51
|
Niazian M. Application of genetics and biotechnology for improving medicinal plants. PLANTA 2019; 249:953-973. [PMID: 30715560 DOI: 10.1007/s00425-019-03099-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
Plant tissue culture has been used for conservation, micropropagation, and in planta overproduction of some pharma molecules of medicinal plants. New biotechnology-based breeding methods such as targeted genome editing methods are able to create custom-designed medicinal plants with different secondary metabolite profiles. For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium-mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.
Collapse
Affiliation(s)
- Mohsen Niazian
- Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| |
Collapse
|
52
|
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
53
|
Xu J, Hua K, Lang Z. Genome editing for horticultural crop improvement. HORTICULTURE RESEARCH 2019; 6:113. [PMID: 31645967 PMCID: PMC6804600 DOI: 10.1038/s41438-019-0196-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
Horticultural crops provide humans with many valuable products. The improvement of the yield and quality of horticultural crops has been receiving increasing research attention. Given the development and advantages of genome-editing technologies, research that uses genome editing to improve horticultural crops has substantially increased in recent years. Here, we briefly review the different genome-editing systems used in horticultural research with a focus on clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome editing. We also summarize recent progress in the application of genome editing for horticultural crop improvement. The combination of rapidly advancing genome-editing technology with breeding will greatly increase horticultural crop production and quality.
Collapse
Affiliation(s)
- Jiemeng Xu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Kai Hua
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
54
|
Tong Y, Weber T, Lee SY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 2019; 36:1262-1280. [DOI: 10.1039/c8np00089a] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current state of the art of CRISPR/Cas-based genome editing technologies for natural product producers.
Collapse
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
| |
Collapse
|
55
|
Wei T, Gao Y, Deng K, Zhang L, Yang M, Liu X, Qi C, Wang C, Song W, Zhang Y, Chen C. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering. PLANT METHODS 2019; 15:53. [PMID: 31143241 PMCID: PMC6532201 DOI: 10.1186/s13007-019-0439-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tanshinones are diterpenoid compounds that are used to treat cardiovascular diseases. As current extraction methods for tanshinones are inefficient, there is a pressing need to improve the production of these bioactive compounds to meet increasing demand. RESULTS Overexpression of SmMDS (2-c-methyl-d-erythritol 2,4-cyclodiphosphate synthase, a tanshinone biosynthesis gene) in transgenic Salvia miltiorrhiza hairy roots significantly increased the tanshinone yield compared to the control, and total tanshinone content in SmMDS-overexpressing lines increased after elicitor treatment. Total tanshinones increased to 2.5, 2.3, and 3.2 mg/g DW (dry weight) following treatment with Ag+, YE (yeast extract), and MJ (methyl jasmonate), respectively, compared with the non-induced transgenic line (1.7 mg/g DW). Also, qRT-PCR analysis showed that the expression levels of two pathway genes was positively correlated with increased accumulation of tanshinone. CONCLUSIONS Our study provides an effective strategy for increasing the content of tanshinones and other natural compounds using a combination of genetic engineering and elicitor treatment.
Collapse
Affiliation(s)
- Tao Wei
- National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 People’s Republic of China
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Yonghong Gao
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Meiling Yang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Xiaopei Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Caiyan Qi
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
56
|
Gahlaut V, Baranwal VK, Khurana P. miRNomes involved in imparting thermotolerance to crop plants. 3 Biotech 2018; 8:497. [PMID: 30498670 PMCID: PMC6261126 DOI: 10.1007/s13205-018-1521-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022] Open
Abstract
Thermal stress is one of the challenges to crop plants that negatively impacts crop yield. To overcome this ever-growing problem, utilization of regulatory mechanisms, especially microRNAs (miRNAs), that provide efficient and precise regulation in a targeted manner have been found to play determining roles. Besides their roles in plant growth and development, many recent studies have shown differential regulation of several miRNAs during abiotic stresses including heat stress (HS). Thus, understanding the underlying mechanism of miRNA-mediated gene expression during HS will enable researchers to exploit this regulatory mechanism to address HS responses. This review focuses on the miRNAs and regulatory networks that were involved in physiological, metabolic and morphological adaptations during HS in plant, specifically in crops. Illustrated examples including, the miR156-SPL, miR169-NF-YA5, miR395-APS/AST, miR396-WRKY, etc., have been discussed in specific relation to the crop plants. Further, we have also discussed the available plant miRNA databases and bioinformatics tools useful for miRNA identification and study of their regulatory role in response to HS. Finally, we have briefly discussed the future prospects about the miRNA-related mechanisms of HS for improving thermotolerance in crop plants.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- Department of Botany, Swami Devanand Post Graduate College, Math-lar, Lar, Deoria, Uttar Pradesh 274502 India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
57
|
Xu Y, Geng L, Zhao S. Biosynthesis of bioactive ingredients of Salvia miltiorrhiza and advanced biotechnologies for their production. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1532318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yingpeng Xu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Shanghai, P.R. China
| | - Lijun Geng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai, P.R. China
| | - Shujuan Zhao
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
58
|
Soda N, Verma L, Giri J. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:2-11. [PMID: 29103811 DOI: 10.1016/j.plaphy.2017.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/02/2017] [Accepted: 10/26/2017] [Indexed: 05/21/2023]
Abstract
Precise genome editing is a quantum leap in the field of plant sciences. Clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas9 protein have emerged as a powerful tool for precise genome editing. CRISPR-Cas9 system introduces small heritable mutations (indels) in the genome of an organism. This system also enables precise gene characterization in plants with complex genomes. Besides, it offers new opportunities of trait stacking, where addition of desirable traits or removal of undesirable traits can be achieved simultaneously in a single event. With CRISPR-Cas9 RNPs technology, raising transgene free genetically modified plants is within realm of possibility which would be helpful in addressing regulatory concerns of transgenic plants. Several new advancements have been made in this technology which has extended its applications in almost every aspect of plant science. For example, recently developed catalytically inactive dCas9 fused with transcriptional effector domains allows targeted activation or silencing of the gene of interest. Apart from this, dCas9 fused with fluorescent labels is a budding tool in chromatin imaging studies. In this review, we summarize these recent advancements in CRISPR/Cas system and methods for analyzing the induced mutations, and its implementations in crop improvement.
Collapse
Affiliation(s)
- Neelam Soda
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
59
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
60
|
Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. PLANTA 2018; 248:243-255. [PMID: 29704055 DOI: 10.1007/s00425-018-2884-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
The SmERF6, which recognizes the GCC-box of SmCPS1 and SmKSL1 promoter in nucleus, regulates the tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Tanshinone, an important medicinal ingredient in Salvia miltiorrhiza, is best known for its use in medicine. However, the transcription factor regulation of tanshinone biosynthesis is unclear. Here, we isolated and identified a transcription factor in the ERF family of S. miltiorrhiza, SmERF6, which was screened from an S. miltiorrhiza cDNA library by the promoters of two key tanshinone synthesis genes (SmKSL1 and SmCPS1); this factor regulated tanshinone biosynthesis. The gene was highly expressed in the root and responded to ethylene treatment. SmERF6 modulated tanshinone biosynthesis by directly binding to an ethylene-responsive element (GCC-box) of the SmKSL1 and SmCPS1 promoters and activating their transcription. Overexpression of SmERF6 in the hairy roots increased their tanshinone accumulation, and SmERF6 silencing by RNAi led to a lower tanshinone content. Furthermore, tanshinone accumulation maintained homeostasis with the total phenolic acid and flavonoid contents in S. miltiorrhiza. These findings elucidated how SmERF6 directly co-regulates the transcription of SmCPS1 and SmKSL1 and modulates tanshinone synthesis to accelerate the metabolic flux of tanshinone accumulation in S. miltiorrhiza.
Collapse
Affiliation(s)
- Zhenqing Bai
- College of Life Science, Northwest A&F University, Yangling, 712100, China
- College of Life Science, Yan'an University, Yan'an, China
| | - Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanyan Jia
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Zhiyong Yue
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jie Jiao
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Wenli Huang
- College of Life Science, Northwest A&F University, Yangling, 712100, China
| | - Pengguo Xia
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Science, Northwest A&F University, Yangling, 712100, China.
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
61
|
Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, Chen W, Zhang L. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. PHYTOCHEMISTRY 2018; 148:63-70. [PMID: 29421512 DOI: 10.1016/j.phytochem.2018.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 05/23/2023]
Abstract
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated) system is a powerful genome editing tool that has been used in many species. In this study, we focused on the phenolic acid metabolic pathway in the traditional Chinese medicinal herb Salvia miltiorrhiza, using the CRISPR/Cas9 system to edit the rosmarinic acid synthase gene (SmRAS) in the water-soluble phenolic acid biosynthetic pathway. The single guide RNA (sgRNA) was designed to precisely edit the most important SmRAS gene, which was selected from 11 family members through a bioinformatics analysis. The sequencing results showed that the genomes of 50% of the transgenic regenerated hairy roots had been successfully edited. Five biallelic mutants, two heterozygous mutants and one homozygous mutant were obtained from 16 independent transgenic hairy root lines when the sgRNA was driven by the Arabidopsis U6 promoter, while no mutants were obtained from 13 independent transgenic hairy root lines when the sgRNA was driven by the rice U3 promoter. Subsequently, expression and metabolomics analysis showed that the contents of phenolic acids, including rosmarinic acid (RA) and lithospermic acid B, and the RAS expression level were decreased in the successfully edited hairy root lines, particularly in the homozygous mutants. In addition, the level of the RA precursor 3,4-dihydroxyphenyllactic acid clearly increased. These results indicated that the CRISPR/Cas9 system can be utilized to identify important genes in a gene family with the assistance of bioinformatics analysis and that this new technology is an efficient and specific tool for genome editing in S. miltiorrhiza. This new system presents a promising potential method to regulate plant metabolic networks and improve the quality of traditional Chinese medicinal herbs.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Junfeng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yun Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
62
|
Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640983 PMCID: PMC5787826 DOI: 10.1111/pbi.12781] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site-directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single-site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ-aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty-three genome-edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19-fold higher than that in wild-type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.
Collapse
Affiliation(s)
- Rui Li
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Ran Li
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Xindi Li
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Daqi Fu
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Benzhong Zhu
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Huiqin Tian
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yunbo Luo
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Hongliang Zhu
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
63
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
64
|
Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 2017; 1:169-182. [PMID: 33525765 PMCID: PMC7288993 DOI: 10.1042/etls20170085] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
Initially discovered in bacteria and archaea, CRISPR–Cas9 is an adaptive immune system found in prokaryotes. In 2012, scientists found a way to use it as a genome editing tool. In 2013, its application in plants was successfully achieved. This breakthrough has opened up many new opportunities for researchers, including the opportunity to gain a better understanding of plant biological systems more quickly. The present study reviews agricultural applications related to the use of CRISPR systems in plants from 52 peer-reviewed articles published since 2014. Based on this literature review, the main use of CRISPR systems is to achieve improved yield performance, biofortification, biotic and abiotic stress tolerance, with rice (Oryza sativa) being the most studied crop.
Collapse
|
65
|
Arora L, Narula A. Gene Editing and Crop Improvement Using CRISPR-Cas9 System. FRONTIERS IN PLANT SCIENCE 2017; 8:1932. [PMID: 29167680 PMCID: PMC5682324 DOI: 10.3389/fpls.2017.01932] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system.
Collapse
Affiliation(s)
| | - Alka Narula
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
66
|
CRISPR-based tools for plant genome engineering. Emerg Top Life Sci 2017; 1:135-149. [PMID: 33525768 PMCID: PMC7289020 DOI: 10.1042/etls20170011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023]
Abstract
Molecular tools adapted from bacterial CRISPR (clustered regulatory interspaced short palindromic repeat) adaptive immune systems have been demonstrated in an increasingly wide range of plant species. They have been applied for the induction of targeted mutations in one or more genes as well as for directing the integration of new DNA to specific genomic loci. The construction of molecular tools for multiplexed CRISPR-mediated editing in plants has been facilitated by cloning techniques that allow multiple sequences to be assembled together in a single cloning reaction. Modifications of the canonical Cas9 protein from Streptococcus pyogenes and the use of nucleases from other bacteria have increased the diversity of genomic sequences that can be targeted and allow the delivery of protein cargos such as transcriptional activators and repressors. Furthermore, the direct delivery of protein-RNA complexes to plant cells and tissues has enabled the production of engineered plants without the delivery or genomic integration of foreign DNA. Here, we review toolkits derived from bacterial CRISPR systems for targeted mutagenesis, gene delivery and modulation of gene expression in plants, focusing on their composition and the strategies employed to reprogramme them for the recognition of specific genomic targets.
Collapse
|
67
|
Malzahn A, Lowder L, Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci 2017; 7:21. [PMID: 28451378 PMCID: PMC5404292 DOI: 10.1186/s13578-017-0148-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
Genome editing promises giant leaps forward in advancing biotechnology, agriculture, and basic research. The process relies on the use of sequence specific nucleases (SSNs) to make DNA double stranded breaks at user defined genomic loci, which are subsequently repaired by two main DNA repair pathways: non-homologous end joining (NHEJ) and homology directed repair (HDR). NHEJ can result in frameshift mutations that often create genetic knockouts. These knockout lines are useful for functional and reverse genetic studies but also have applications in agriculture. HDR has a variety of applications as it can be used for gene replacement, gene stacking, and for creating various fusion proteins. In recent years, transcription activator-like effector nucleases and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated protein 9 or CRISPR from Prevotella and Francisella 1 have emerged as the preferred SSNs for research purposes. Here, we review their applications in plant research, discuss current limitations, and predict future research directions in plant genome editing.
Collapse
Affiliation(s)
- Aimee Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | - Levi Lowder
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850 USA
| |
Collapse
|
68
|
Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1635. [PMID: 28970844 DOI: 10.3389/fpls.2017.01635/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/06/2017] [Indexed: 05/20/2023]
Abstract
Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Suhas G Karkute
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Achuit K Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Om P Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley ResearchKarnal, India
| | - Prabhakar M Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Bijendra Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| |
Collapse
|
69
|
Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1635. [PMID: 28970844 PMCID: PMC5609112 DOI: 10.3389/fpls.2017.01635] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/06/2017] [Indexed: 05/19/2023]
Abstract
Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Suhas G. Karkute
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
- *Correspondence: Suhas G. Karkute,
| | - Achuit K. Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Om P. Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley ResearchKarnal, India
| | - Prabhakar M. Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Bijendra Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| |
Collapse
|