51
|
Mohammed HB, Rayyif SMI, Curutiu C, Birca AC, Oprea OC, Grumezescu AM, Ditu LM, Gheorghe I, Chifiriuc MC, Mihaescu G, Holban AM. Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Pseudomonas aeruginosa Clinical Strains. Molecules 2021; 26:molecules26082189. [PMID: 33920270 PMCID: PMC8069135 DOI: 10.3390/molecules26082189] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient antibiotics to cure Pseudomonas aeruginosa persistent infections are currently insufficient and alternative options are needed. A promising lead is to design therapeutics able to modulate key phenotypes in microbial virulence and thus control the progression of the infectious process without selecting resistant mutants. In this study, we developed a nanostructured system based on Fe3O4 nanoparticles (NPs) and eugenol, a natural plant-compound which has been previously shown to interfere with microbial virulence when utilized in subinhibitory concentrations. The obtained functional NPs are crystalline, with a spherical shape and 10-15 nm in size. The subinhibitory concentrations (MIC 1/2) of the eugenol embedded magnetite NPs (Fe3O4@EUG) modulate key virulence phenotypes, such as attachment, biofilm formation, persister selection by ciprofloxacin, and the production of soluble enzymes. To our knowledge, this is the first report on the ability of functional magnetite NPs to modulate P. aeruginosa virulence and phenotypic resistance; our data highlights the potential of these bioactive nanostructures to be used as anti-pathogenic agents.
Collapse
Affiliation(s)
- Hamzah Basil Mohammed
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
| | - Sajjad Mohsin I. Rayyif
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
| | - Carmen Curutiu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Alexandra Catalina Birca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (O.-C.O.)
| | - Ovidiu-Cristian Oprea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (O.-C.O.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (O.-C.O.)
| | - Lia-Mara Ditu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Irina Gheorghe
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Grigore Mihaescu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
| | - Alina-Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (H.B.M.); (S.M.I.R.); (C.C.); (L.-M.D.); (I.G.); (M.C.C.); (G.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
52
|
Wang HQ, Ma SG, Zhang D, Li YH, Qu J, Li Y, Liu YB, Yu SS. Oxygenated pentacyclic triterpenoids from the stems and branches of Enkianthus chinensis. Bioorg Chem 2021; 111:104866. [PMID: 33866237 DOI: 10.1016/j.bioorg.2021.104866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Thirty new pentacyclic triterpenoids, including five oleanane-type (1-5), twenty-three ursane-type (9-23, 26-33) and two taraxerane-type (24 and 25), along with fourteen known triterpenoids, were isolated from the stems and branches of Enkianthus chinensis. Their structures were elucidated by extensive spectroscopic analyses, X-ray crystallographic data and electronic circular dichroism (ECD) techniques. Sixteen compounds (1-5, 9-13, 20, 22, 32, 34-36) bearing a gem-hydroxymethyl group at C-4 represent rare examples of pentacyclic triterpenoids. In the in vitro biological activity evaluation, compounds 8, 9, 12-14, 17, 24, and 44 exhibited potent hepatoprotective effects at 10 μM. Moreover, compound 25 showed latent activity against HSV-1 with an IC50 value of 6.4 μM.
Collapse
Affiliation(s)
- Hai-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
53
|
de Almeida SA, Ferracane JL, da Silva EM, Mushashe AM, Merritt J, Rocha AA, Noronha-Filho JD, de Almeida RV, Poskus LT. Antimicrobial potential of resin matrices loaded with coffee compounds. J Biomed Mater Res B Appl Biomater 2021; 109:428-435. [PMID: 32964641 PMCID: PMC8244821 DOI: 10.1002/jbm.b.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/05/2022]
Abstract
This study evaluated the biological behavior of the coffee compounds Trigonelline (T), chlorogenic acid (C), and nicotinic acid (N), correlating with their release from a resin matrix. Minimum inhibitory concentration (MIC) was evaluated against Streptococcus mutans UA159, and cytotoxicity was assessed by methyl tetrazolium salt on OD-21 cells. Resin matrices (bisphenol A-glycidyl-dimethacrylate/triethylene glycol-dimethacrylate 70/30 wt%, camphorquinone/ethyl 4-dimethyl aminobenzoate 0.5/1 wt%) were doped with coffee compounds in different concentrations (10/20/30/40/50 wt%), performing 15 groups (T10-T50, C10-C50, N10-N50), and a control group with no coffee compound. Degree of conversion (DC%) was analyzed by Fourier transform infrared spectroscopy. Antimicrobial properties were evaluated by bioluminescence (Luciferase assay). The release from loaded matrices was analyzed over time (24 hr, 6, 14, 21 and 28 days), using high-performance liquid chromatography (HPLC). Data were submitted to ANOVA/Tukey's test (α = 0.05). MIC for T and C was 6 mg/ml, and 4 mg/ml for N. None of them were cytotoxic. Only T50 and C50 showed lower DC% than control (α < 0.05). Some groups (T30/T40/T50/C40/C50/N50) were strongly antimicrobial, reducing bacterial activity approximately five times compared to control (α < 0.05). For T30, T40, T50, C40, and C50, the HPLC showed a release above or closer to MIC values mainly in 24 hr, but for N50, up to 28 days. In conclusion, the coffee compounds presented antimicrobial activity, depending on their concentration when added in resin matrices, being found a correlation with their release.
Collapse
Affiliation(s)
- Sarah A de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Eduardo M da Silva
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda M Mushashe
- School of Health Sciences, Universidade Positivo, Curitiba, Puerto Rico, Brazil
| | - Justin Merritt
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Anderson A Rocha
- Department of Chemistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jaime D Noronha-Filho
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rayane V de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Laiza T Poskus
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
54
|
Silva RCE, da Costa JS, de Figueiredo RO, Setzer WN, da Silva JKR, Maia JGS, Figueiredo PLB. Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules 2021; 26:molecules26040965. [PMID: 33673039 PMCID: PMC7917929 DOI: 10.3390/molecules26040965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Psidium (Myrtaceae) comprises approximately 266 species, distributed in tropical and subtropical regions of the world. Psidium taxa have great ecological, economic, and medicinal relevance due to their essential oils' chemical diversity and biological potential. This review reports 18 Psidium species growing around the world and the chemical and biological properties of their essential oils. Chemically, 110 oil records are reported with significant variability of volatile constituents, according to their seasonality and collection sites. Monoterpenes and sesquiterpenes with acyclic (C10 and C15), p-menthane, pinane, bisabolane, germacrane, caryophyllane, cadinane, and aromadendrane skeleton-types, were the primary constituents. The essential oils showed various biological activities, including antioxidant, antifungal, antibacterial, phytotoxic, larvicidal, anti-inflammatory, and cytotoxic properties. This review contributes to the Psidium species rational and economic exploration as natural sources to produce new drugs.
Collapse
Affiliation(s)
- Renan Campos e Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil; (R.C.e.S.); (J.K.R.d.S.); (J.G.S.M.)
| | - Jamile S. da Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, Brazil;
| | - Raphael O. de Figueiredo
- Centro de Ciência Sociais e Educação, Laboratório de Química, Curso de Licenciatura Plena em Química, Universidade do Estado do Pará, Belém 66050-540, Brazil;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil; (R.C.e.S.); (J.K.R.d.S.); (J.G.S.M.)
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil; (R.C.e.S.); (J.K.R.d.S.); (J.G.S.M.)
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís 64080-040, Brazil
| | - Pablo Luis B. Figueiredo
- Centro de Ciência Sociais e Educação, Laboratório de Química, Curso de Licenciatura Plena em Química, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém 66050-540, Brazil
- Correspondence:
| |
Collapse
|
55
|
Adach W, Żuchowski J, Moniuszko-Szajwaj B, Szumacher-Strabel M, Stochmal A, Olas B, Cieslak A. In vitro antiplatelet activity of extract and its fractions of Paulownia Clone in Vitro 112 leaves. Biomed Pharmacother 2021; 137:111301. [PMID: 33561640 DOI: 10.1016/j.biopha.2021.111301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Paulownia Clone in Vitro 112, also known as Oxytree is a hybrid of Paulownia elongata and Paulownia fortunei, developed under laboratory conditions. Its seeds are sterile, making it a noninvasive variety that can only be propagated in the laboratory. In China, species from the Paulownia genus (Paulowniaceae) are widely used in traditional medicine for the treatment of infectious diseases, such as gonorrhea and erysipelas. It has a broad spectrum of bioactivity, including neuroprotective, antioxidant, antibacterial, antiphlogistic, antiviral, and cytotoxic actions. However, the antiplatelet potential of Paulownia Clone in Vitro 112 has not yet been described. STUDY DESIGN The aim of our study was thus to examine the effect of an extract and four fractions from leaves of Paulownia Clone in Vitro 112 on various parameters of platelet activation in an in vitro model. METHODS Composition of the investigated extract and fractions was determined by UHPLC-UV-MS. The following parameters of platelet activation were investigated: nonenzymatic lipid peroxidation in resting platelets; enzymatic lipid peroxidation (AA metabolism) in platelets activated by thrombin; superoxide anion (O2-.) generation in the resting and activated platelets; platelet adhesion to collagen type I and fibrinogen; platelet aggregation stimulated by various physiological agonists, such as ADP, collagen, and thrombin. The effect of the extract and fractions on extracellular LDH activity, a marker of cell damage, was also determined. RESULTS Verbascoside a phenylethnanoid glycoside, was the main secondary metabolite of the extract from leaves of oxytree (constituting approximately 45 % of all compounds). There were also iridoids, such as catalpol, aucubin, and 7-hydroxytomentoside, as well as flavonoids, such as luteolin and apigenin glycosides. Moreover, the extract had stronger antiplatelet properties than the fractions. For example, the extract at 10 μg/mL inhibited five parameters of platelet activation. CONCLUSIONS Our results show that Paulownia Clone in Vitro 112 leaves are a new valuable source of compounds with antiplatelet potential.
Collapse
Affiliation(s)
- Weronika Adach
- University of Łódź, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236, Łódź, Poland
| | - Jerzy Żuchowski
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | | | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Beata Olas
- University of Łódź, Department of General Biochemistry, Faculty of Biology and Environmental Protection, 90-236, Łódź, Poland.
| | - Adam Cieslak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.
| |
Collapse
|
56
|
de Sousa ET, de Araújo JSM, Pires AC, Lira Dos Santos EJ. Local delivery natural products to treat periodontitis: a systematic review and meta-analysis. Clin Oral Investig 2021; 25:4599-4619. [PMID: 33527193 DOI: 10.1007/s00784-021-03774-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES This study aimed to answer the PICO question: in adults with periodontitis, does subgingival delivery of natural products (NP) after scaling and root planing (SRP) results in a better reduction of probing pocket depth (PPD) when compared with SRP alone or SRP plus placebo? MATERIAL AND METHODS A search for trials was carried out in eight databases. Two independent investigators performed all steps of this review. PPD reduction, clinical attachment level (CAL) gain, gingival inflammation, and biofilm accumulation reduction were investigated. We conducted meta-analyses where data could be pooled. RESULTS Searches yielded 4771 records, in which 27 trials fulfilled the eligibility. There was a large heterogeneity among trials (I2 > 0.69, χ2 < 0.000). Only four studies were at low risk of bias. The evidence quality was very low. The effectiveness of NP was demonstrated in a follow-up of 3-6 months considering PPD reduction (8 trials: 0.72 mm [95%CI: 0.23, 1.22]) and CAL gain (5 trials: 1.07 mm [95%CI: 0.36, 1.78]). A significant reduction in periodontal inflammation favors the use of NP. The biofilm accumulation reduction effect of NP was very weak or non-significant. CONCLUSION Although the high risk of bias and large heterogeneity of trials impose some restrictions on the validity of effect estimate, this review indicates that adjunctive NP better reduced the PPD when compared to SRP alone or SRP plus placebo in a follow-up of 3-6 months. CLINICAL RELEVANCE The evidence of non-responsive patients to conventional periodontal therapy highlights the need for therapeutic alternatives to treat periodontitis.
Collapse
Affiliation(s)
- Emerson Tavares de Sousa
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Av. Limeira 901 Limeira Avenue, Piracicaba, SP, 13414-903, Brazil.
| | - Jaiza Samara Macena de Araújo
- Department of Pharmacology, Anesthesiology, and Therapeutics, Piracicaba Dental School, University of Campinas - UNICAMP, 901 Limeira Avenue, Piracicaba, SP, 13414-903, Brazil
| | - Andressa Cavalcanti Pires
- Department of Dentistry, State University of Paraíba - UEPB, 351 Baraúnas Street, Universitário, Campina Grande, PB, 58429-500, Brazil
| | - Elis Janaina Lira Dos Santos
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, 901 Limeira Avenue, Piracicaba, SP, 13414-903, Brazil
| |
Collapse
|
57
|
Husain FM, Perveen K, Qais FA, Ahmad I, Alfarhan AH, El-Sheikh MA. Naringin inhibits the biofilms of metallo-β-lactamases (MβLs) producing Pseudomonas species isolated from camel meat. Saudi J Biol Sci 2021; 28:333-341. [PMID: 33424314 PMCID: PMC7785451 DOI: 10.1016/j.sjbs.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/06/2022] Open
Abstract
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
58
|
Efficiency of a Tetracycline-Adjuvant Combination Against Multidrug Resistant Pseudomonas aeruginosa Tunisian Clinical Isolates. Antibiotics (Basel) 2020; 9:antibiotics9120919. [PMID: 33348867 PMCID: PMC7766271 DOI: 10.3390/antibiotics9120919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
The growing number of multidrug resistant strains in Tunisia has become a serious health concern contributing to high rate of mortality and morbidity. Since current antibiotics are rapidly becoming ineffective, novel strategies to combat resistance are needed. Recently, we demonstrated that combination of a tetracycline antibiotic with various polyaminoisoprenyl adjuvants can sustain the life span and enhance the activity of these drugs against Pseudomonas aeruginosa reference strain (PA01). In the context of our continuing studies, the effective approach of antibiotic-adjuvant was investigated against a large panel of P. aeruginosa Tunisian clinical strains collected from the Military Hospital of Tunis. In this paper, we demonstrated that the combination of a farnesyl spermine compound 3 used at concentrations ranging from 2.5 to 10 µM, in the presence of doxycycline or minocycline leads to a significant decrease of P. aeruginosa antibiotic resistance.
Collapse
|
59
|
Viault G, Kempf M, Ville A, Alsabil K, Perrot R, Richomme P, Hélesbeux JJ, Séraphin D. Semisynthetic Vitamin E Derivatives as Potent Antibacterial Agents against Resistant Gram-Positive Pathogens. ChemMedChem 2020; 16:881-890. [PMID: 33219748 DOI: 10.1002/cmdc.202000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Indexed: 12/30/2022]
Abstract
New 5-substituted vitamin E derivatives were semisynthesized, and their antibacterial activity against human Gram-positive and Gram-negative pathogens was evaluated. Several vitamin E analogues were active against methicillin-resistant Staphylococcus aureus (MRSA) and/or methicillin-resistant Staphylococcus epidermidis (MRSE); structure-activity relationships (SARs) are discussed. As a result, it is shown that the presence of a carboxylic acid function at the C-5 position and/or at the end of the side chain is crucial for the antibacterial activity. The bactericidal or bacteriostatic action of three compounds against MRSA and MRSE was confirmed in a time-kill kinetics study, and the cytotoxicity on human cells was evaluated. The preliminary mechanism study by confocal microscopy indicated that those vitamin E analogues led to bacterial cell death through membrane disruption.
Collapse
Affiliation(s)
- Guillaume Viault
- Faculty of Health Sciences, Université d'Angers, SFR QUASAV, 16 bd. Daviers, 49045, Angers Cedex 01, France
| | - Marie Kempf
- Département de Biologie des Agents Infectieux, CHU Angers, 4, rue Larrey, 49933, Angers cedex 01, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Université d'Angers, 4, rue Larrey, 49933, Angers Cedex 01, France
| | - Alexia Ville
- Faculty of Health Sciences, Université d'Angers, SFR QUASAV, 16 bd. Daviers, 49045, Angers Cedex 01, France
| | - Khaled Alsabil
- Faculty of Health Sciences, Université d'Angers, SFR QUASAV, 16 bd. Daviers, 49045, Angers Cedex 01, France
| | - Rodolphe Perrot
- Service Commun d'Imageries et d'Analyses Microscopiques (SCIAM), Université d'Angers, 4, rue Larrey, 49933, Angers cedex 01, France
| | - Pascal Richomme
- Faculty of Health Sciences, Université d'Angers, SFR QUASAV, 16 bd. Daviers, 49045, Angers Cedex 01, France
| | - Jean-Jacques Hélesbeux
- Faculty of Health Sciences, Université d'Angers, SFR QUASAV, 16 bd. Daviers, 49045, Angers Cedex 01, France
| | - Denis Séraphin
- Faculty of Health Sciences, Université d'Angers, SFR QUASAV, 16 bd. Daviers, 49045, Angers Cedex 01, France
| |
Collapse
|
60
|
Baldé MA, Tuenter E, Traoré MS, Matheeussen A, Cos P, Maes L, Camara A, Haba NL, Gomou K, Diallo MST, Baldé ES, Pieters L, Balde AM, Foubert K. Antimicrobial investigation of ethnobotanically selected guinean plant species. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113232. [PMID: 32768641 DOI: 10.1016/j.jep.2020.113232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Guinea, medicinal plants play an important role in the management of infectious diseases including urinary disorders, skin diseases and oral diseases. This study was carried out to collect medicinal plant species employed for the treatment of these diseases and to investigate their antimicrobial potential. MATERIALS AND METHODS Based on an ethnobotanical investigation carried out in three Guinean regions, 74 traditional healers and 28 herbalists were interviewed and medicinal plants were collected. The most quoted plant species were evaluated for their antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, and in addition against Plasmodium falciparum. RESULTS A total of 112 plant species belonging to 102 genera distributed over 42 botanical families were inventoried. Among the selected plant species, promising activities against C. albicans were obtained for the methanolic extracts of the stem bark of Terminalia albida (IC50 1.2 μg/ml), the leaves of Tetracera alnifolia (IC50 1.6 μg/ml) and the root bark of Swartzia madagascariensis (IC50 7.8 μg/ml). The highest activity against S. aureus was obtained for the dichloromethane extracts of the leaves of Pavetta crassipes (IC50 8.5 μg/ml) and the root of Swartzia madagascariensis (IC50 12.8 μg/ml). Twenty one extracts, obtained from twelve plant species, were strongly active against Plasmodium falciparum, including the dichloromethane extracts of the root and stem bark of Terminalia albida root (IC50 0.6 and 0.8 μg/ml), the leaves of Landolphia heudelotii (IC50 0.5 μg/ml), the stem bark of Combretum paniculatum (IC50 0.4 μg/ml) and the leaves of Gardenia ternifolia (IC50 1.3 μg/ml). CONCLUSION The present study provides a comprehensive overview of medicinal plants employed by Guinean traditional healers for the treatment of various microbial diseases, including urinary disorders, skin diseases and oral diseases. Some of the studied plant species showed promising antimicrobial activity and could be considered as a potential source for the development of new antifungal and/or antimalarial agents.
Collapse
Affiliation(s)
- Mamadou Aliou Baldé
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Mohamed Sahar Traoré
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, BP, 1017, Guinea; Research and Valorization Center on Medicinal Plants Dubreka, BP, 6411, Conakry, Guinea
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Aïssata Camara
- Research and Valorization Center on Medicinal Plants Dubreka, BP, 6411, Conakry, Guinea
| | | | - Kalaya Gomou
- Faculty of Sciences, University of Kankan, Guinea
| | | | - Elhadj Saïdou Baldé
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, BP, 1017, Guinea
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Aliou Mamadou Balde
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, BP, 1017, Guinea; Research and Valorization Center on Medicinal Plants Dubreka, BP, 6411, Conakry, Guinea
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
61
|
Antimicrobial activity of nanoemulsion encapsulated with polyphenon 60 and ciprofloxacin for the treatment of urinary tract infection. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
62
|
O’Hagan S, Kell DB. Structural Similarities between Some Common Fluorophores Used in Biology, Marketed Drugs, Endogenous Metabolites, and Natural Products. Mar Drugs 2020; 18:E582. [PMID: 33238416 PMCID: PMC7700180 DOI: 10.3390/md18110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
It is known that at least some fluorophores can act as 'surrogate' substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the 'natural' substrates of 'orphan' transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly 'drug-like', and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores along with standard fingerprinting methods and the Tanimoto similarity metric. Results: The great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug, as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the "quantitative estimate of drug likeness" technique. It is concluded that this set of fluorophores does overlap with a significant part of both the drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.
Collapse
Affiliation(s)
- Steve O’Hagan
- Department of Chemistry, The University of Manchester, Manchester M13 9PT, UK;
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Molecular, Integrative and Systems Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
63
|
Teng YF, Xu L, Wei MY, Wang CY, Gu YC, Shao CL. Recent progresses in marine microbial-derived antiviral natural products. Arch Pharm Res 2020; 43:1215-1229. [PMID: 33222073 PMCID: PMC7680217 DOI: 10.1007/s12272-020-01286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Viruses have always been a class of pathogenic microorganisms that threaten the health and safety of human life worldwide. However, for a long time, the treatment of viral infections has been slow to develop, and only a few antiviral drugs have been using clinically. Compared with these from terrestrial environments, marine-derived microorganisms can produce active substances with more novel structures and unique functions. From 2015 to 2019, 89 antiviral compounds of 8 structural classes have been isolated from marine microorganisms, of which 35 exhibit anti-H1N1 activity. This review surveys systematically marine microbial-derived natural products with antiviral activity and illustrates the impact of these compounds on antiviral drug discovery research.
Collapse
Affiliation(s)
- Yun-Fei Teng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Li Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell , Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
64
|
The potential use of Azolla pinnata as an alternative bio-insecticide. Sci Rep 2020; 10:19245. [PMID: 33159109 PMCID: PMC7648075 DOI: 10.1038/s41598-020-75054-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Four different tests showed the effectiveness of Azolla pinnata plant extracts against Aedes aegypti and Aedes albopictus mosquitoes. In the adulticidal test, there was a significant increase in mortality as test concentration increases and A. pinnata extracts showed LC50 and LC95 values of 2572.45 and 6100.74 ppm, respectively, against Ae. aegypti and LC50 and LC95 values of 2329.34 and 5315.86 ppm, respectively, against Ae. albopictus. The ovicidal test showed 100% eggs mortality for both species tested for all the concentrations tested at 1500 ppm, 1000 ppm, 500 ppm, 250 ppm and 125 ppm. Both tested samples of Ae. aegypti and Ae. albopictus did not lay any eggs in the plastic cups filled with the A. pinnata extract but instead opted to lay eggs in the plastic cups filled with water during the oviposition deterrence test. Similarly, the non-choice test of Ae. aegypti mosquitoes laid eggs on the sucrose solution meant for the nutrient source of the mosquitoes instead of in the plastic cup that was designed to facilitate oviposition filled with the extract. This clearly indicates the presence of bioactive compounds which are responsible in adulticidal and ovicidal activity in Aedes mosquitoes and at the same time inducing repellence towards the mosquitoes. The LC–MS results showed mainly three important chemical compounds from A. pinnata extracts such as 1-(O-alpha-D-glucopyranosyl)-(1,3R,25R)-hexacosanetriol, Pyridate and Nicotinamide N-oxide. All these chemicals have been used for various applications such as both emulsion and non-emulsion type of cosmetics, against mosquito vector such as Culex pipens and Anopheles spp. Finally, the overall view of these chemical components from A. pinnata extracts has shown the potential for developing natural product against dengue vectors.
Collapse
|
65
|
Bento C, Gonçalves AC, Silva B, Silva LR. Peach (Prunus Persica): Phytochemicals and Health Benefits. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Catarina Bento
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C. Gonçalves
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Branca Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luís R. Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- LEPABE – Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
66
|
Qiu Y, He D, Yang J, Ma L, Zhu K, Cao Y. Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application. Eur Food Res Technol 2020; 246:2383-2397. [PMID: 32837313 PMCID: PMC7415335 DOI: 10.1007/s00217-020-03582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/06/2023]
Abstract
Natural biologically active substances have received continuous attention for the potentially beneficial health properties against chronic diseases. In this study, bacteriostatic active substance from Camellia oleifera meal, which is a major by-product of the Camellia oil processing industry, were extracted with continuous phase change extraction (CPCE) method and separated by HSCCC. Compared with traditional extraction methods, CPCE possessed higher extraction efficiency. Two main substances were separated and purified (above 90.0%). The structure of them were further identified by UV, LC-ESI-MS-MS, 1H-NMR, and 13C-NMR as flavonoids F2 kaempferol 3-O-[β-d-glucopyranosyl-(1 → 2)-α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside and J2 kaempferol 3-O-[β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside for the first time in C. Oleifera meal. The results of antibacterial activity measurement showed that both compounds have excellent antibacterial activity. And the antibacterial stability of F2 were finally confirmed: F2 showed broad spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella enteriditis, Bacillus thuringiensis, Aspergillus niger and Rhizopus nigricans. Besides, F2 exhibited relatively high stable property even at high temperature, acid and metal ion solutions. The findings of this work suggest the possibility of employing C. oleifera meal as an attractive source of health-promoting compounds, and at the same time facilitate its high-value reuse and reduction of environmental burden.
Collapse
Affiliation(s)
- Yuanxin Qiu
- School of Light Industry and Food, Zhongkai University of Agricultural and Engineering, Guangzhou, 510220 China
| | - Di He
- School of Light Industry and Food, Zhongkai University of Agricultural and Engineering, Guangzhou, 510220 China
| | - Jingxian Yang
- School of Light Industry and Food, Zhongkai University of Agricultural and Engineering, Guangzhou, 510220 China
| | - Lukai Ma
- School of Light Industry and Food, Zhongkai University of Agricultural and Engineering, Guangzhou, 510220 China
| | - Kaiqi Zhu
- School of Light Industry and Food, Zhongkai University of Agricultural and Engineering, Guangzhou, 510220 China
| | - Yong Cao
- School of Food Science and Engineering, South China Agricultural University, No. 483 Wushan Road, Wushan Street, Tianhe District, Guangzhou, 510000 China
| |
Collapse
|
67
|
Essentials Oils from Brazilian Eugenia and Syzygium Species and Their Biological Activities. Biomolecules 2020; 10:biom10081155. [PMID: 32781744 PMCID: PMC7466042 DOI: 10.3390/biom10081155] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The Eugenia and Syzygium genera include approximately 1000 and 1800 species, respectively, and both belong to the Myrtaceae. Their species present economic and medicinal importance and pharmacological properties. Due to their chemical diversity and biological activity, we are reporting the essential oils of 48 species of these two genera, which grow in South America and found mainly in Brazil. Chemically, a total of 127 oil samples have been described and displayed a higher intraspecific and interspecific diversity for both Eugenia spp. and Syzygium spp., according to the site of collection or seasonality. The main volatile compounds were sesquiterpene hydrocarbons and oxygenated sesquiterpenes, mainly with caryophyllane and germacrane skeletons and monoterpenes of mostly the pinane type. The oils presented many biological activities, especially antimicrobial (antifungal and antibacterial), anticholinesterase, anticancer (breast, gastric, melanoma, prostate), antiprotozoal (Leishmania spp.), antioxidant, acaricidal, antinociceptive and anti-inflammatory. These studies can contribute to the rational and economic exploration of Eugenia and Syzygium species once they have been identified as potent natural and alternative sources to the production of new herbal medicines.
Collapse
|
68
|
Sinapic Acid Attenuates Cardiovascular Disorders in Rats by Modulating Reactive Oxygen Species and Angiotensin Receptor Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1436858. [PMID: 32765804 PMCID: PMC7374234 DOI: 10.1155/2020/1436858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
Abstract
The main avoidable risk factor for cardiovascular conditions is high blood pressure (hypertension). At global level, hypertension is believed to be responsible for a 54% stroke-related mortality rate and a 47% mortality rate associated with coronary heart disease. It is postulated that sinapic acid (SA) could help in hypertension management because it displays robust antioxidant, antihyperglycemic, and peroxynitrite scavenging effects. To explore this hypothesis, this work examined the effect of SA on oxidative stress and cardiovascular disease in rats with hypertension by comparison against captopril. For this purpose, 50 male rats were used and equally allocated to five groups, namely, normal control, positive control (L-NAME), L-NAME with concomitant captopril administration, L-NAME with concomitant SA administration, and L-NAME with concomitant administration of both SA and captopril. Results showed that, by contrast to control, L-NAME exhibited marked elevation in serum CK-MB, total cholesterol, triglycerides, VLDL-C, LDL-C, Ang II, AT2R, ET-1, and angiopoietin-2; on the other hand, L-NAME exhibited marked reduction in serum HDL-C, superoxide dismutase (SOD) activity, nitric oxide synthase 3 (NOS3), and glutathione (GSH). Furthermore, joint administration of SA and captopril ameliorated hypertension, enhanced cardiovascular function, hindered hyperlipidemia, and decreased oxidative stress and myocardial hypertrophy displayed by rats with hypertension. Based on such findings, better chemopreventive or therapeutic approaches can be devised to manage hypertension and cardiovascular conditions.
Collapse
|
69
|
Acacia senegal Extract Rejuvenates the Activity of Phenicols on Selected Enterobacteriaceae Multi Drug Resistant Strains. Antibiotics (Basel) 2020; 9:antibiotics9060323. [PMID: 32545716 PMCID: PMC7344600 DOI: 10.3390/antibiotics9060323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
This study reported the phytochemical composition of two hydroethanolic extracts of Acacia senegal and Acacia seyal trees from Burkina Faso and their activities, alone or in combination with selected antibiotics, against multidrug resistant bacteria. High performance thin layer chromatography (HPTLC) method was used for phytochemical screening. Total phenolic and total flavonoid ant tannins in leaves extracts contents were assessed by spectrophotometric method. The minimal inhibitory concentrations (MICs) of plant extracts and antibiotics were determined using the microdilution method and p-iodonitrotetrazolium chloride. Combinations of extracts and antibiotics were studied using checkerboard assays. Screening revealed the presence of phenolic compounds, flavonoids, and tannins in the hydroethanolic extract (HE) of the leaves. The HE of A. seyal showed the highest total phenolic (571.30 ± 6.97 mg GAE/g), total flavonoids (140.41 ± 4.01 mg RTE/g), and tannins (24.72 ± 0.14%, condensed; 35.77 ± 0.19%, hydrolysable tannins). However, the HE of A. senegal showed the lowest total phenolic (69.84 ± 3.54 mg GAE/g), total flavonoids (27.32 ± 0.57 mg RTE/g), and tannins (14.60 ± 0.01%, condensed; 3.09 ± 0.02%, hydrolysable). The MICs for HE and antibiotics were in the range of 2–512 and 0.008–1024 mg/L, respectively. All tested HE presented an MIC greater than 512 mg/L except HE of A. senegal. The lowest MIC value (128 mg/L) was obtained with HE of A. senegal against Klebsiella aerogenes EA298 and Escherichia coli AG100A. Interesting restoring effects on chloramphenicol and florphenicol activity were detected with alcoholic extracts of A. senegal against resistant E. coli and K. aerogenes strains that overproduce AcrAB or FloR pumps. The adjuvant effect of HE of A. senegal suggests that the crude extract of leaves could be a potential source of molecules for improving the susceptibility of bacteria to phenicols antibiotics.
Collapse
|
70
|
Yang L, Zhan C, Huang X, Hong L, Fang L, Wang W, Su J. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Adv Healthc Mater 2020; 9:e2000186. [PMID: 32338449 DOI: 10.1002/adhm.202000186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/12/2020] [Indexed: 11/10/2022]
Abstract
Borneol, a natural extract with unique bicyclic monoterpene structure, has attracted increasing attention due to its broad-spectrum antibacterial properties via membrane disruption mechanism. However, the negligible water solubility of borneol limits its antibacterial efficiency. Herein, borneol-based water-soluble antibacterial agents are designed and synthesized to combat multi-drug resistant bacteria. The integration of borneol with hydrophilic poly(N,N-dimethylethyl methacrylate) (PDMAEMA) polymer chains boosts the antibacterial capability of borneol against Gram-negative, Gram-positive, and even multi-drug resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA) are completely killed upon treatment with 50 µg mL-1 of borneol-based polymers and Escherichia coli are annihilated at 39 µg mL-1 . It is further demonstrated that the borneol-based antibacterial agents can be grafted onto cotton fabrics as a nonleaching antibacterial agent, which have higher sustained antibacterial activity than cotton fabrics coated with the commercial quaternary ammonium finishing agents (AEM 5700). The functionalized fabrics with excellent bactericidal activity, especially against MRSA, may have great potential applications in managing hospital-acquired infections.
Collapse
Affiliation(s)
- Liu Yang
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of Technology Guangzhou 510640 China
| | - Chengdong Zhan
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Xiangyue Huang
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Liangzhi Hong
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Liming Fang
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Wen Wang
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of Technology Guangzhou 510640 China
| | - Jianyu Su
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
71
|
Alves JA, Abrão F, da Silva Moraes T, Damasceno JL, dos Santos Moraes MF, Sola Veneziani RC, Ambrósio SR, Bastos JK, Dantas Miranda ML, Gomes Martins CH. Investigation of Copaifera genus as a new source of antimycobaterial agents. Future Sci OA 2020; 6:FSO587. [PMID: 32802394 PMCID: PMC7421775 DOI: 10.2144/fsoa-2020-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
AIM This paper reports on the antimycobacterial activity of the oleoresins and extracts obtained from Copaifera spp. MATERIALS & METHODS The minimum inhibitory concentration (MIC) and fractional inhibitory concentration index techniques helped to evaluate the effect of these oleoresins and extracts against six strains of mycobacteria that cause tuberculosis. RESULTS & CONCLUSION Among the assayed oleoresins and plant extracts, the Copaifera langsdorffii, Copaifera duckei, Copaifera reticulata and Copaifera trapezifolia oleoresins provided the lowest MIC values against some of the tested strains. The combination of Copaifera spp. samples with isoniazid did not evidence any synergistic action. Some Copaifera spp. oleoresins may represent a future source for the discovery of new antimycobacterial drugs due to their low MIC values.
Collapse
Affiliation(s)
| | - Fariza Abrão
- Research Laboratory of Applied Microbiology, University of Franca, Franca, SP, Brazil
| | - Thaís da Silva Moraes
- Research Laboratory of Applied Microbiology, University of Franca, Franca, SP, Brazil
| | | | | | | | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Carlos Henrique Gomes Martins
- Research Laboratory of Applied Microbiology, University of Franca, Franca, SP, Brazil
- Laboratory of Research on Antimicrobial Trials (LaPEA), Institute of Biomedical Sciences – ICBIM, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
72
|
Dai J, Han R, Xu Y, Li N, Wang J, Dan W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg Chem 2020; 101:103922. [PMID: 32559577 DOI: 10.1016/j.bioorg.2020.103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
The discovery of novel antibacterial molecules plays a key role in solving the current antibiotic crisis issue. Natural products have long been an important source of drug discovery. Herein, we reviewed 256 natural products from 11 structural classes in the period of 2016-01/2020, which were selected by SciFinder with new compounds or new structures and MICs lower than 10 μg/mL or 10 μM as criterions. This review will provide some effective antibacterial lead compounds for medicinal chemists, which will promote the antibiotics research based on natural products to the next level.
Collapse
Affiliation(s)
- Jiangkun Dai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China(1); State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China(1); School of Life Science and Technology, Weifang Medical University, Shandong, China(1).
| | - Rui Han
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1)
| | - Yujie Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1)
| | - Na Li
- College of Food Science and Technology, Northwest University, Xi'an, China(1).
| | - Junru Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China(1); College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1).
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China(1); College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1).
| |
Collapse
|
73
|
Chen Y, Qiu Y, Chen W, Wei Q. Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110536. [DOI: 10.1016/j.msec.2019.110536] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023]
|
74
|
Mahendran G, Rahman L. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (
Mentha × piperita
L.)—A review. Phytother Res 2020; 34:2088-2139. [DOI: 10.1002/ptr.6664] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Ganesan Mahendran
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR‐CIMAP) Lucknow India
| | - Laiq‐Ur Rahman
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR‐CIMAP) Lucknow India
| |
Collapse
|
75
|
Abstract
Wound healing is a complex physiological process that occurs in the human body involving the sequential activation of multiple cell types and signaling pathways in a coordinated manner. Chronic wounds and burns clearly decrease quality of life of the patients since they are associated with an increase in physical pain and socio-economical complications. Furthermore, incidence and prevalence of chronic wounds (unlike burns) have been increasing mainly due to population aging resulting in increased costs for national health systems. Thus, the development of new and more cost-effective technologies/therapies is not only of huge interest but also necessary to improve the long-term sustainability of national health systems. This review covers the current knowledge on recent technologies/therapies for skin regeneration, such as: wound dressings; skin substitutes; exogenous growth factor based therapy and systemic therapy; external tissue expanders; negative pressure; oxygen; shock wave, and photobiomodulation wound therapies. Associated benefits and risks as well as the clinical use and availability are all addressed for each therapy. Moreover, future trends in wound care including novel formulations using metallic nanoparticles and topical insulin are herein presented. These novel formulations have shown to be promising therapeutic options in the near future that may change the wound care paradigm.
Collapse
Affiliation(s)
- André Oliveira
- Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Simões
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Ascenso
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pinto Reis
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Lisboa, Portugal.,Faculty of Sciences, Biophysics and Biomedical Engineering, IBEB, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
76
|
Soltani N, Best T, Grace D, Nelms C, Shumaker K, Romero-Severson J, Moses D, Schuster S, Staton M, Carlson J, Gwinn K. Transcriptome profiles of Quercus rubra responding to increased O 3 stress. BMC Genomics 2020; 21:160. [PMID: 32059640 PMCID: PMC7023784 DOI: 10.1186/s12864-020-6549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/31/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone (O3). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to O3, limited information is available on its responses to exogenous stimuli at the level of gene expression. RESULTS RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to O3 stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the O3-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. CONCLUSION This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to O3. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis.
Collapse
Affiliation(s)
- Nourolah Soltani
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Teo Best
- The Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dantria Grace
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | - Christen Nelms
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | - Ketia Shumaker
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | | | - Daniela Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Nanyang Avenue, 637551, Singapore
| | - Stephan Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Nanyang Avenue, 637551, Singapore
| | - Margaret Staton
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - John Carlson
- The Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kimberly Gwinn
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
77
|
Parida P, Bhowmick S, Saha A, Islam MA. Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study. J Biomol Struct Dyn 2020; 39:923-942. [PMID: 31984863 DOI: 10.1080/07391102.2020.1720819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug resistance is an unsolved and major concern in the bacterial infection. Continuous development of drug-resistance to the antibiotics exponentially rises the danger of bacterial infections. Chemical components from the plants are becoming a major resource of potentially effective therapeutic chemical agents for the wide range of diseases including bacterial infections. In the current study, pharmacoinformatics methodologies were implemented on more than two hundred known phytochemicals to find promising beta-lactamase inhibitors for therapeutically effective anti-bacterial agents. Initially, the molecular docking-based score was used to reduce the chemical space of the selected dataset. Fourteen molecules were found to have more affinity towards the beta-lactamase in compared to the well-known anti-bacterial agent, Avibactam. Binding interactions analysis revealed the strong binding interactions between phytochemicals and catalytic amino residues. For further analysis, molecular dynamics (MD) simulations, density functional theory (DFT) and in silico pharmacokinetics studies were performed. Parameters from MD simulations studies suggested that selected molecules are strong enough to retain in the active site in different orientations of the beta-lactamase. The orbital energies obtained from the DFT study was undoubtedly explained the potentiality of the selected compounds for being effective beta-lactamase inhibitors. The drug-likeness and acceptable pharmacokinetics parameters were observed using in silico ADME analysis. Therefore, observations from the multiple pharmacoinformatics approach explained without any doubt that selected molecules are potential enough being promising anti-bacterial compounds. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratap Parida
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
78
|
Dey P, Parai D, Banerjee M, Hossain ST, Mukherjee SK. Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm. Int J Med Microbiol 2020; 310:151410. [PMID: 32057619 DOI: 10.1016/j.ijmm.2020.151410] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 02/03/2023] Open
Abstract
The study aims to explore the combinatorial effect of naringin with antibiotics, ciprofloxacin and tetracycline on Pseudomonas aeruginosa biofilms. The antibiofilm efficacy of selected treatment regimes against P. aeruginosa biofilm were quantified by crystal violet assay, MTT assay, Congo red binding assay, and were visualized by confocal laser scanning microscopy and scanning electron microscopy. All the assays reflected antibiofilm activities, however, combinatorial performances of naringin with antibiotics were found to be more significant. A significant reduction in swimming and swarming motilities along with pellicle formation and altered colony morphology were observed as a result of combinatorial effect. The cytotoxicity of naringin and its antibiotic combinations was assayed on murine macrophage cell line. The applicability of such combinations was tested for their relative eradication against pre-formed biofilm on urinary catheter surface. This finding indicated that naringin potentiates the efficacy of both ciprofloxacin and tetracycline on P. aeruginosa biofilm in comparison to their solo treatment. The finding would help to open hitherto unexplored possibilities of establishing naringin as a potential antibiofilm agent and suggest on the possibility of its use in drug-herb combinations for managing biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Pia Dey
- Department of Microbiology, University of Kalyani, Kalyani, WB, India
| | - Debaprasad Parai
- Department of Microbiology, University of Kalyani, Kalyani, WB, India
| | - Malabika Banerjee
- Department of Microbiology, University of Kalyani, Kalyani, WB, India
| | | | | |
Collapse
|
79
|
Nakayama A, Sato H, Nakamura T, Hamada M, Nagano S, Kameyama S, Furue Y, Hayashi N, Kamoshida G, Karanjit S, Oda M, Namba K. Synthesis and Antimicrobial Evaluation of Side-Chain Derivatives based on Eurotiumide A. Mar Drugs 2020; 18:E92. [PMID: 32019233 PMCID: PMC7074549 DOI: 10.3390/md18020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/02/2023] Open
Abstract
Side-chain derivatives of eurotiumide A, a dihydroisochroman-type natural product, have been synthesized and their antimicrobial activities described. Sixteen derivatives were synthesized from a key intermediate of the total synthesis of eurotiumide A, and their antimicrobial activities against two Gram-positive bacteria, methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA), and a Gram-negative bacterium, Porphyromonas gingivalis, were evaluated. The results showed that derivatives having an iodine atom on their aromatic ring instead of the prenyl moiety displayed better antimicrobial activity than eurotiumide A against MSSA and P. gingivalis. Moreover, we discovered that a derivative with an isopentyl side chain, which is a hydrogenated product of eurotiumide A, is the strongest antimicrobial agent against all three strains, including MRSA.
Collapse
Affiliation(s)
- Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Hideo Sato
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Tenta Nakamura
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Mai Hamada
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Shuji Nagano
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Shuhei Kameyama
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Yui Furue
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Misasaginakauchi-cho, Yamashita-Ku, Kyoto 607-8414, Japan; (Y.F.); (N.H.); (G.K.)
| | - Naoki Hayashi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Misasaginakauchi-cho, Yamashita-Ku, Kyoto 607-8414, Japan; (Y.F.); (N.H.); (G.K.)
| | - Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Misasaginakauchi-cho, Yamashita-Ku, Kyoto 607-8414, Japan; (Y.F.); (N.H.); (G.K.)
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Misasaginakauchi-cho, Yamashita-Ku, Kyoto 607-8414, Japan; (Y.F.); (N.H.); (G.K.)
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan; (H.S.); (T.N.); (M.H.); (S.N.); (S.K.); (S.K.)
| |
Collapse
|
80
|
Alam MN, Yu JQ, Beale P, Turner P, Proschogo N, Huq F. Crystal Structure, Antitumour and Antibacterial Activity of Imidazo[1, 2‐α]pyridine Ligand Containing Palladium Complexes. ChemistrySelect 2020. [DOI: 10.1002/slct.201902438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Md N. Alam
- Department of Pharmacy, Faculty of Biological Sciences Jahangirnagar University Savar, Dhaka Bangladesh
| | - Jun Q. Yu
- Discipline of Pathology, School of Medicine The University of Sydney Australia
| | - Philip Beale
- Sydney Cancer Centre Concord Hospital Sydney, NSW 2139 Australia
| | - Peter Turner
- School of Chemistry The University of Sydney Sydney Australia
| | - Nick Proschogo
- School of Chemistry The University of Sydney Sydney Australia
| | - Fazlul Huq
- Discipline of Pathology, School of Medicine The University of Sydney Australia
| |
Collapse
|
81
|
An X, Naowarojna N, Liu P, Reinhard BM. Hybrid Plasmonic Photoreactors as Visible Light-Mediated Bactericides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:106-116. [PMID: 31800205 DOI: 10.1021/acsami.9b14834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic compounds and complexes, such as tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, have recently attracted attention as light-mediated bactericides that can help to address the need for new antibacterial strategies. We demonstrate in this work that the bactericidal efficacy of [Ru(bpy)3]2+ and the control of its antibacterial function can be significantly enhanced through combination with a plasmonic nanoantenna. We report strong, visible light-controlled bacterial inactivation with a nanocomposite design that incorporates [Ru(bpy)3]2+ as a photocatalyst and a Ag nanoparticle (NP) core as a light-concentrating nanoantenna into a plasmonic hybrid photoreactor. The hybrid photoreactor platform is facilitated by a self-assembled lipid membrane that encapsulates the Ag NP and binds the photocatalyst. The lipid membrane renders the nanocomposite biocompatible in the absence of resonant illumination. Upon illumination, the plasmon-enhanced photoexcitation of the metal-to-ligand charge-transfer band of [Ru(bpy)3]2+ prepares the reactive excited state of the complex that oxidizes the nanocomposite membrane and increases its permeability. The photooxidation induces the release of [Ru(bpy)3]2+, Ag+, and peroxidized lipids into the ambient medium, where they interact synergistically to inactivate bacteria. We measured a 7 order of magnitude decrease in Gram-positive Arthrobacter sp. and a 4 order of magnitude decrease in Gram-negative Escherichia coli colony forming units with the photoreactor bactericides after visible light illumination for 1 h. In both cases, the photoreactor exceeds the bactericidal standard of a log reduction value of 3 and surpasses the antibacterial effect of free Ag NPs or [Ru(bpy)3]2+ by >4 orders of magnitude. We also implement the inactivation of a bacterial thin film in a proof-of-concept study.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
82
|
Blondeau D, St‐Pierre A, Bourdeau N, Bley J, Lajeunesse A, Desgagné‐Penix I. Antimicrobial activity and chemical composition of white birch (Betula papyrifera Marshall) bark extracts. Microbiologyopen 2020; 9:e00944. [PMID: 31580010 PMCID: PMC6957409 DOI: 10.1002/mbo3.944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 01/18/2023] Open
Abstract
Extracts from white birch have been reported to possess antimicrobial properties, but no study has linked the chemical composition of bark extract with antimicrobial activity. This study aimed to identify white birch (Betula papyrifera Marshall) bark extracts with antimicrobial activity and elucidate its composition. In order to obtain the highest extraction yield, bark residues >3 mm were retained for extraction. A total of 10 extraction solvents were used to determine the extraction yield of each of them. Methanol and ethanol solvents extracted a greater proportion of molecules. When tested on eight microorganism species, the water extract proved to have the best antimicrobial potential followed by the methanol extract. The water extract inhibited all microorganisms at low concentration with minimal inhibitory concentration between 0.83 and 1.67 mg/ml. Using ultraperformance liquid chromatography coupled to a time-of-flight quadrupole mass spectrometer, several molecules that have already been studied for their antimicrobial properties were identified in water and methanol extracts. Catechol was identified as one of the dominant components in white birch bark water extract, and its antimicrobial activity has already been demonstrated, suggesting that catechol could be one of the main components contributing to the antimicrobial activity of this extract. Thus, extractives from forestry wastes have potential for new applications to valorize these residues.
Collapse
Affiliation(s)
- Dorian Blondeau
- Department of Chemistry, Biochemistry and PhysicsUniversity of Québec at Trois‐RivièresTrois‐RivièresQCCanada
| | - Annabelle St‐Pierre
- Department of Chemistry, Biochemistry and PhysicsUniversity of Québec at Trois‐RivièresTrois‐RivièresQCCanada
| | | | - Julien Bley
- InnofibreCégep of Trois‐RivièresTrois‐RivièresQCCanada
| | - André Lajeunesse
- Department of Chemistry, Biochemistry and PhysicsUniversity of Québec at Trois‐RivièresTrois‐RivièresQCCanada
| | - Isabel Desgagné‐Penix
- Department of Chemistry, Biochemistry and PhysicsUniversity of Québec at Trois‐RivièresTrois‐RivièresQCCanada
- Groupe de Recherche en Biologie VégétaleUniversity of Québec at Trois‐RivièresTrois‐RivièresQCCanada
| |
Collapse
|
83
|
Shen X, Meng Q, Dong M, Xiang J, Li S, Liu H, Han B. Low-Temperature Reverse Water-Gas Shift Process and Transformation of Renewable Carbon Resources to Value-Added Chemicals. CHEMSUSCHEM 2019; 12:5149-5156. [PMID: 31605451 DOI: 10.1002/cssc.201902404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 06/10/2023]
Abstract
The use of CO2 instead of toxic CO in the production of important chemicals has attracted widespread interest, and the reverse water-gas shift reaction (RWGSR) is the key step for this kind of processes. Although the thermodynamic limitations are overcome by the reaction of CO with other compounds, the temperature of most reactions involving RWGSR is usually very high owing to the inertness of CO2 . Herein, it was found that Ru3 (CO)12 could catalyze the RWGSR in the ionic liquid HMimBF4 without ligand or promoter, and CO could be produced at 80 °C, which was much lower than the temperatures reported to date. Detailed studies showed that the BF4 - in the ionic liquid played a crucial role in the low-temperature RWGSR. Based on the low-temperature RWGSR, three important routes to transform CO2 into valuable chemicals were developed, including synthesis of xanthone from CO2 and diaryl ethers, synthesis of phenol and acetic acid from CO2 and anisole, and production of acetic acid from CO2 and lignin. The reactions could occur at temperature as low as 80 °C, and low-temperature RWGSR was essential for the reactions under mild conditions. The strategy opens the way to produce value-added chemicals by using CO2 and H2 as feedstocks under low temperature.
Collapse
Affiliation(s)
- Xiaojun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P.R. China
| |
Collapse
|
84
|
Huang J, Guo M, Jin S, Wu M, Yang C, Zhang G, Wang P, Ji J, Zeng Q, Wang X, Wang H. Antibacterial photodynamic therapy mediated by 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2019; 28:330-337. [DOI: 10.1016/j.pdpdt.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
|
85
|
Vale JPCD, Ribeiro LHDF, Vasconcelos MAD, Sá-Firmino NC, Pereira AL, Nascimento MFD, Rodrigues THS, Silva PTD, Sousa KCD, Silva RBD, Nascimento Neto LGD, Saker-Sampaio S, Bandeira PN, Santos HS, Souza EBD, Teixeira EH. Chemical composition, antioxidant, antimicrobial and antibiofilm activities of Vitex gardneriana schauer leaves's essential oil. Microb Pathog 2019; 135:103608. [DOI: 10.1016/j.micpath.2019.103608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
|
86
|
Guo D, Wang S, Li J, Bai F, Yang Y, Xu Y, Liang S, Xia X, Wang X, Shi C. The antimicrobial activity of coenzyme Q 0 against planktonic and biofilm forms of Cronobacter sakazakii. Food Microbiol 2019; 86:103337. [PMID: 31703870 DOI: 10.1016/j.fm.2019.103337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Coenzyme Q0 (CoQ0) has demonstrated antitumor, anti-inflammatory, and anti-angiogenic activities. Cronobacter sakazakii is an opportunistic foodborne pathogen associated with high mortality in neonates. In this study, the antimicrobial activity and possible antimicrobial mechanism of CoQ0 against C. sakazakii were investigated. Moreover, the inactivation effect of CoQ0 on C. sakazakii in biofilms was also evaluated. The minimum inhibitory concentration (MIC) of CoQ0 against C. sakazakii strains ranged from 0.1 to 0.2 mg/mL. Treatment caused cell membrane dysfunction, as evidenced by cell membrane hyperpolarization, decreased intracellular ATP concentration and cell membrane integrity, and changes in cellular morphology. CoQ0 combined with mild heat treatment (45, 50, or 55 °C) decreased the number of viable non-desiccated and desiccated C. sakazakii cells in a time- and dose-dependent manner in reconstituted infant milk. Furthermore, CoQ0 showed effective inactivation activity against C. sakazakii in biofilms on stainless steel, reducing the number of viable cells and damaging the structure of the biofilm. These findings suggest that CoQ0 has a strong inactivate effect on C. sakazakii and could be used in food production environments to effectively control C. sakazakii and reduce the number of illnesses associated with it.
Collapse
Affiliation(s)
- Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangting Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
87
|
Leishmanicidal and antimicrobial activity of primin and primin-containing extracts from Miconia willdenowii. Fitoterapia 2019; 138:104297. [PMID: 31404617 DOI: 10.1016/j.fitote.2019.104297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022]
Abstract
As a part of an ongoing bioprospective project, searching for potential medicinal plants from the Brazilian Atlantic Forest, Miconia willdenowii was selected for its potential leishmanicidal and antimicrobial activities. The crude ethanolic extract of M. willdenowii showed an inhibition of 99.7% of the promastigote forms of Leishmania amazonensis at the concentration of 80 μg/mL. Further investigation of its antimicrobial activity against pathogenic fungi and Gram positive and negative bacteria, revealed a significant antimicrobial activity. A bioguided study with its liquid-liquid partition fractions revealed the hexane fraction (Hex) as the most active against Leishmania, inhibiting 99.2% and 46.9% of the protozoan at concentrations of 40 and 20 μg/mL, respectively. Hex also showed significant antimicrobial activity against Staphylococcus aureus and Candida krusei with IC50 of 15.6 and 62.5 μg/mL, respectively. Purification of Hex led to the isolation of 2-methoxy-6-pentyl-benzoquinone (1, also known as primin) as the active metabolite, probably responsible for the observed antimicrobial and anti-leishmania effects. Primin (1) disclosed leishmanicidal activity (IC50 = 1.25 μM), showing higher potency than the standard drug amphotericin B (IC50 = 5.08 μM), with additional antifungal effects against all tested fungi species. Compound 1 also showed significant activity against S. aureus (IC50 = 8.94 μM), showing a comparable potency with the reference drug chloramphenicol (IC50 = 6.19 μM), but with a potential cytotoxicity towards peripheral human blood mononuclear cells (CC50 = 255.15 μM). Here in, the antimicrobial and anti-L. amazonensis effects of M. willdenowii are reported for the first time, as well as Primin (1) as its probable bioactive metabolite.
Collapse
|
88
|
Josa-Culleré L, Hirst MG, Lockett JP, Thompson AL, Moloney MG. Spirocyclic Tetramates by Sequential Knoevenagel and [1,5]-Prototropic Shift. J Org Chem 2019; 84:9671-9683. [PMID: 31276419 DOI: 10.1021/acs.joc.9b01345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly functionalized spirocyclic tetramates were prepared via a sequential Knoevenagel reaction and [1,5]-prototropic shift (T-reaction) of bicyclic tetramates. While these compounds isomerize in solution, stable analogues can be prepared via an appropriate choice of substituents. Further modification of these compounds allows for the introduction of aromatic groups, making them suitable as skeletons for application in medicinal chemistry.
Collapse
Affiliation(s)
- Laia Josa-Culleré
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Michael G Hirst
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Jonathan P Lockett
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Amber L Thompson
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - Mark G Moloney
- Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K.,Oxford Suzhou Centre for Advanced Research , Building A, 388 Ruo Shui Road, Suzhou Industrial Park , Jiangsu 215123 , P. R. China
| |
Collapse
|
89
|
Dahmer J, do Carmo G, Mostardeiro MA, Neto AT, da Silva UF, Dalcol II, Morel AF. Antibacterial activity of Discaria americana Gillies ex Hook (Rhamnaceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111635. [PMID: 30543915 DOI: 10.1016/j.jep.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Discaria americana Gillies ex Hook (sin. Discaria febrifuga and Discaria longispina) (Rhamnaceae) is a plant native from Rio Grande do Sul (Southern Brazil), Uruguay and Argentine, and has been used in Brazilian traditional medicine as antipyretic agent, and for stomach disorders. In Rio Grande do Sul, Uruguay and Argentine, the roots, in decoction, are used as tonic and febrifuge. Although it is a plant widely used by the population, there are no studies proving this popular use. MATERIAL AND METHODS The crude neutral methanol extract, and pure isolated alkaloids, were investigated in vitro for antimicrobial activities against four Gram-positive bacteria: Staphylococcus aureus, Bacillus subtillis, Bacillus cereus, Enterococcus faecium; and five Gram-negative bacteria: Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa. RESULTS The crude neutral methanol (CME) extract of the root bark of Discaria americana showed antibacterial activity, ranging from 62.5 to 250 μg mL-1 (MIC), against the tested bacteria. From the fractions obtained from the crude extract, the basic ethereal fraction (BEF) showed to be more effective, with MICs between 31.5 and 125 μg mL-1 against the tested bacteria. The bioassay-guided fractionation of the ethyl ether basic fraction yielded eight cyclopeptide alkaloids: frangufoline (1), frangulanine (2), adouetine Y' (3), discarine A (4) discarine B (5), discarine C (6), discarene C (7) and discarine D (8). When evaluated against the Gram-positive bacteria Enterococcus faecium, discarine B (5) proved to be the most active alkaloid with a MIC/MLC = 0.77/1.55 μg mL-1, near the most active antibacterial agent levofloxacin (MIC/MLC = 0.77/0.77 μg mL-1). Moreover, discarine C (6) was the more active alkaloid against Salmonella enterica serovar Typhimurium, with a MIC/MLC = 3.1/6.2 μg mL-1, the same observed for the antibacterial agent azithromycin. Kinetic measurements of the bacteriolytic activities of discarine B (5) against Enterococcus faecium (Gram-positive), and of discarine C (6) against Salmonella enterica serovar Typhimurium (Gram-negative) were determined by optical density based on real time assay, suggesting that both mode of action are partially bacteriolytic. CONCLUSION In conclusion, five 14-membered cyclopeptide alkaloids isolated from Discaria americana Gillies ex Hook (Rhamnaceae) showed promising antibacterial activity, making this metabolites a class of scientific interest. The good activity presented by the extract and the alkaloids against the Gram-positive bacteria Enterococcus faecium and against the Gram-negative bacteria Salmonella enterica serovar Typhimurium, Enterobacter. aerogenes and Escherichia coli, corroborate with the popular use of this plant for stomach disorders and as antifebrile.
Collapse
Affiliation(s)
- Janice Dahmer
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil
| | - Gabriele do Carmo
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil
| | - Marco Aurélio Mostardeiro
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil
| | - Alexandre Tibursky Neto
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil
| | - Ubiratan Flores da Silva
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil
| | - Ionara Irion Dalcol
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil.
| | - Ademir Farias Morel
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, n° 100, Bairro Camobi, CEP 97105900 Santa Maria, RS, Brazil.
| |
Collapse
|
90
|
Kravanja G, Primožič M, Knez Ž, Leitgeb M. Chitosan-based (Nano)materials for Novel Biomedical Applications. Molecules 2019; 24:E1960. [PMID: 31117310 PMCID: PMC6572373 DOI: 10.3390/molecules24101960] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 02/03/2023] Open
Abstract
Chitosan-based nanomaterials have attracted significant attention in the biomedical field because of their unique biodegradable, biocompatible, non-toxic, and antimicrobial nature. Multiple perspectives of the proposed antibacterial effect and mode of action of chitosan-based nanomaterials are reviewed. Chitosan is presented as an ideal biomaterial for antimicrobial wound dressings that can either be fabricated alone in its native form or upgraded and incorporated with antibiotics, metallic antimicrobial particles, natural compounds and extracts in order to increase the antimicrobial effect. Since chitosan and its derivatives can enhance drug permeability across the blood-brain barrier, they can be also used as effective brain drug delivery carriers. Some of the recent chitosan formulations for brain uptake of various drugs are presented. The use of chitosan and its derivatives in other biomedical applications is also briefly discussed.
Collapse
Affiliation(s)
- Gregor Kravanja
- University of Maribor; Faculty of Chemistry and Chemical Engineering; Laboratory for Separation Processes and Product Design; Smetanova ul. 17, 2000 Maribor, Slovenia.
| | - Mateja Primožič
- University of Maribor; Faculty of Chemistry and Chemical Engineering; Laboratory for Separation Processes and Product Design; Smetanova ul. 17, 2000 Maribor, Slovenia.
| | - Željko Knez
- University of Maribor; Faculty of Chemistry and Chemical Engineering; Laboratory for Separation Processes and Product Design; Smetanova ul. 17, 2000 Maribor, Slovenia.
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Maja Leitgeb
- University of Maribor; Faculty of Chemistry and Chemical Engineering; Laboratory for Separation Processes and Product Design; Smetanova ul. 17, 2000 Maribor, Slovenia.
- University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia.
| |
Collapse
|
91
|
Zhou QI, Zhao YU, Dang H, Tang Y, Zhang B. Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action. J Food Prot 2019; 82:826-833. [PMID: 31009250 DOI: 10.4315/0362-028x.jfp-18-418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated the antimicrobial mechanism of phytic acid (PA) and its antibacterial effects in combination with ethanol. The MIC of PA on Escherichia coli ATCC 11229, Staphylococcus aureus ATCC 6538P, Bacillus subtilis ATCC 6633, and Salmonella Typhimurium CICC 27483 were 0.24, 0.20, 0.26, and 0.28% (w/w), respectively. E. coli ATCC 11229 and S. aureus ATCC 6538P were selected to investigate the mechanism of PA by analyzing its effects at 1/2MIC and at MIC on the cell morphology, intracellular ATP, and cell membrane integrity. Environmental scanning electron microscope images revealed that PA was able to change the cell morphology and disrupt the intercellular adhesion. PA retarded bacterial growth and caused cell membrane dysfunction, which was accompanied by decreased intracellular ATP concentrations. Flow cytometry analysis further revealed that almost all the bacterial cells were damaged after treatment with PA at its MIC for 2 h. Moreover, PA has a synergistic antimicrobial ability when used in combination with ethanol. These results suggested that PA is effective in inhibiting growth of foodborne pathogens mainly by the mechanism of cell membrane damage and to provide a theoretical basis for the development of natural antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Q I Zhou
- 1 Laboratory of Food Microbiology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China (ORCID: https://orcid.org/0000-0003-4483-1386 [Q.Z.])
| | - Y U Zhao
- 1 Laboratory of Food Microbiology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China (ORCID: https://orcid.org/0000-0003-4483-1386 [Q.Z.])
| | - Hui Dang
- 1 Laboratory of Food Microbiology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China (ORCID: https://orcid.org/0000-0003-4483-1386 [Q.Z.])
| | - Yuanyue Tang
- 2 Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Baoshan Zhang
- 1 Laboratory of Food Microbiology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China (ORCID: https://orcid.org/0000-0003-4483-1386 [Q.Z.])
| |
Collapse
|
92
|
Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1457-1474. [PMID: 30206947 DOI: 10.1002/jsfa.9357] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The growing demand for natural food preservatives in the last decade has promoted investigations on their application for preserving perishable foods. In this context, the present review is focused on discussing the prospective application of plant extracts containing phenolics or isolated plant phenolics as natural antimicrobials in foods. Plant essential oils are outside the scope of this review since utilization of their antimicrobial activity for food preservation has been extensively reviewed. RESULTS Although the exact antimicrobial mechanisms of action of phenolic compounds are not yet fully understood, it is commonly acknowledged that they have diverse sites of action at the cellular level. Antimicrobial phenolics can be added directly to the formulation of perishable food products or incorporated into food-contact materials to release them in the immediate zone of perishable foods. Edible coatings or active food packaging materials can thus be used as carriers of plant bioactive compounds. CONCLUSION These materials could be an interesting delivery system to improve the stability of phenolics in foods and to improve the shelf life of perishable foods. This review will thus provide an overview of current knowledge of the antimicrobial activity of phenolic-rich plant extracts and of the promises and limits of their exploitation for the preservation of perishable foods. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lynda Bouarab Chibane
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| | | | - Jalloul Bouajila
- Faculté de Pharmacie de Toulouse, Laboratoire de Génie Chimique, UMR CNRS 5503, Université Paul Sabatier, Toulouse, France
| | - Nadia Oulahal
- BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), EMA 3733, Univ Lyon, Université Claude Bernard Lyon 1, Isara Lyon, Bourg en Bresse, France
| |
Collapse
|
93
|
Lima LL, Taketa TB, Beppu MM, Sousa IMDO, Foglio MA, Moraes ÂM. Coated electrospun bioactive wound dressings: Mechanical properties and ability to control lesion microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:493-504. [PMID: 30948086 DOI: 10.1016/j.msec.2019.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
Advanced wound dressings capable of interacting with lesions and changing the wound microenvironment to improve healing are promising to increase the therapeutic efficacy of this class of biomaterials. Aiming at the production of bioactive wound dressings with the ability to control the wound microenvironment, biomaterials of three different chemical compositions, but with the same architecture, were produced and compared. Electrospinning was employed to build up a biomimetic extracellular matrix (ECM) layer consisting of poly(caprolactone) (PCL), 50/50 dl-lactide/glycolide copolymer (PDLG) and poly(l-lactide) (PLLA). As a post-treatment to broaden the bioactivity of the dressings, an alginate coating was applied to sheathe and functionalize the surface of the hydrophobic electrospun wound dressings, in combination with the extract of the plant Arrabidaea chica Verlot, known for its anti-inflammatory and healing promotion properties. Wettable bioactive structures capable to interact with media simulating lesion microenvironments, with tensile strength and elongation at break ranging respectively from 155 to 273 MPa and from 0.94 to 1.39% were obtained. In simulated exudative microenvironment, water vapor transmission rate (WVTR) values around 700 g/m2/day were observed, while water vapor permeability rates (WVPR) reached about 300 g/m2/day. In simulated dehydrated microenvironment, values of WVTR around 200 g/m2/day and WVPR around 175 g/m2/day were attained.
Collapse
Affiliation(s)
- Lonetá Lauro Lima
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil
| | - Thiago Bezerra Taketa
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil
| | - Marisa Masumi Beppu
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil
| | - Ilza Maria de Oliveira Sousa
- School of Pharmaceutical Sciences - University of Campinas (UNICAMP), Rua Cândido Portinari, 200, CEP 13083-852 Campinas, SP, Brazil
| | - Mary Ann Foglio
- School of Pharmaceutical Sciences - University of Campinas (UNICAMP), Rua Cândido Portinari, 200, CEP 13083-852 Campinas, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering - University of Campinas (UNICAMP), Av. Albert Einstein, 500, CEP 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
94
|
Santos SAO, Martins C, Pereira C, Silvestre AJD, Rocha SM. Current Challenges and Perspectives for the Use of Aqueous Plant Extracts in the Management of Bacterial Infections: The Case-Study of Salmonella enterica Serovars. Int J Mol Sci 2019; 20:E940. [PMID: 30795544 PMCID: PMC6412809 DOI: 10.3390/ijms20040940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 11/17/2022] Open
Abstract
Worldwide, foodborne diseases are a growing public health problem. Among the infectious bacteria, non-typhoidal Salmonella enterica serovars (NTS) are the major cause of hospitalization and death, and the emergence and spread of their antibiotic-resistance is becoming a worldwide health issue. This, coupled with the restrictions of antibiotics use in agriculture and animal production, calls for alternative approaches to solve this problem. Plant-derived aqueous extracts compounds could provide novel straightforward approaches to control pathogenic bacteria. This review discusses the antimicrobial activity of aqueous plant extracts against Salmonella serovars, the possible mechanisms of action involved, which components/structures might be responsible for such activity, and the current challenges for the use of these extracts/components in Salmonella infection management and their application perspectives.
Collapse
Affiliation(s)
- Sónia A O Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Martins
- QOPNA-Química Orgânica, Produtos Naturais e Agroalimentares, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- QOPNA-Química Orgânica, Produtos Naturais e Agroalimentares, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sílvia M Rocha
- QOPNA-Química Orgânica, Produtos Naturais e Agroalimentares, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
95
|
Grushevskaya HV, Krylova NG. Carbon Nanotubes as A High-Performance Platform for Target Delivery of Anticancer Quinones. Curr Pharm Des 2019; 24:5207-5218. [PMID: 30652640 DOI: 10.2174/1381612825666190117095132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND In spite of considerable efforts of researchers the cancer deseases remain to be incurable and a percentage of cancer deseases in the structure of mortality increases every year. At that, high systemic toxicity of antitumor drugs hampers their effective use. Because of this fact, the development of nanosystems for targeted delivery of antitumor drugs is one of the leading problem in nanomedicine and nanopharmacy. OBJECTIVE To critically examine the modern strategies for carbon nanotubes (CNTs)-based delivery of anticancer quinones and to summarize the mechanisms which can provide high effectiveness and multifunctionality of the CNT-based quinone delivery platform. RESULTS Quinones, including anthracycline antibiotics - doxorubicin and daunorubicin, are among the most prospective group of natural and syntetic compounds which exhibit high antitumor activity against different type of tumors. In this review, we focus on the possibilities of using CNTs for targeted delivery of antitumor compounds with quinoid moiety which is ordinarily characterized by high specific interaction with DNA molecules. Quinones can be non-covalently adsorbed on CNT surface due to their aromatic structure and π-conjugated system of double bonds. The characteristic features of doxorubicine-CNT complex are high loading efficiency, pH-dependent release in acidic tumor microenviroment, enough stability in biological fluid. Different types of CNT functionalization, targeting strategies and designs for multifunctional CNT-based doxorubicine delivery platform are disscussed. CONCLUSION Nanosystems based on functionalized CNTs are very promising platform for quinone delivery resulting in significant enhancement of cancer treatment efficiency. Functionalization of CNTs with the polymeric shell, especially DNA-based shells, can provide the greatest affinity and mimicry with biological structures.
Collapse
Affiliation(s)
- H V Grushevskaya
- Physics Department, Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030, Belarus
| | - N G Krylova
- Physics Department, Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030, Belarus
| |
Collapse
|
96
|
Ghasemi S, Kumleh HH, Kordrostami M. Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress. PROTOPLASMA 2019; 256:279-290. [PMID: 30083789 DOI: 10.1007/s00709-018-1297-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/29/2018] [Indexed: 05/08/2023]
Abstract
Biotic and abiotic stresses cause special defense reactions in plant organs, which after a series of reactions, these stresses produce secondary metabolites. The effect of ultraviolet radiation on the expression of key genes involved in the biosynthesis of secondary metabolites (Phenylalanine ammonia lyase (PAL), Hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase), GPP synthases, Deoxyribonino heptulosinate 7-phosphate synthase (DAHP), and Deoxy Xylose Phosphate Synthase (DXS)), and the association of these genes with different amounts of secondary metabolites (phenol, terpene, flavonoids, anthocyanins, alkaloids, lycopene, and beta-carotene) was investigated in this study. The results of this study showed that the application of UV-B stress significantly increased the expression of GPPs, HMG-CoA reductase, DXS, DAHPs, and PAL genes compared to the control plants. The expression of two key genes involved in the biosynthesis of phenylpropanoids, including DAHPs and PAL, increased with UV-B stress, and the highest expression was related to the PAL gene. The results revealed that UV-B stress caused a significant increase in total levels of terpenoids, phenols, flavonoids, anthocyanins, alkaloids, beta-carotene, and lycopene. The highest relative expression of all genes was obtained in treatment A (UV-B radiation for 1 h), while in treatment B (UV-B radiation for 2 h), no significant changes were observed in the expression of the genes.
Collapse
Affiliation(s)
- Sepideh Ghasemi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Hassan Hassani Kumleh
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran.
| | - Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| |
Collapse
|
97
|
Trdá L, Janda M, Macková D, Pospíchalová R, Dobrev PI, Burketová L, Matušinsky P. Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor. FRONTIERS IN PLANT SCIENCE 2019; 10:1448. [PMID: 31850004 PMCID: PMC6893899 DOI: 10.3389/fpls.2019.01448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 05/13/2023]
Abstract
Being natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant-pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC50) values. Among those saponins tested, aescin showed itself to be the strongest antifungal agent. The antifungal effect of aescin could be reversed by ergosterol, thus suggesting that aescin interferes with fungal sterols. We tested the effect of aescin on plant-pathogen interaction in two different pathosystems: Brassica napus versus (fungus) Leptosphaeria maculans and Arabidopsis thaliana versus (bacterium) Pseudomonas syringae pv tomato DC3000 (Pst DC3000). We analyzed resistance assays, defense gene transcription, phytohormonal production, and reactive oxygen species production. Aescin activated B. napus defense through induction of the salicylic acid pathway and oxidative burst. This defense response led finally to highly efficient plant protection against L. maculans that was comparable to the effect of fungicides. Aescin also inhibited colonization of A. thaliana by Pst DC3000, the effect being based on active elicitation of salicylic acid (SA)-dependent immune mechanisms and without any direct antibacterial effect detected. Therefore, this study brings the first report on the ability of saponins to trigger plant immune responses. Taken together, aescin in addition to its antifungal properties activates plant immunity in two different plant species and provides SA-dependent resistance against both fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Lucie Trdá
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Lucie Trdá, ;
| | - Martin Janda
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Department Genetics, Faculty of Biology, Biocenter, Ludwig-Maximilian-University of Munich (LMU), Martinsried, Germany
| | - Denisa Macková
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Romana Pospíchalová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Pavel Matušinsky
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměrˇíž, Czechia
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
98
|
Simões RR, Kraus SI, Rosso R, Bridi A, Casoti R, Dahmer J, Morel AF, Dos Santos ARS, Zanchet EM. Root bark of Discaria americana attenuates pain: A pharmacological evidence of interaction with opioidergic system and TRP/ASIC channels. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:258-267. [PMID: 30201229 DOI: 10.1016/j.jep.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Discaria americana (Rhamnaceae) root bark infusion have been used in traditional medicine as antipyretic, tonic, ameliorative of stomach and skin diseases and diabetes. This study was designed to investigate whether the methanolic extract of the root bark of Discaria americana (MEDa) exhibits antinociceptive effects in mice. Furthermore, it was investigated the involvement of the opioidergic system in MEDa mechanism of action as well the interactions with TRP/ASIC channels in its effect. MATERIALS AND METHODS The antinociceptive effect of intra-gastric gavage (i.g.) of MEDa (0.3-300 mg/kg) was evaluated in mice subjected to acute chemical (acetic-acid, formalin, glutamate, capsaicin, cinnamaldehyde, and acidified saline) or thermal (hot plate) tests of pain. The involvement of opioid system was evaluated in the formalin test. A nonspecific effect of MEDa was observed by measuring locomotor activity and exploratory behavior in open field test. RESULTS MEDa significantly reduced the number of writhing induced by acetic acid and inhibited the nociception in the two phases of formalin. These effects were inhibited by pretreatment with naloxone. The nociception induced by hot plate and intraplantar injection of glutamate, capsaicin, cinnamaldehyde and acidified saline were significantly inhibited by MEDa. Only the dose of 300 mg/kg altered the locomotor activity. CONCLUSIONS Our results demonstrated, for the first time, that the methanolic extract of the root bark of Discaria americana presents antinociceptive effect in chemical and thermal stimuli and its analgesic properties can be due activation of the opioidergic system. These results support the use of Discaria americana in traditional medicine and demonstrate that this plant presents a therapeutic potential for the development of phytomedicines with antinociceptive profile.
Collapse
Affiliation(s)
- Róli Rodrigues Simões
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil; Faculdade Tecnológica Nova Palhoça, FATENP, Palhoça, SC, Brazil
| | - Scheila Iria Kraus
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Roberta Rosso
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Alessandra Bridi
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Rosana Casoti
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Janice Dahmer
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Ademir Farias Morel
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Adair Roberto Soares Dos Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil; Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Eliane Maria Zanchet
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
99
|
Moreira da Silva T, Pinheiro CD, Puccinelli Orlandi P, Pinheiro CC, Soares Pontes G. Zerumbone from Zingiber zerumbet (L.) smith: a potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. Altern Ther Health Med 2018; 18:301. [PMID: 30424764 PMCID: PMC6234655 DOI: 10.1186/s12906-018-2360-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/25/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Essential oil obtained from rhizomes of the Zingiber zerumbet (L.) Smith (popularly known in Brazil as bitter ginger) is mainly constituted by the biomolecule zerumbone, which exhibit untapped antimicrobial potential. The aim of this study was to investigate the antimicrobial activity of the zerumbone from bitter ginger rhizomes against the cariogenic agent Streptococcus mutans. METHODS Firstly, the essential oil from rhizomes of Zingiber zerumbet (L.) Smith extracted by hydrodistillation was submitted to purification and recrystallization process to obtain the zerumbone compound. The purity of zerumbone was determined through high-performance liquid chromatography analysis. Different concentrations of zerumbone were tested against the standard strain S. mutans (ATCC 35668) by using microdilution method. The speed of cidal activity was determined through a time kill-curve assay. The biological cytotoxicity activity of zerumbone was assessed using Vero cell line through MTT assay. RESULTS The zerumbone showed a minimum inhibitory concentration (MIC) of 250 μg/mL and a minimum bactericidal concentration (MBC) of 500 μg/mL against S. mutans. After six hours of bacteria-zerumbone interaction, all concentrations tested starts to kill the bacteria and all bacteria were killed between 48 and 72 h period at the concentration of 500 μg/mL (99,99% of bacteria were killed in comparison with original inoculum). In addition, zerumbone showed no cytotoxicity activity on mammalian continuous cells line. CONCLUSIONS These results draw attention to the potential of zerumbone as antimicrobial agent against S. mutans infection, indicating its possible use in the phyto-pharmaceutical formulations as new approach to prevent and treat tooth decay disease.
Collapse
|
100
|
Siano A, Humpola MV, de Oliveira E, Albericio F, Simonetta AC, Lajmanovich R, Tonarelli GG. Leptodactylus latrans Amphibian Skin Secretions as a Novel Source for the Isolation of Antibacterial Peptides. Molecules 2018; 23:molecules23112943. [PMID: 30423858 PMCID: PMC6278411 DOI: 10.3390/molecules23112943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial role as the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans (Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085, inhibited the growth of two ATCC strains, namely Escherichia coli and Staphylococcus aureus. P3-Ll-2085 was the most active peptide. In the presence of trifluoroethanol (TFE) and anionic liposomes, it adopted an amphipathic α-helical structure. P2-Ll-1298 showed slightly lower activity than P3-Ll-2085. Comparison of the MIC values of these two peptides revealed that the addition of seven amino acid residues (GLLDFLK) on the N-terminal of P2-Ll-1298 significantly improved activity against both strains. P1-Ll-1577, which remarkably is an anionic peptide, showed interesting antimicrobial activity against E. coli and S. aureus strain, showing marked membrane selectivity and non-hemolysis. Due to this, P1-L1-1577 emerges as a potential candidate for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Alvaro Siano
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1825 Buenos Aires, Argentina.
| | - Maria Veronica Humpola
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1825 Buenos Aires, Argentina.
| | - Eliandre de Oliveira
- Proteomics Platform, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain.
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain;.
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain.
- School of Chemistry and Physics, University of KwaZulu-Natal, 4000 Durban, South Africa.
| | - Arturo C Simonetta
- Cátedras de Microbiología y Biotecnología, Departamento de Ingeniería en Alimentos, Facultad de Ingeniería Química, U.N.L. Santiago del Estero 2829, 3000 Santa Fe, Argentina.
| | - Rafael Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1825 Buenos Aires, Argentina.
- Cátedra de Ecotoxicología, Escuela Superior de Sanidad. FBCB, U.N.L. Ciudad Universitaria, 3000 Santa Fe, Argentina.
| | - Georgina G Tonarelli
- Departamento de Química Orgánica, Facultad de Bioquímica y Cs. Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| |
Collapse
|