51
|
Lin Y, Jin W, Wang J, Cai Z, Wu S, Zhang G. A novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction. Enzyme Microb Technol 2018; 115:29-36. [DOI: 10.1016/j.enzmictec.2018.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
|
52
|
Del Borgo MP, Kulkarni K, Tonta MA, Ratcliffe JL, Seoudi R, Mechler AI, Perlmutter P, Parkington HC, Aguilar MI. β3-tripeptides act as sticky ends to self-assemble into a bioscaffold. APL Bioeng 2018; 2:026104. [PMID: 31069301 PMCID: PMC6481712 DOI: 10.1063/1.5020105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Peptides comprised entirely of β3-amino acids, commonly referred to as β-foldamers, have been shown to self-assemble into a range of materials. Previously, β-foldamers have been functionalised via various side chain chemistries to introduce function to these materials without perturbation of the self-assembly motif. Here, we show that insertion of both rigid and flexible molecules into the backbone structure of the β-foldamer did not disturb the self-assembly, provided that the molecule is positioned between two β3-tripeptides. These hybrid β3-peptide flanked molecules self-assembled into a range of structures. α-Arginlyglycylaspartic acid (RGD), a commonly used cell attachment motif derived from fibronectin in the extracellular matrix, was incorporated into the peptide sequence in order to form a biomimetic scaffold that would support neuronal cell growth. The RGD-containing sequence formed the desired mesh-like scaffold but did not encourage neuronal growth, possibly due to over-stimulation with RGD. Mixing the RGD peptide with a β-foldamer without the RGD sequence produced a well-defined scaffold that successfully encouraged the growth of neurons and enabled neuronal electrical functionality. These results indicate that β3-tripeptides can form distinct self-assembly units separated by a linker and can form fibrous assemblies. The linkers within the peptide sequence can be composed of a bioactive α-peptide and tuned to provide a biocompatible scaffold.
Collapse
Affiliation(s)
- Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mary A. Tonta
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessie L. Ratcliffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rania Seoudi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adam I. Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Helena C. Parkington
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
53
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
54
|
Ting YH, Chen HJ, Cheng WJ, Horng JC. Zinc(II)–Histidine Induced Collagen Peptide Assemblies: Morphology Modulation and Hydrolytic Catalysis Evaluation. Biomacromolecules 2018; 19:2629-2637. [DOI: 10.1021/acs.biomac.8b00247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
McGuinness K, Nanda V. Collagen mimetic peptide discs promote assembly of a broad range of natural protein fibers through hydrophobic interactions. Org Biomol Chem 2018; 15:5893-5898. [PMID: 28678287 DOI: 10.1039/c7ob01073g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Collagen mimetic peptides that alone formed two-dimensional nanoscale discs driven by hydrophobic interactions were shown in electron microscopy studies to also co-assemble with natural fibrous proteins to produce discs-on-a-string (DoS) nanostructures. In most cases, peptide discs also facilitated bundling of the protein fibers. This provides insight into how synthetic and natural proteins may be combined to develop multicomponent, multi-dimensional architectures at the nanoscale.
Collapse
Affiliation(s)
- Kenneth McGuinness
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
56
|
Yao L, He M, Li D, Tian J, Liu H, Xiao J. Terminal aspartic acids promote the self-assembly of collagen mimic peptides into nanospheres. RSC Adv 2018; 8:2404-2409. [PMID: 35541475 PMCID: PMC9077330 DOI: 10.1039/c7ra11855d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
The development of novel strategies to construct collagen mimetic peptides capable of self-assembling into higher-order structures plays a critical role in the discovery of functional biomaterials. We herein report the construction of a novel type of amphiphile-like peptide conjugating the repetitive triple helical (GPO)m sequences characteristic of collagen with terminal hydrophilic aspartic acids. The amphiphile-like collagen mimic peptides containing a variable length of (Gly-Pro-Hyp)m sequences consistently generate well-ordered nanospherical supramolecular structures. The C-terminal aspartic acids have been revealed to play a determinant role in the appropriate self-assembly of amphiphile-like collagen mimic peptides. Their presence is a prerequisite for self-assembly, and their lengths could modulate the morphology of final assemblies. We have demonstrated for the first time that amphiphile-like collagen mimic peptides with terminal aspartic acids may provide a general and convenient strategy to create well-defined nanostructures in addition to amphiphile-like peptides utilizing β-sheet or α-helical coiled-coil motifs. The newly developed assembly strategy together with the ubiquitous natural function of collagen may lead to the generation of novel improved biomaterials. Amphiphile-like collagen mimic peptides with terminal aspartic acids may provide a general and convenient strategy to create well-defined nanostructures.![]()
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dongfang Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jing Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
57
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
58
|
Sant S, Coutinho DF, Gaharwar AK, Neves NM, Reis RL, Gomes ME, Khademhosseini A. Self-assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/nanoscale Hierarchy of Collagen. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1606273. [PMID: 31885528 PMCID: PMC6934367 DOI: 10.1002/adfm.201606273] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fiber bundles are present in many tissues throughout the body. In most cases, collagen subunits spontaneously self-assemble into a fibrilar structure that provides ductility to bone and constitutes the basis of muscle contraction. Translating these natural architectural features into a biomimetic scaffold still remains a great challenge. Here, we propose a simple strategy to engineer biomimetic fiber bundles that replicate the self-assembly and hierarchy of natural collagen fibers. The electrostatic interaction of methacrylated gellan gum (MeGG) with a countercharged chitosan (CHT) polymer led to the complexation of the polyelectrolytes. When directed through a polydimethylsiloxane (PDMS) channel, the polyelectrolytes formed a hierarchical fibrous hydrogel demonstrating nano-scale periodic light/dark bands similar to D-periodic bands in native collagen and aligned parallel fibrils at micro-scale. Importantly, collagen-mimicking hydrogel fibers exhibited robust mechanical properties (MPa scale) at a single fiber bundle level and enabled encapsulation of cells inside the fibers under cell-friendly mild conditions. Presence of carboxyl- (in gellan gum) or amino- (in chitosan) functionalities further enabled controlled peptide functionalization such as RGD for biochemical mimicry (cell adhesion sites) of native collagen. This biomimetic aligned fibrous hydrogel system can potentially be used as a scaffold for tissue engineering as well as a drug/gene delivery vehicle.
Collapse
Affiliation(s)
- Shilpa Sant
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Currently at Department of Pharmaceutical Sciences, School of Pharmacy, Department of Bioengineering, Swanson School of Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniela F Coutinho
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Akhilesh K Gaharwar
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Currently at the Department of Biomedical Engineering and Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77841, USA
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
59
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
60
|
Mullen AM, Álvarez C, Zeugolis DI, Henchion M, O'Neill E, Drummond L. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Sci 2017; 132:90-98. [PMID: 28502588 DOI: 10.1016/j.meatsci.2017.04.243] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Opportunities for exploiting the inherent value of protein-rich meat processing co-products, in the context of increased global demand for protein and for sustainable processing systems, are discussed. While direct consumption maybe the most profitable route for some, this approach is influenced greatly by local and cultural traditions. A more profitable and sustainable approach may be found in recognizing this readily available and under-utilised resource can provide high value components, such as proteins, with targeted high value functionality of relevance to a variety of sectors. Applications in food & beverages, petfood biomedical and nutrition arenas are discussed. Utilization of the raw material in its entirety is a necessary underlying principle in this approach to help maintain minimum waste generation. Understanding consumer attitudes to these products, in particular when used in food or beverage systems, is critical in optimizing commercialization strategies.
Collapse
Affiliation(s)
- Anne Maria Mullen
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland.
| | - Carlos Álvarez
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Maeve Henchion
- Teagasc Food Research Centre, Dep't Agrifood Business and Spatial Analysis, Ashtown, Dublin 15, Ireland
| | - Eileen O'Neill
- University College Cork, Department of Food & Nutritional Sciences, Cork, Dublin, Ireland
| | - Liana Drummond
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland
| |
Collapse
|
61
|
Chiang CH, Fu YH, Horng JC. Formation of AAB-Type Collagen Heterotrimers from Designed Cationic and Aromatic Collagen-Mimetic Peptides: Evaluation of the C-Terminal Cation−π Interactions. Biomacromolecules 2017; 18:985-993. [DOI: 10.1021/acs.biomac.6b01838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chu-Harn Chiang
- Department of Chemistry and ‡Frontier Research Center on Fundamental and Applied
Science of Matters, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Yi-Hsuan Fu
- Department of Chemistry and ‡Frontier Research Center on Fundamental and Applied
Science of Matters, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Jia-Cherng Horng
- Department of Chemistry and ‡Frontier Research Center on Fundamental and Applied
Science of Matters, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
62
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|
63
|
Li Y, Wang F, Cui H. Peptide-Based Supramolecular Hydrogels for Delivery of Biologics. Bioeng Transl Med 2016; 1:306-322. [PMID: 28989975 PMCID: PMC5629974 DOI: 10.1002/btm2.10041] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
The demand for therapeutic biologics has rapidly grown over recent decades, creating a dramatic shift in the pharmaceutical industry from small molecule drugs to biological macromolecular therapeutics. As a result of their large size and innate instability, the systemic, topical, and local delivery of biologic drugs remains a highly challenging task. Although there exist many types of delivery vehicles, peptides and peptide conjugates have received continuously increasing interest as molecular blocks to create a great diversity of supramolecular nanostructures and hydrogels for the effective delivery of biologics, due to their inherent biocompatibility, tunable biodegradability, and responsiveness to various biological stimuli. In this context, we discuss the design principles of supramolecular hydrogels using small molecule peptides and peptide conjugates as molecular building units, and review the recent effort in using these materials for protein delivery and gene delivery.
Collapse
Affiliation(s)
- Yi Li
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Feihu Wang
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Honggang Cui
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Dept. of Oncology and Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21205
- Center for NanomedicineThe Wilmer Eye Institute, The Johns Hopkins University School of Medicine400 North BroadwayBaltimoreMD21231
| |
Collapse
|
64
|
Collagen structure: new tricks from a very old dog. Biochem J 2016; 473:1001-25. [PMID: 27060106 DOI: 10.1042/bj20151169] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.
Collapse
|
65
|
Qi Y, Tang J, He P, Yang F. A novel artificial metallocyclodextrins polymer: Synthesis and photoactive properties in imprinting of molecular recognition. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
66
|
Zhang Y, Herling M, Chenoweth DM. General Solution for Stabilizing Triple Helical Collagen. J Am Chem Soc 2016; 138:9751-4. [DOI: 10.1021/jacs.6b03823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yitao Zhang
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Madison Herling
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David M. Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
67
|
Mhd Haniffa MAC, Ching YC, Abdullah LC, Poh SC, Chuah CH. Review of Bionanocomposite Coating Films and Their Applications. Polymers (Basel) 2016; 8:E246. [PMID: 30974522 PMCID: PMC6431997 DOI: 10.3390/polym8070246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022] Open
Abstract
The properties of a composite material depend on its constituent materials such as natural biopolymers or synthetic biodegradable polymers and inorganic or organic nanomaterials or nano-scale minerals. The significance of bio-based and synthetic polymers and their drawbacks on coating film application is currently being discussed in research papers and articles. Properties and applications vary for each novel synthetic bio-based material, and a number of such materials have been fabricated in recent years. This review provides an in-depth discussion on the properties and applications of biopolymer-based nanocomposite coating films. Recent works and articles are cited in this paper. These citations are ubiquitous in the development of novel bionanocomposites and their applications.
Collapse
Affiliation(s)
- Mhd Abd Cader Mhd Haniffa
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yern Chee Ching
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia.
- Institute of Tropical Forestry and Forest Product (INTROP), University Putra Malaysia, Serdang 43400, Malaysia.
| | - Sin Chew Poh
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
68
|
Kumar VA, Wang BK, Kanahara SM. Rational design of fiber forming supramolecular structures. Exp Biol Med (Maywood) 2016; 241:899-908. [PMID: 27022140 PMCID: PMC4950345 DOI: 10.1177/1535370216640941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/24/2016] [Indexed: 12/28/2022] Open
Abstract
Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application in bioengineering and medicine. This review focuses on fundamental fiber forming α-helical coiled-coil peptides, peptide amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides with an emphasis on chemical / biological characterization and biomimicry.
Collapse
Affiliation(s)
| | | | - Satoko M Kanahara
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
69
|
Harris PWR, Hampe L, Radjainia M, Brimble MA, Mitra AK. An investigation of the role of the adiponectin variable domain on the stability of the collagen-like domain. Biopolymers 2016; 102:313-21. [PMID: 24752567 DOI: 10.1002/bip.22501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/10/2014] [Indexed: 01/03/2023]
Abstract
The chemical synthesis is described of a polypeptide construct possessing both the variable and the collagen-like domain of adiponectin, which can be used as a model system for probing the influence of the variable domain on multimerization of this important circulating hormone. Using a collagen domain repeat peptide unit derived from native adiponectin or a glutamic acid analogue was ineffective due to noncollagenous conformational properties in both cases. However, employing a collagen model peptide and linking this to the variable domain thioester peptide using native chemical ligation proved effective. The 63 residue peptide was characterized by circular dichroism and mass spectrometry which demonstrated that a collagen-like triple-helical structure was preserved.
Collapse
Affiliation(s)
- Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand
| | | | | | | | | |
Collapse
|
70
|
Kamranpour NO, Miri AK, James-Bhasin M, Nazhat SN. A gel aspiration-ejection system for the controlled production and delivery of injectable dense collagen scaffolds. Biofabrication 2016; 8:015018. [DOI: 10.1088/1758-5090/8/1/015018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
71
|
Sun X, Fan J, Li X, Zhang S, Liu X, Xiao J. Colorimetric and fluorometric monitoring of the helix composition of collagen-like peptides at the nM level. Chem Commun (Camb) 2016; 52:3107-10. [PMID: 26692232 DOI: 10.1039/c5cc09565d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have demonstrated that the incorporation of a dye-labeled collagen-like peptide in the homotrimeric versus heterotrimeric context results in visible color changes and distinct fluorescence. The unique fluorescence self-quenching assay can unambiguously determine the helix composition of heterotrimers at the nM level, far extending our capability to characterize a collagen triple helix.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jun Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shanshan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
72
|
Chiang CH, Horng JC. Cation-π Interaction Induced Folding of AAB-Type Collagen Heterotrimers. J Phys Chem B 2016; 120:1205-11. [PMID: 26821230 DOI: 10.1021/acs.jpcb.5b11189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Collagen is the most predominant component of the extracellular matrix. Natural collagens consist of all identical (AAA, homotrimer), two different (AAB, heterotrimer), or three different (ABC, heterotrimer) peptide chains. Many natural collagens are either AAB- or ABC-type heterotrimers, making heterotrimeric helices better mimics for studying collagen structures in nature. We prepared collagen-mimetic peptides containing cationic (Arg) or aromatic (Phe, Tyr) residues to explore collagen heterotrimer folding via cation-π interactions. Circular dichroism, differential scanning calorimetry, and nuclear magnetic resonance (NMR) measurements showed that the interchain cation-π interactions between cationic and aromatic peptides could induce AAB-type heterotrimer formation. By controlling the mixing molar ratios of cationic and aromatic peptides in solution, we could obtain the heterotrimers with various compositions. We demonstrate the effectiveness of cation-π interactions as a force to fold collagen heterotrimers.
Collapse
Affiliation(s)
- Chu-Harn Chiang
- Department of Chemistry, National Tsing Hua University , 101 Sec. 2 Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University , 101 Sec. 2 Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Science of Matters, National Tsing Hua University , 101 Sec. 2 Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C
| |
Collapse
|
73
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
74
|
He M, Wang L, Wu J, Xiao J. Ln3+
-Mediated Self-Assembly of a Collagen Peptide into Luminescent Banded Helical Nanoropes. Chemistry 2016; 22:1914-1917. [DOI: 10.1002/chem.201504337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Manman He
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Lang Wang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| |
Collapse
|
75
|
Fu I, Case DA, Baum J. Dynamic Water-Mediated Hydrogen Bonding in a Collagen Model Peptide. Biochemistry 2016; 54:6029-37. [PMID: 26339765 DOI: 10.1021/acs.biochem.5b00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the canonical (G-X-Y)(n) sequence of the fibrillar collagen triple helix, stabilizing direct interchain hydrogen bonding connects neighboring chains. Mutations of G can disrupt these interactions and are linked to connective tissue diseases. Here we integrate computational approaches with nuclear magnetic resonance (NMR) to obtain a dynamic view of hydrogen bonding distributions in the (POG)(4)(-)(POA)-(POG)(5) peptide, showing that the solution conformation, dynamics, and hydrogen bonding deviate from the reported X-ray crystal structure in many aspects. The simulations and NMR data provide clear evidence of inequivalent environments in the three chains. Molecular dynamics (MD) simulations indicate direct interchain hydrogen bonds in the leading chain, water bridges in the middle chain, and nonbridging waters in the trailing chain at the G → A substitution site. Theoretical calculations of NMR chemical shifts using a quantum fragmentation procedure can account for the unusual downfield NMR chemical shifts at the substitution sites and are used to assign the resonances to the individual chains. The NMR and MD data highlight the sensitivity of amide shifts to changes in the acceptor group from peptide carbonyls to water. The results are used to interpret solution NMR data for a variety of glycine substitutions and other sequence triplet interruptions to provide new connections between collagen sequences, their associated structures, dynamical behavior, and their ability to recognize collagen receptors.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Jean Baum
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
76
|
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular Polymers in Aqueous Media. Chem Rev 2016; 116:2414-77. [DOI: 10.1021/acs.chemrev.5b00369] [Citation(s) in RCA: 527] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Pol Besenius
- Institute
of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Boris Rybtchinski
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
77
|
Podder D, Sasmal S, Maji K, Haldar D. Supramolecular tryptophan-zipper forms a tripeptide as a regular proton transporter. CrystEngComm 2016. [DOI: 10.1039/c5ce02005k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Bansode ND, Sonar MV, Ganesh KN. A nanofiber assembly directed by the non-classical antiparallel β-structure from 4S-(OH) proline polypeptide. Chem Commun (Camb) 2016; 52:4884-7. [DOI: 10.1039/c6cc00838k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antiparallel arrangement of two strands of the non-classical β-structure, formed exclusively via cis-4S-(OH) prolyl polypeptide as established by FRET, propagates into self-assembled nanofibers upon conjugation with C12/C14/C16 hydrocarbon chains.
Collapse
Affiliation(s)
- Nitin D. Bansode
- Chemical Biology Unit
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Mahesh V. Sonar
- Chemical Biology Unit
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Krishna N. Ganesh
- Chemical Biology Unit
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| |
Collapse
|
79
|
Sun X, Fan J, Ye W, Zhang H, Cong Y, Xiao J. A highly specific graphene platform for sensing collagen triple helix. J Mater Chem B 2016; 4:1064-1069. [DOI: 10.1039/c5tb02218e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed a dye-labeled, highly positively charged single stranded collagen (ssCOL) peptide probe whose adsorption into GO quenches its fluorescence. The hybridization of the ssCOL probe with a complementary target sequence forms a triple stranded collagen (tsCOL) peptide, resulting in the retention of the fluorescence of the probe.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jun Fan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Weiran Ye
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Han Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yong Cong
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
80
|
Ageitos JM, Yazawa K, Tateishi A, Tsuchiya K, Numata K. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization. Biomacromolecules 2015; 17:314-23. [PMID: 26620763 DOI: 10.1021/acs.biomac.5b01430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst. Alanine and glycine were selected as monomers because of their substantially different affinities toward papain. The efficiency of the polymerization of alanine and glycine benzyl esters was much greater than that of the other esters. The benzyl ester group therefore allowed papain to equally polymerize alanine and glycine, even though the affinity of alanine toward papain is substantially higher. The characterization of the copolymers of alanine and glycine in terms of the secondary structure and thermal properties revealed that the thermal stability of the peptides depends on the amino acid composition and resultant secondary structure. The current results indicate that the nature of the ester group drastically affects the polymerization efficiency and broadens the substrate specificity of the protease.
Collapse
Affiliation(s)
- Jose Manuel Ageitos
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kenjiro Yazawa
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Ayaka Tateishi
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
81
|
Ellison AJ, VanVeller B, Raines RT. Convenient synthesis of collagen-related tripeptides for segment condensation. Biopolymers 2015; 104:674-81. [PMID: 26172437 PMCID: PMC4713359 DOI: 10.1002/bip.22700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/23/2015] [Accepted: 07/04/2015] [Indexed: 11/09/2022]
Abstract
Chromatography is a common step in the solution-phase synthesis of typical peptides, as well as peptide fragments for subsequent coupling on a solid support. Combining known reagents that form readily separable byproducts is shown to eliminate this step, which wastes time and other resources. Specifically, activating carboxyl groups with isobutyl chloroformate or as pentafluorophenyl esters and using N-methyl morpholine as a base enable chromatography-free synthetic routes in which peptide products are isolated from byproducts by facile evaporation, extraction, and trituration. This methodology was used to access tripeptides related to collagen, such as Fmoc-Pro-Pro-Gly-OH and Fmoc-Pro-Hyp(tBu)-Gly-OH, in a purity suitable for solid-phase segment condensation to form collagen mimetic peptides.
Collapse
Affiliation(s)
- Aubrey J. Ellison
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322
| | - Brett VanVeller
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544
| |
Collapse
|
82
|
Terao K, Kanenaga R, Yoshida T, Mizuno K, Bächinger HP. Temperature induced complex formation-deformation behavior of collagen model peptides and polyelectrolytes in aqueous solution. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
83
|
Ahlers P, Frisch H, Besenius P. Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers. Polym Chem 2015. [DOI: 10.1039/c5py01241d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The co-assembly of oppositely charged phenylalanine-rich dendritic comonomers yields supramolecular alternating copolymers, whose stability and pH-triggered disassembly is tuned by mismatching a strong with a weak β-sheet encoded comonomer.
Collapse
Affiliation(s)
- P. Ahlers
- Institut für Organische Chemie
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Organisch-Chemisches Institut
| | - H. Frisch
- Institut für Organische Chemie
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Organisch-Chemisches Institut
| | - P. Besenius
- Institut für Organische Chemie
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
84
|
Acevedo-Jake AM, Jalan AA, Hartgerink JD. Comparative NMR Analysis of Collagen Triple Helix Organization from N- to C-Termini. Biomacromolecules 2014; 16:145-55. [DOI: 10.1021/bm501281a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Amanda M. Acevedo-Jake
- Departments of Chemistry
and Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Abhishek A. Jalan
- Departments of Chemistry
and Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Jeffrey D. Hartgerink
- Departments of Chemistry
and Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
85
|
Desai MS, Lee SW. Protein-based functional nanomaterial design for bioengineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:69-97. [DOI: 10.1002/wnan.1303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/12/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Malav S. Desai
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - Seung-Wuk Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
86
|
Sarkar B, O'Leary LER, Hartgerink JD. Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J Am Chem Soc 2014; 136:14417-24. [PMID: 25494829 DOI: 10.1021/ja504377s] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mimicking the multistep self-assembly of the fibrillar protein collagen is an important design challenge in biomimetic supramolecular chemistry. Utilizing the complementarity of oppositely charged domains in short collagen-like peptides, we have devised a strategy for the self-assembly of these peptides into fibers. The strategy depends on the formation of a staggered triple helical species facilitated by interchain charged pairs, and is inspired by similar sticky-ended fibrillation designs applied in DNA and coiled coil fibers. We compare two classes of collagen mimetic peptides with the same composition but different domain arrangements, and show that differences in their proposed nucleation events differentiates their fibrillation capabilities. Larger nucleation domains result in rapid fiber formation and eventual precipitation or gelation while short nucleation domains leave the peptide soluble for long periods of time. For one of the fiber-forming peptides, we elucidate the packing parameters by X-ray diffraction.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Chemistry and ‡Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | | | | |
Collapse
|
87
|
Hume J, Sun J, Jacquet R, Renfrew PD, Martin JA, Bonneau R, Gilchrist ML, Montclare JK. Engineered Coiled-Coil Protein Microfibers. Biomacromolecules 2014; 15:3503-10. [DOI: 10.1021/bm5004948] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jasmin Hume
- Department
of Chemical and Biomolecular Engineering, NYU Polytechnic School of Engineering, Brooklyn, New York 11201, United States
| | - Jennifer Sun
- Department
of Chemical and Biomolecular Engineering, NYU Polytechnic School of Engineering, Brooklyn, New York 11201, United States
| | - Rudy Jacquet
- Department
of Chemical and Biomolecular Engineering, NYU Polytechnic School of Engineering, Brooklyn, New York 11201, United States
| | - P. Douglas Renfrew
- Center
for Genomics and Systems Biology, Department of Biology, New York University New York, New York 10003, United States
| | - Jesse A. Martin
- Departments
of Chemical Engineering and Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, United States
| | - Richard Bonneau
- Center
for Genomics and Systems Biology, Department of Biology, New York University New York, New York 10003, United States
| | - M. Lane Gilchrist
- Departments
of Chemical Engineering and Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, NYU Polytechnic School of Engineering, Brooklyn, New York 11201, United States
| |
Collapse
|
88
|
Yin D, Wu H, Liu C, Zhang J, Zhou T, Wu J, Wan Y. Fabrication of composition-graded collagen/chitosan–polylactide scaffolds with gradient architecture and properties. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
89
|
Abstract
In some natural collagen triple helices, cysteine (Cys) residues on neighboring strands are linked by disulfide bonds, enhancing association and maintaining proper register. Similarly, Cys-Cys disulfide bridges have been used to impose specific associations between collagen-mimetic peptides (CMPs). Screening a library of disulfide linkers in silico for compatibility with collagen identifies the disulfide bridge between proximal homocysteine (Hcy) and Cys as conferring much greater stability than a Cys-Cys bridge, but only when Hcy is installed in the Xaa position of the canonical Xaa-Yaa-Gly repeat and Cys is installed in the Yaa position. Experimental evaluation of CMPs that host alternative thiols validates this design: only Hcy-Cys bridges improve triple-helical structure and stability upon disulfide-bond formation. This privileged linker can enhance CMP-based biomaterials and enable previously inaccessible molecular designs.
Collapse
Affiliation(s)
- I Caglar Tanrikulu
- Department of Biochemistry and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | |
Collapse
|
90
|
Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers 2014; 101:821-33. [PMID: 24633807 PMCID: PMC4203321 DOI: 10.1002/bip.22486] [Citation(s) in RCA: 601] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/13/2023]
Abstract
With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, nontoxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
| |
Collapse
|
91
|
Kumar V, Taylor NL, Jalan AA, Hwang LK, Wang BK, Hartgerink JD. A nanostructured synthetic collagen mimic for hemostasis. Biomacromolecules 2014; 15:1484-90. [PMID: 24694012 PMCID: PMC3993945 DOI: 10.1021/bm500091e] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Indexed: 12/24/2022]
Abstract
Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1β) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat.
Collapse
Affiliation(s)
- Vivek
A. Kumar
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Nichole L. Taylor
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Abhishek A. Jalan
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lyahn K. Hwang
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Benjamin K. Wang
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Jeffery D. Hartgerink
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
92
|
Basu S, Kandiyal PS, Neelamraju VSK, Singh H, Ampapathi RS, Chakraborty TK. Peptidomimetics with tunable tertiary amide bond containing substituted β-proline and β-homoproline. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
93
|
Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 2014; 113:352-60. [DOI: 10.1016/j.colsurfb.2013.09.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/22/2022]
|
94
|
Jalan AA, Hartgerink JD. Pairwise interactions in collagen and the design of heterotrimeric helices. Curr Opin Chem Biol 2013; 17:960-7. [DOI: 10.1016/j.cbpa.2013.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022]
|
95
|
Buendía J, Sánchez L. Solvent-Dependent Disassembly of Amphiphilic OPE-Based Tricarboxamides. Org Lett 2013; 15:5746-9. [DOI: 10.1021/ol402788n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Julia Buendía
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n 28040 Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n 28040 Madrid, Spain
| |
Collapse
|
96
|
|
97
|
Luo T, Kiick KL. Collagen-like peptides and peptide–polymer conjugates in the design of assembled materials. Eur Polym J 2013; 49:2998-3009. [DOI: 10.1016/j.eurpolymj.2013.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
98
|
Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:582-612. [DOI: 10.1002/wnan.1238] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Ana C. Mendes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Erkan T. Baran
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Helena S. Azevedo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
99
|
Lin R, Cheetham AG, Zhang P, Lin YA, Cui H. Supramolecular filaments containing a fixed 41% paclitaxel loading. Chem Commun (Camb) 2013; 49:4968-70. [PMID: 23612448 PMCID: PMC3685178 DOI: 10.1039/c3cc41896k] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report here the self-assembly of a rationally designed paclitaxel drug amphiphile into well-defined supramolecular filaments that possess a fixed 41% paclitaxel loading. These filaments can exert effective cytotoxicity against a number of cell lines comparable to that of free paclitaxel.
Collapse
Affiliation(s)
- Ran Lin
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Steet, Baltimore, MD 21218, United States
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Steet, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Steet, Baltimore, MD 21218, United States
| | - Yi-an Lin
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Steet, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Steet, Baltimore, MD 21218, United States
| |
Collapse
|
100
|
Exploring the dermal “template effect” and its structure. Mol Biol Rep 2013; 40:4837-41. [DOI: 10.1007/s11033-013-2580-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 04/29/2013] [Indexed: 01/04/2023]
|