reduced cell proliferation, increased apoptosis, and cell cycle arrest. SLC30A8, a glucose metabolism-related protein, was identified as a direct target of miR-143 in GBM cells. Moreover, multiple injections of GBM tumor-bearing mice with a miR-143-inh-liposomal formulation significantly reduced tumor growth compared to control mice. The reduced in vitro cell growth and in vivo tumor growth following miRNA-143 inhibition suggests that miR-143 is a potential therapeutic target for GBM therapy.
Collapse
|
53
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
54
|
Izzotti A, Longobardi M, La Maestra S, Micale RT, Pulliero A, Camoirano A, Geretto M, D'Agostini F, Balansky R, Miller MS, Steele VE, De Flora S. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke. Theranostics 2018; 8:2147-2160. [PMID: 29721069 PMCID: PMC5928877 DOI: 10.7150/thno.22726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Anna Camoirano
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia-1756, Bulgaria
| | - Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
55
|
Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 2018; 14:404-418. [PMID: 29260931 DOI: 10.1080/15548627.2017.1414755] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is associated with damage to blood-brain barrier (BBB) integrity. Circular RNAs (circRNAs) are highly expressed in the brain and are involved in brain diseases; however, whether circRNAs regulate the EndoMT in the brain remains unknown. Our study demonstrated that circHECW2 regulated the EndoMT by directly binding to MIR30D, a significantly downregulated miRNA from miRNA profiling, which subsequently caused an increased expression of ATG5. These findings shed new light on the understanding of the noncanonical role of ATG5 in the EndoMT induced by methamphetamine (Meth) or lipopolysaccharide (LPS). The in vivo relevance was confirmed as microinjection of circHecw2 siRNA lentivirus into the mouse hippocampus suppressed the EndoMT induced by LPS. These findings provide novel insights regarding the contribution of circHECW2 to the nonautophagic role of ATG5 in the EndoMT process in the context of drug abuse and the broad range of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Li Yang
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Bing Han
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- b Department of Physiology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Gang Hu
- c Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China.,d Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
56
|
Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci 2018; 38:32-50. [PMID: 29114076 PMCID: PMC6705810 DOI: 10.1523/jneurosci.1348-17.2017] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the CNS and regulate physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, we show that the circRNA DLGAP4 (circDLGAP4) functions as an endogenous microRNA-143 (miR-143) sponge to inhibit miR-143 activity, resulting in the inhibition of homologous to the E6-AP C-terminal domain E3 ubiquitin protein ligase 1 expression. circDLGAP4 levels were significantly decreased in the plasma of acute ischemic stroke patients (13 females and 13 males) and in a mouse stroke model. Upregulation of circDLGAP4 expression significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. Endothelial-mesenchymal transition contributes to blood-brain barrier disruption and circDLGAP4 overexpression significantly inhibited endothelial-mesenchymal transition by regulating tight junction protein and mesenchymal cell marker expression. Together, the results of our study are illustrative of the involvement of circDLGAP4 and its coupling mechanism in cerebral ischemia, providing translational evidence that circDLGAP4 serves as a novel therapeutic target for acute cerebrovascular protection.SIGNIFICANCE STATEMENT Circular RNAs (circRNAs) are involved in the regulation of physiological and pathophysiological processes. However, whether circRNAs are involved in ischemic injury, particularly cerebrovascular disorders, remains largely unknown. Here, we demonstrate a critical role for circular RNA DLGAP4 (circDLGAP4), a novel circular RNA originally identified as a sponge for microRNA-143 (miR-143), in ischemic stroke outcomes. Overexpression of circDLGAP4 significantly attenuated neurological deficits and decreased infarct areas and blood-brain barrier damage in the transient middle cerebral artery occlusion mouse stroke model. To our knowledge, this is the first report describing the efficacy of circRNA injection in an ischemic stroke model. Our investigation suggests that circDLGAP4 may serve as a novel therapeutic target for acute ischemic injury.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Yang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xufeng Chen
- Emergency Department, Jiangsu Province Hospital, Nanjing 210029, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, China
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California 92354, and
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China,
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| |
Collapse
|
57
|
Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep 2017; 7:11540. [PMID: 28912535 PMCID: PMC5599501 DOI: 10.1038/s41598-017-11065-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/15/2017] [Indexed: 01/26/2023] Open
Abstract
Our previous study demonstrated that the sigma-1 receptor is involved in methamphetamine-induced microglial apoptosis and death; however, whether the sigma-1 receptor is involved in microglial activation as well as the molecular mechanisms underlying this process remains poorly understood. The aim of this study is to demonstrate the involvement of the sigma-1 receptor in methamphetamine-mediated microglial activation. The expression of σ-1R, iNOS, arginase and SOCS was examined by Western blot; activation of cell signaling pathways was detected by Western blot analysis. The role of σ-1R in microglial activation was further validated in C57BL/6 N WT and sigma-1 receptor knockout mice (male, 6-8 weeks) injected intraperitoneally with saline or methamphetamine (30 mg/kg) by Western blot combined with immunostaining specific for Iba-1. Treatment of cells with methamphetamine (150 μM) induced the expression of M1 markers (iNOS) with concomitant decreased the expression of M2 markers (Arginase) via its cognate sigma-1 receptor followed by ROS generation. Sequential activation of the downstream MAPK, Akt and STAT3 pathways resulted in microglial polarization. Blockade of sigma-1 receptor significantly inhibited the generation of ROS and activation of the MAPK and Akt pathways. These findings underscore the critical role of the sigma-1 receptor in methamphetamine-induced microglial activation.
Collapse
Affiliation(s)
- Jie Chao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
- Department of Physiology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Longfei Du
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaodong Wu
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China
| | - Kai Shen
- Department of Pharmacy, Nantong Tongzhou People's Hospital, Nantong, China.
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
58
|
Qie X, Wen D, Guo H, Xu G, Liu S, Shen Q, Liu Y, Zhang W, Cong B, Ma C. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood-Brain Barrier Damage. Front Pharmacol 2017; 8:639. [PMID: 28959203 PMCID: PMC5603670 DOI: 10.3389/fphar.2017.00639] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Abstract
Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood-brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.
Collapse
Affiliation(s)
- Xiaojuan Qie
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China.,Department of Anesthesiology, The Third Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Hongyan Guo
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Guanjie Xu
- Department of Anesthesiology, The Third Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Shuai Liu
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Qianchao Shen
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Yi Liu
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Wenfang Zhang
- The 8th Brigade of General Division of Criminal Investigation, Beijing Municipal Public Security BureauBeijing, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|
59
|
Huang C, Huang J, Ma P, Yu G. microRNA-143 acts as a suppressor of hemangioma growth by targeting Bcl-2. Gene 2017; 628:211-217. [PMID: 28716710 DOI: 10.1016/j.gene.2017.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 02/09/2023]
Abstract
Infantile hemangioma is the most common vascular tumor affecting infants, which is associated with clonal expansion of endothelial cells. The aim of this study is to determine the role of microRNA (miR)-143 in the growth and survival of hemangioma-derived endothelial cells (HemECs). We examined the expression of miR-143 in patients with proliferating-phase (n=10) and involuting-phase (n=8) hemangiomas. The effects of ectopic expression of miR-143 on the viability, proliferation, cell cycle distribution, and apoptosis of HemECs were explored. We also identified the target gene(s) that was involved in the activity of miR-143. It was found that proliferating hemangiomas had significantly (P<0.05) lower levels of miR-143 than involuting counterparts. Reexpression of miR-143 significantly reduced the viability and proliferation of HemECs, while knockdown of miR-143 led to an increase in the proliferation of HemECs. Moreover, overexpression of miR-143 arrested HemECs at the G0/G1 phase and promoted caspase-3-dependent apoptosis. At the molecular level, miR-143 overexpression significantly promoted the expression of p21 and p53 and reduced the expression of cyclin D1, CDK2, CDK4, and Bcl-2. Silencing of Bcl-2 phenocopied the effect of miR-143 overexpression on the proliferation and apoptosis of HemECs. Furthermore, co-expression of Bcl-2 reversed the growth-suppressive effect of miR-143 on HemECs. Taken together, miR-143 acts as a suppressor in the growth of HemECs, at least partially, through downregulation of Bcl-2. Reexpression of miR-143 may represent a potential therapeutic strategy for the treatment of proliferating hemangiomas.
Collapse
Affiliation(s)
- Chongqing Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - JingYong Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengyan Ma
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanfeng Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
60
|
Xiong K, Long L, Zhang X, Qu H, Deng H, Ding Y, Cai J, Wang S, Wang M, Liao L, Huang J, Yi CX, Yan J. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro. Toxicol In Vitro 2017; 44:1-10. [PMID: 28619521 DOI: 10.1016/j.tiv.2017.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/20/2017] [Accepted: 06/10/2017] [Indexed: 01/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) display multiple functions including regulation of neuronal injury. However, their impact in methamphetamine (METH)-induced neurotoxicity has rarely been reported. Here, using microarray analysis, we investigated the expression profiling of lncRNAs and mRNAs in primary cultured prefrontal cortical neurons after METH treatment. We observed a difference in lncRNA and mRNA expression between the experimental and sham control groups. Using bioinformatics, we analyzed the highest enriched gene ontology (GO) terms of biological process, cellular component, and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and pathway network analysis. Furthermore, an lncRNA-mRNA co-expression sub-network for aberrantly expressed terms revealed possible interactions of lncRNA NR_110713 and NR_027943 with their related genes. Afterwards, three lncRNAs (NR_110713, NR_027943, GAS5) and two mRNAs (Ddit3, Casp12) were targeted to validate the microarray data by qRT-PCR. This presented an overview of lncRNA and mRNA expression profiling and indicated that lncRNA might participate in METH-induced neuronal apoptosis by regulating the coding genes of neurons.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lingling Long
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xudong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan 410013, China
| | - Hongke Qu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Haixiao Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
61
|
Casselli T, Qureshi H, Peterson E, Perley D, Blake E, Jokinen B, Abbas A, Nechaev S, Watt JA, Dhasarathy A, Brissette CA. MicroRNA and mRNA Transcriptome Profiling in Primary Human Astrocytes Infected with Borrelia burgdorferi. PLoS One 2017; 12:e0170961. [PMID: 28135303 PMCID: PMC5279786 DOI: 10.1371/journal.pone.0170961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lyme disease is caused by infection with the bacterium Borrelia burgdorferi (Bb), which is transmitted to humans by deer ticks. The infection manifests usually as a rash and minor systemic symptoms; however, the bacteria can spread to other tissues, causing joint pain, carditis, and neurological symptoms. Lyme neuroborreliosis presents itself in several ways, such as Bell's palsy, meningitis, and encephalitis. The molecular basis for neuroborreliosis is poorly understood. Analysis of the changes in the expression levels of messenger RNAs and non-coding RNAs, including microRNAs, following Bb infection could therefore provide vital information on the pathogenesis and clinical symptoms of neuroborreliosis. To this end, we used cultured primary human astrocytes, key responders to CNS infection and important components of the blood-brain barrier, as a model system to study RNA and microRNA changes in the CNS caused by Bb. Using whole transcriptome RNA-seq, we found significant changes in 38 microRNAs and 275 mRNAs at 24 and 48 hours following Bb infection. Several of the RNA changes affect pathways involved in immune response, development, chromatin assembly (including histones) and cell adhesion. Further, several of the microRNA predicted target mRNAs were also differentially regulated. Overall, our results indicate that exposure to Bb causes significant changes to the transcriptome and microRNA profile of astrocytes, which has implications in the pathogenesis, and hence potential treatment strategies to combat this disease.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Humaira Qureshi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Elizabeth Peterson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Emily Blake
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Bradley Jokinen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Ata Abbas
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - John A. Watt
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| |
Collapse
|