51
|
Safdar S, Lammertyn J, Spasic D. RNA-Cleaving NAzymes: The Next Big Thing in Biosensing? Trends Biotechnol 2020; 38:1343-1359. [PMID: 32473751 DOI: 10.1016/j.tibtech.2020.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Nucleic acid enzymes (NAzymes) are nucleic acid molecules with catalytic activity. A subset, the RNA-cleaving NAzyme, is characterized by its substrate of choice: an RNA unit. These enzymes have been used for diverse applications, including biosensor development, akin to their protein counterparts. Owing to their function as both biorecognition elements and signal generators, robust bioassays based entirely on NAzyme molecules have been developed. Additionally, unique mechanisms for integration with other biorecognition elements and signal generation methods have been explored to realize ultrasensitive, specific, and user-friendly biosensors. Furthermore, NAzyme-based bioassays have already broken into the in vitro diagnostics market, with more promise in the pipeline.
Collapse
Affiliation(s)
- Saba Safdar
- Department of Biosystems, Biosensors Group, KU Leuven, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, 3001, Leuven, Belgium.
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
52
|
Yang H, Peng D, Zhou Y, Liu J. Pb 2+ as a Substrate and a Cofactor of a Porphyrin Metalation DNAzyme. Chembiochem 2020; 21:2259-2263. [PMID: 32202058 DOI: 10.1002/cbic.202000073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/21/2020] [Indexed: 11/11/2022]
Abstract
We herein report a DNAzyme named T30695 (sequence: (G3 T)4 ) that can catalyze Zn2+ insertion into three different porphyrins in the presence of Pb2+ as a cofactor. Meanwhile, T30695 with Pb2+ alone was found to cause a shift in both the fluorescence and UV-vis spectra of protoporphyrin IX (PPIX), thus suggesting that metalation of Pb2+ was also achieved at room temperature. From kinetic measurements, the reaction required two Pb2+ ions; this is consistent with one being a cofactor and the other being a substrate. No previous reports inserted Pb2+ into porphyrins by using DNAzymes or protein-based enzymes. This reaction was most significantly inhibited in the presence of K+ followed by Na+ and Li+ , suggesting the importance of the Pb2+ -stabilized G-quadruplex. When Pb2+ is inserted into PPIX, its emission blue shifts from 635 to 590 nm, thus allowing simple ratiometric fluorescent sensing with a detection limit of 1.2 nM Pb2+ .
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Dong Peng
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada.,College of Chemistry20, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, Jiangxi, China
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|
53
|
Li J, Yang S, Zuo C, Dai L, Guo Y, Xie G. Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sens 2020; 5:970-977. [PMID: 32157873 DOI: 10.1021/acssensors.9b02305] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Efficient signal amplification is essential to construct ultrasensitive biosensors for biologically relevant species with abundant concomitant interferences. Here, we apply LbaCas12a as a signal amplifier to develop a versatile CRISPR-Cas12a platform to detect a wide range of analytes in ultralow concentrations. The platform relies on the indiscriminate single-stranded DNase activity of LbaCas12a, which recognizes single-stranded DNA intermediates generated by non-DNA targets down to femtomolar concentrations and subsequently enhances the fluorescence signal output. With the help of functional nucleotides (DNAzyme and aptamer), ultrasensitive bioassays for Pb2+ and Acinetobacter baumannii have been designed with a limit of detection down to ∼0.053 nM and ∼3 CFU/mL, respectively. It also allows simultaneous detection of four microRNAs (miRNAs) at a picomolar concentration without significant interferences by other counterparts, suggesting the potential of multiplexed miRNA expression profiles analysis in high throughput. Given the versatility and generality of the CRISPR-Cas12a platform, we expect the current work to advance the application of CRISPR-Cas-based platforms in bioanalysis and provide new insights into ultrasensitive biosensor design.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Shuangshuang Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Chen Zuo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Ling Dai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Yongcan Guo
- Department of Laboratory Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| |
Collapse
|
54
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
55
|
Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots@graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
56
|
Ma L, Liu J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020; 23:100815. [PMID: 31954323 PMCID: PMC6962706 DOI: 10.1016/j.isci.2019.100815] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Since the initial discovery of ribozymes in the early 1980s, catalytic nucleic acids have been used in different areas. Compared with protein enzymes, catalytic nucleic acids are programmable in structure, easy to modify, and more stable especially for DNA. We take a historic view to summarize a few main interdisciplinary areas of research on nucleic acid enzymes that may have broader impacts. Early efforts on ribozymes in the 1980s have broken the notion that all enzymes are proteins, supplying new evidence for the RNA world hypothesis. In 1994, the first catalytic DNA (DNAzyme) was reported. Since 2000, the biosensor applications of DNAzymes have emerged and DNAzymes are particularly useful for detecting metal ions, a challenging task for enzymes and antibodies. Combined with nanotechnology, DNAzymes are key building elements for switches allowing dynamic control of materials assembly. The search for new DNAzymes and ribozymes is facilitated by developments in DNA sequencing and computational algorithms, further broadening our fundamental understanding of their biochemistry.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
57
|
Wang G, Chu LT, Hartanto H, Utomo WB, Pravasta RA, Chen TH. Microfluidic Particle Dam for Visual and Quantitative Detection of Lead Ions. ACS Sens 2020; 5:19-23. [PMID: 31808335 DOI: 10.1021/acssensors.9b01945] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lead contamination in drinking water is a primary concern in public health, but it is difficult to monitor by end-users. Here, we provide a rapid and power-free microfluidic particle dam which enables visual quantification of lead ions (Pb2+) by the naked eye. GR-5 DNAzyme with extended termini can connect magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) by DNA hybridization, forming "MMPs-GR-5-PMPs". When Pb2+ is present, GR-5 is cleaved, resulting in an increasing number of free PMPs. To visually count the free PMPs, the solution is loaded to a capillary-driven microfluidic device that consists of a magnetic separator to remove the MMPs-GR-5-PMPs, followed by a particle dam that traps and accumulates the free PMPs into a visual bar with growing length proportional to the concentration of lead. The device achieved a limit of detection at 2.12 nM (0.44 ppb), high selectivity (>20,000-fold) against other metal ions, high tolerance to different pH and water hardness, and is compatible with tap water with a high recovery rate, enabling visual quantification and user-friendly interface for rapid screening of water safety.
Collapse
|
58
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020; 59:3573-3577. [PMID: 31867832 DOI: 10.1002/anie.201915675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
59
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
60
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
61
|
Ren W, Huang PJJ, He M, Lyu M, Wang C, Wang S, Liu J. Sensitivity of a classic DNAzyme for Pb2+ modulated by cations, anions and buffers. Analyst 2020; 145:1384-1388. [DOI: 10.1039/c9an02612f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both cations and anions in salt strongly affect the activity of a classic Pb2+ specific DNAzyme, which in turn can affect the sensitivity of related biosensors.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Provincial Key Laboratory of Marine Biology
- College of Resources and Environmental Sciences
- Nanjing Agricultural University
- Nanjing
- China
| | | | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology
- College of Resources and Environmental Sciences
- Nanjing Agricultural University
- Nanjing
- China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology
- Ocean University of Jiangsu
- Lianyungang
- China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology
- College of Resources and Environmental Sciences
- Nanjing Agricultural University
- Nanjing
- China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology
- Ocean University of Jiangsu
- Lianyungang
- China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
| | - Juewen Liu
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
62
|
Zayed MA, Mahmoud WH, Abbas AA, Ali AE, Mohamed GG. A highly sensitive, selective and renewable carbon paste electrode based on a unique acyclic diamide ionophore for the potentiometric determination of lead ions in polluted water samples. RSC Adv 2020; 10:17552-17560. [PMID: 35515636 PMCID: PMC9053576 DOI: 10.1039/d0ra01435d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022] Open
Abstract
Due to the toxicity of lead(ii) to all living organisms as it destroys the central nervous system leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important. In this work, 1,3-bis[2-(N-morpholino)acetamidophenoxy]propane (BMAPP), belonging to acyclic diamides, was applied as a highly selective lead(ii) ionophore in a carbon paste ion selective electrode for the accurate and precise determination of Pb(ii) ions even in the presence of other interfering ions. Factors affecting the electrode's response behavior were studied and optimized. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and FT-IR spectroscopy were used for studying the morphology and response mechanism of the prepared sensor. The lipophilicity of the used ionophore, which contributes to the mechanical stability of the sensor, was studied using the contact angle measurement technique. The selectivity coefficients obtained by the separate solution method (SSM) and fixed interference method (FIM) confirmed the selectivity of the proposed sensor for Pb(ii) ions. The proposed sensor exhibited a Nernstian slope of 29.96 ± 0.34 mV per decade over a wide linear range of 5 × 10−8 to 1 × 10−1 mol L−1 and detection limit of 3 × 10−8 mol L−1 for 2 months with a fast response time (<10 s) and working pH range (2.5–5.5). To further ensure the practical applicability of the sensor, it was successfully applied for the lead(ii) ion determination in different water samples and the obtained data showed an agreement with those obtained by atomic absorption spectroscopy. In addition, it was successfully applied for the potentiometric titration of Pb(ii) against K2CrO4 and Na2SO4. Due to the toxicity of lead(ii) to all living organisms destroying the central nervous system and leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important.![]()
Collapse
Affiliation(s)
- M. A. Zayed
- Chemistry Department
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | | | - Ashraf A. Abbas
- Chemistry Department
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | - Aya E. Ali
- Chemistry Department
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | | |
Collapse
|
63
|
Ren W, Huang PJJ, He M, Lyu M, Wang S, Wang C, Liu J. The Two Classic Pb 2+ -Selective DNAzymes Are Related: Rational Evolution for Understanding Metal Selectivity. Chembiochem 2019; 21:1293-1297. [PMID: 31755629 DOI: 10.1002/cbic.201900664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 01/09/2023]
Abstract
In 1994, the first DNAzyme named GR5 was reported, which specifically requires Pb2+ for its RNA cleavage activity. Three years later, the 8-17 DNAzyme was isolated. The 8-17 DNAzyme and the related 17E DNAzyme are also most active with Pb2+ , although other divalent metals can work as well. GR5 and 17E have the same substrate sequence, and their catalytic loops in the enzyme strands also have a few similar and conserved nucleotides. Considering these, we hypothesized that 17E might be a special form of GR5. To test this hypothesis, we performed systematic rational evolution experiments to gradually mutate GR5 toward 17E. By using the activity ratio in the presence of Pb2+ and Mg2+ for defining these two DNAzymes, the critical nucleotide was identified to be T12 in 17E for metal specificity. In addition, G9 in GR5 is a position not found in most 17E or 8-17 DNAzymes, and G9 needs to be added to rescue GR5 activity if T12 becomes a cytosine. This study highlights the links between these two classic and widely used DNAzymes, and offers new insight into the sequence-activity relationship related to metal selectivity.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
64
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
65
|
Peng D, Li Y, Huang Z, Liang RP, Qiu JD, Liu J. Efficient DNA-Catalyzed Porphyrin Metalation for Fluorescent Ratiometric Pb 2+ Detection. Anal Chem 2019; 91:11403-11408. [PMID: 31414597 DOI: 10.1021/acs.analchem.9b02759] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing biosensors for Pb2+ is an important analytical topic. DNA-based Pb2+ sensors have been designed mainly based on RNA-cleaving DNAzymes and Pb2+-induced folding of G-quadruplex (G4) DNA. Porphyrin metalation is a key reaction in biology and catalysis. Many enzyme mimics have been developed to catalyze this reaction, and some metalation DNAzymes were reported with a G4 structure. Inspired by the excellent G4 binding properties of certain divalent metal ions, we herein screened a few metals and G-rich DNA sequences. The metalation activity of a DNA named T30695 (sequence: (G3T)4) was significantly accelerated by Pb2+. The reaction of Cu2+ insertion into the mesoporphyrin IX had a kcat of 0.89 min-1 and a Km of 9.8 μM, representing a catalytic efficiency similar to that of human ferrochelatase. The reason for the acceleration was attributed to Pb2+ binding of the G4 DNA and the catalytic activity of the large Pb2+ ion for this reaction. A ratiometric sensor for Pb2+ was developed by inserting Zn2+ with a detection limit of 23.5 nM Pb2+. This work has established a new DNA-based reaction that can be used for Pb2+ detection, and it also provides a highly efficient new DNAzyme for porphyrin metalation, which might be used for signal production for other biosensors.
Collapse
Affiliation(s)
- Dong Peng
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang , 330031 Jiangxi , China.,Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Ru-Ping Liang
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang , 330031 Jiangxi , China
| | - Jian-Ding Qiu
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang , 330031 Jiangxi , China.,Environmental Protection Materials and Equipment Engineering Technology Center of Jiangxi, Department of Materials and Chemical Engineering , Pingxiang University , 211 Pingan North Road , Pingxiang , 337055 Jiangxi , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
66
|
DNAzyme-Functionalized R-Phycoerythrin as a Cost-Effective and Environment-Friendly Fluorescent Biosensor for Aqueous Pb 2+ Detection. SENSORS 2019; 19:s19122732. [PMID: 31216658 PMCID: PMC6630308 DOI: 10.3390/s19122732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/28/2023]
Abstract
The sensitive detection of Pb2+ is of significant importance for food safety, environmental monitoring, and human health care. To this end, a novel fluorescent biosensor, DNAzyme-functionalized R-phycoerythrin (DNAzyme-R-PE), was presented for Pb2+ analysis. The biosensor was prepared via the immobilization of Iowa Black® FQ-modified DNAzyme–substrate complex onto the surface of SPDP-functionalized R-PE. The biosensor produced a minimal fluorescence signal in the absence of Pb2+. However, Pb2+ recognition can induce the cleavage of substrate, resulting in a fluorescence restoration of R-PE. The fluorescence changes were used to measure sensitively Pb2+ and the limit of detection was 0.16 nM with a linear range from 0.5–75 nM. Furthermore, the proposed biosensor showed excellent selectivity towards Pb2+ even in the presence of other metal ions interferences and was demonstrated to successfully determine Pb2+ in spiked lake water samples.
Collapse
|
67
|
Wu R, Zhu Z, Xu X, Yu C, Li B. An investigation of solid-state nanopores on label-free metal-ion signalling via the transition of RNA-cleavage DNAzyme and the hybridization chain reaction. NANOSCALE 2019; 11:10339-10347. [PMID: 31107481 DOI: 10.1039/c9nr01666j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances have proven solid-state nanopores as a powerful analysis platform that enables label-free and separation-free single-molecule analysis. However, the relatively low resolution still limits its application because many chemicals or targets with small sizes could not be recognized in a label-free condition. In this paper, we provide a possible solution that uses solid-state nanopores for small species signaling via the transition of huge DNA assembly products. DNAzyme responding to metal ions and the hybridization chain reaction (HCR) generating nanopore-detectable dsDNA concatamers are used as the transition model set. By the two-step DNAzyme-HCR transition, Pb2+ that was too tiny to be sensed was successfully recognized by the nanopore. The whole process happened in a completely homogeneous solution without any chemical modification. During condition optimization, we also discussed one possible application challenge that may affect the HCR signal-background distinction. Solid-state nanopores provide a potential solution to this challenge due to its ability to profile product length or even 3D structure information.
Collapse
Affiliation(s)
- Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | | | | | | | | |
Collapse
|
68
|
Sun C, Ou X, Cheng Y, Zhai T, Liu B, Lou X, Xia F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans 2019; 48:5879-5891. [PMID: 30681098 DOI: 10.1039/c8dt04733b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal ions play a critical role in human health and abnormal levels are closely related to various diseases. Therefore, the detection of metal ions with high selectivity, sensitivity and accuracy is particularly important. This article highlights and comments on the coordination-induced structural changes of DNA-based optical, electrochemical and optical-electrochemical-combined sensors for metal ions detection. Challenges and potential solutions of DNA-based sensors for the simultaneous detection of multiple metal ions are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Chunli Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering; National Engineering Research Center for Nanomedicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
69
|
Nie F, Ga L, Ai J. One-Pot Synthesis of Nucleoside-Templated Fluorescent Silver Nanoparticles and Gold Nanoparticles. ACS OMEGA 2019; 4:7643-7649. [PMID: 31459856 PMCID: PMC6649123 DOI: 10.1021/acsomega.9b00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, a simple one-pot method was proposed to synthesize water-soluble nucleoside-templated fluorescent silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs). The nucleoside-templated fluorescent Ag NPs and Au NPs were further characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and fluorescence spectroscopy (FLS). The effects of the molar ratio of reactants, reaction environment, and nucleotides on the synthesis of Ag NPs and Au NPs were also discussed. The results showed that nucleoside and ascorbic acid acted as a stabilizer and reductant, respectively, in the synthesis of Ag NPs and Au NPs, while citrate buffer acted as both a pH regulator and reductant. The synthesized nucleoside-templated fluorescent Ag NPs and Au NPs have good fluorescence stability and easy water solubility. In this study, a simple one-pot method was proposed to synthesize water-soluble nucleoside-templated fluorescent silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs).
Collapse
Affiliation(s)
- Furong Nie
- College
of Chemistry and Enviromental Science and Inner Mongolia Key Laboratory for
Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Lu Ga
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Jun Ai
- College
of Chemistry and Enviromental Science and Inner Mongolia Key Laboratory for
Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| |
Collapse
|
70
|
Huang Z, Chen J, Luo Z, Wang X, Duan Y. Label-Free and Enzyme-Free Colorimetric Detection of Pb 2+ Based on RNA Cleavage and Annealing-Accelerated Hybridization Chain Reaction. Anal Chem 2019; 91:4806-4813. [PMID: 30834746 DOI: 10.1021/acs.analchem.9b00410] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A label-free and enzyme-free colorimetric sensor for rapid detection of Pb2+ is reported, which is based on the strategy of DNAzyme-mediated RNA cleavage combined with an annealing-accelerated DNA hybridization chain reaction (HCR). As a trigger DNA, the substrate strand (STM) of DNAzyme can initiate HCR effectively. However, when it is cleaved by DNAzyme in the presence of Pb2+, the separation of DNA functional domains leads to a serious decrease in HCR efficiency. As a result, the difference in Pb2+ concentration converts into the difference of DNA assembly, which eventually leads to the color change of colloidal gold nanoparticles (AuNPs). In this work, a DNA strand (cGR5) completely complementary to the catalytic strand (GR5) of DNAzyme is used to improve the dissociation of STM to enhance the HCR efficiency. In addition, the simple operation of DNA annealing is first used to accelerate the HCR process, enabling the Pb2+ detection to be completed in about 30 min. As advantages of high sensitivity, good selectivity, strong anti-interference ability, and good practical performance are achieved, it is anticipated that the cheap and simple colorimetric sensor will be helpful for on-site detection of environmental and food samples.
Collapse
Affiliation(s)
- Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Junman Chen
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Xiaqing Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| |
Collapse
|
71
|
Mishra J, Kaur N, Ganguli AK. Selective and sensitive fluorescence recognition of Pb(II) in aqueous medium by organic nanoparticles of a urea linker based tetrapodal receptor: Effect of linker molecules in a sensor on chemosensing. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
72
|
Zhang T, Liu C, Zhou W, Jiang K, Yin C, Liu C, Zhang Z, Li H. Ultrasensitive Detection of Pb 2+ Based on a DNAzyme and Digital PCR. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:3528345. [PMID: 30867973 PMCID: PMC6379836 DOI: 10.1155/2019/3528345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
In this study, an ultrasensitive detection method for aqueous Pb2+ based on digital polymerase chain reaction (dPCR) technology and a Pb2+-dependent DNAzyme was developed. In the presence of Pb2+, the Gr-5 DNAzyme was activated and catalyzed the hydrolytic cleavage of the substrate strand, resulting in an increase in the amount of template DNA available for dPCR and a resultant change in the number of droplets showing a positive signal. Moreover, the detection system was found to be sensitive and stable in environmental sample detection. In summary, an ultrasensitive quantitative detection method for Pb2+ within environmental substrates was established.
Collapse
Affiliation(s)
- Tao Zhang
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Cong Liu
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wuping Zhou
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Keming Jiang
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chenyu Yin
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Cong Liu
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Engineering Science, University of Science and Technology, Hefei, China
| | - Zhiqiang Zhang
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Haiwen Li
- Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
73
|
Pan J, Li Q, Zhou D, Chen J. Label-free and highly sensitive fluorescence detection of lead(ii) based on DNAzyme and exonuclease III-assisted cascade signal amplification. NEW J CHEM 2019. [DOI: 10.1039/c8nj06522e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Pb2+ biosensor has been constructed based on Exo III-assisted cascade signal amplification using 2-amino-5,6,7-trimethyl-1,8-naphthyridine as the signal indicator.
Collapse
Affiliation(s)
- Jiafeng Pan
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
| | - Qiong Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
- College of Bioscience and Biotechnology
| | - Danhua Zhou
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
- College of Natural Resources and Environment
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
| |
Collapse
|
74
|
Deng R, Yang H, Dong Y, Zhao Z, Xia X, Li Y, Li J. Temperature-Robust DNAzyme Biosensors Confirming Ultralow Background Detection. ACS Sens 2018; 3:2660-2666. [PMID: 30457325 DOI: 10.1021/acssensors.8b01122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic DNA/RNA, such as DNAzyme, has been widely adopted to construct biosensors, especially for metal ion analysis. However, traditional DNAzyme biosensors still suffer from fluctuating and relatively high background. Herein, we proposed a temperature-robust DNAzyme, conferring ultralow background in various temperatures, thus leading to highly sensitive and robust detection of metal ions. Instead of labeling substrate to directly output fluorescence signal, our proposed DNAzyme biosensor utilized a sequential detection process with a couple of proximity fluorescent probes, confirming very low background regardless of the conditions of cleavage reaction. This sequential DNAzyme biosensor conferred a signal to background ratio over 20 when the temperature of the catalytic reaction ranged from 20 to 41 °C. Benefitting from its ultralow background, it could confer a detection limit of 0.22 nM, which ranked as one of the highest sensitivity levels among DNAzyme-based fluorescent biosensors. This DNAzyme biosensor was over 6000 times more selective for Pb2+ against the most active interfering metal ions, Zn2+. Further, it has been successfully applied for analyzing lead pollution in tap water and eggs, with total recoveries ranging from 87% to 114%. This facile, simple, and effective design strategy would significantly improve the detection performance of DNAzyme biosensors, thus facilitating its practical applications for both food safety analysis and environment monitoring.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hao Yang
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Zhifeng Zhao
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yue Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
75
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
76
|
Yang Z, Loh KY, Chu YT, Feng R, Satyavolu NSR, Xiong M, Nakamata Huynh SM, Hwang K, Li L, Xing H, Zhang X, Chemla YR, Gruebele M, Lu Y. Optical Control of Metal Ion Probes in Cells and Zebrafish Using Highly Selective DNAzymes Conjugated to Upconversion Nanoparticles. J Am Chem Soc 2018; 140:17656-17665. [PMID: 30427666 DOI: 10.1021/jacs.8b09867] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spatial and temporal distributions of metal ions in vitro and in vivo are crucial in our understanding of the roles of metal ions in biological systems, and yet there is a very limited number of methods to probe metal ions with high space and time resolution, especially in vivo. To overcome this limitation, we report a Zn2+-specific near-infrared (NIR) DNAzyme nanoprobe for real-time metal ion tracking with spatiotemporal control in early embryos and larvae of zebrafish. By conjugating photocaged DNAzymes onto lanthanide-doped upconversion nanoparticles (UCNPs), we have achieved upconversion of a deep tissue penetrating NIR 980 nm light into 365 nm emission. The UV photon then efficiently photodecages a substrate strand containing a nitrobenzyl group at the 2'-OH of adenosine ribonucleotide, allowing enzymatic cleavage by a complementary DNA strand containing a Zn2+-selective DNAzyme. The product containing a visible FAM fluorophore that is initially quenched by BHQ1 and Dabcyl quenchers is released after cleavage, resulting in higher fluorescent signals. The DNAzyme-UCNP probe enables Zn2+ sensing by exciting in the NIR biological imaging window in both living cells and zebrafish embryos and detecting in the visible region. In this study, we introduce a platform that can be used to understand the Zn2+ distribution with spatiotemporal control, thereby giving insights into the dynamical Zn2+ ion distribution in intracellular and in vivo models.
Collapse
Affiliation(s)
| | | | | | | | | | - Mengyi Xiong
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China
| | | | | | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China
| | - Xiaobing Zhang
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China
| | | | | | | |
Collapse
|
77
|
Jimmy Huang PJ, Moon WJ, Liu J. Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. Biochemistry 2018; 58:422-429. [PMID: 30272443 DOI: 10.1021/acs.biochem.8b00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions play a critical role in the RNA-cleavage reaction by interacting with the scissile phosphate and stabilizing the highly negatively charged transition state. Many metal-dependent DNAzymes have been selected for RNA cleavage. Herein, we report that the Ce13d DNAzyme can use nonmetallic iodine (I2) to cleave a phosphorothioate (PS)-modified substrate. The cleavage yield exceeded 60% for both the Rp and Sp stereoisomers in 10 s, while the yield without the enzyme strand was only ∼10%. The Ce13d cleavage with I2 also required Na+, consistent with the property of Ce13d and confirming the similar role of I2 as a metal ion. Ce13d had the highest yield among eight tested DNAzymes, with the second highest DNAzyme showing only 20% cleavage. The incomplete cleavage was due to competition from desulfurization and isomerization reactions. This DNAzyme was engineered for fluorescence-based I2 detection. With EDTA for masking metal ions, I2 was selectively detected down to 4.7 nM. Oxidation of I- with Fe3+ produced I2 in situ, allowing detection of Fe3+ down to 78 nM. By harnessing nonelectrostatic interactions, such as the I2/sulfur interaction observed here, more nonmetal species might be discovered to assist DNAzyme-based RNA cleavage.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
78
|
Zhai TT, Ye D, Shi Y, Zhang QW, Qin X, Wang C, Xia XH. Plasmon Coupling Effect-Enhanced Imaging of Metal Ions in Living Cells Using DNAzyme Assembled Core-Satellite Structures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33966-33975. [PMID: 30113806 DOI: 10.1021/acsami.8b11477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a core-satellite plasmonic nanoprobe assembled via metal-ion-dependent DNA-cleaving DNAzyme linker for imaging intercellular metal ion based on plasmon coupling effect at a single-particle level. As metal ions are present in the system, the DNAzyme linker will be cleaved, and thus, disassembly of the core-satellite nanoprobes occurs, which results in distinct blue shift of the scattering spectra of Au core-satellite probes and naked color change of the scattering light. This change in scattering spectra has been supported by theoretical simulations. As a proof of concept, sensitive detection of Cu2+ with a limit of detection down to 67.2 pM has been demonstrated. The nanoprobes have been further utilized for intracellular Cu2+ imaging in living cells. The results demonstrate that the present strategy provides a promising platform for detection and imaging of metal ions in living cells and could be potentially applied to imaging other interesting target molecules simply by substituting the oligonucleotide sequence.
Collapse
Affiliation(s)
- Ting-Ting Zhai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Dekai Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Yi Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qian-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Chen Wang
- School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
79
|
Wang HB, Ma LH, Fang BY, Zhao YD, Hu XB. Graphene oxide-assisted Au nanoparticle strip biosensor based on GR-5 DNAzyme for rapid lead ion detection. Colloids Surf B Biointerfaces 2018; 169:305-312. [DOI: 10.1016/j.colsurfb.2018.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
80
|
Zhang J, Lu Y. Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets. Angew Chem Int Ed Engl 2018; 57:9702-9706. [PMID: 29893502 PMCID: PMC6261302 DOI: 10.1002/anie.201804292] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Indexed: 12/19/2022]
Abstract
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point-of-care (POC) diagnostics in a low-resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic-gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+ ), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on-site applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA),
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA),
| |
Collapse
|
81
|
Zhang J, Lu Y. Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Yi Lu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
82
|
Si H, Sheng R, Li Q, Feng J, Li L, Tang B. Highly Sensitive Fluorescence Imaging of Zn2+ and Cu2+ in Living Cells with Signal Amplification Based on Functional DNA Self-Assembly. Anal Chem 2018; 90:8785-8792. [DOI: 10.1021/acs.analchem.7b05268] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Renjie Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| |
Collapse
|
83
|
DU ZH, LI XY, TIAN JJ, Zhang YZ, TIAN HT, XU WT. Progress on Detection of Metals Ions by Functional Nucleic Acids Biosensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
84
|
Augspurger EE, Rana M, Yigit MV. Chemical and Biological Sensing Using Hybridization Chain Reaction. ACS Sens 2018; 3:878-902. [PMID: 29733201 DOI: 10.1021/acssensors.8b00208] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the advent of its theoretical discovery more than 30 years ago, DNA nanotechnology has been used in a plethora of diverse applications in both the fundamental and applied sciences. The recent prominence of DNA-based technologies in the scientific community is largely due to the programmable features stored in its nucleobase composition and sequence, which allow it to assemble into highly advanced structures. DNA nanoassemblies are also highly controllable due to the precision of natural and artificial base-pairing, which can be manipulated by pH, temperature, metal ions, and solvent types. This programmability and molecular-level control have allowed scientists to create and utilize DNA nanostructures in one, two, and three dimensions (1D, 2D, and 3D). Initially, these 2D and 3D DNA lattices and shapes attracted a broad scientific audience because they are fundamentally captivating and structurally elegant; however, transforming these conceptual architectural blueprints into functional materials is essential for further advancements in the DNA nanotechnology field. Herein, the chemical and biological sensing applications of a 1D DNA self-assembly process known as hybridization chain reaction (HCR) are reviewed. HCR is a one-dimensional (1D) double stranded (ds) DNA assembly process initiated only in the presence of a specific short ssDNA (initiator) and two kinetically trapped DNA hairpin structures. HCR is considered an enzyme-free isothermal amplification process, which shows substantial promise and offers a wide range of applications for in situ chemical and biological sensing. Due to its modular nature, HCR can be programmed to activate only in the presence of highly specific biological and/or chemical stimuli. HCR can also be combined with different types of molecular reporters and detection approaches for various analytical readouts. While the long dsDNA HCR product may not be as structurally attractive as the 2D and 3D DNA networks, HCR is highly instrumental for applied biological, chemical, and environmental sciences, and has therefore been studied to foster a variety of objectives. In this review, we have focused on nucleic acid, protein, metabolite, and heavy metal ion detection using this 1D DNA nanotechnology via fluorescence, electrochemical, and nanoparticle-based methodologies.
Collapse
|
85
|
A protease-free and signal-on electrochemical biosensor for ultrasensitive detection of lead ion based on GR-5 DNAzyme and catalytic hairpin assembly. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
86
|
Liu H, Chen Y, Song C, Tian G, Li S, Yang G, Lv C. Novel and label-free colorimetric detection of radon using AuNPs and lead(II)-induced GR5 DNAzyme-based amplification strategy. Anal Bioanal Chem 2018; 410:4227-4234. [PMID: 29687247 DOI: 10.1007/s00216-018-1077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 01/29/2023]
Abstract
Radioactive radon decays into a stable daughter product, 210Pb, which was used as the detection target to determine the radon radiation dose in a new technique. Pb2+ triggers DNAzyme to cleave a molecular beacon (MB), resulting in the stem-loop structure opening and forming two single DNA strands (ssDNA). The ssDNA binds to unmodified gold nanoparticles and effectively prevents their aggregation in a salt solution. The detached enzyme strands continue to complement the remaining MB to amplify the response signal. The method proposed in this study exhibited a good linear relationship for Pb2+ and radon concentrations in the range of 6.22 × 102-1.02 × 105 Bq h/m3 with a detection limit of 186.48 Bq h/m3 using an ultraviolet-visible spectrometer. In practical applications, this sensitive method can avoid radioactive damage in field testing, and the detection limit meets the national standard in China. Importantly, this simple, highly sensitive strategy uses simple equipment and has a strong anti-interference ability. Graphical abstract.
Collapse
Affiliation(s)
- Hongwen Liu
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Yating Chen
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Chunli Song
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Gang Tian
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Shiya Li
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Guiying Yang
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Changyin Lv
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
87
|
Cepeda-Plaza M, McGhee CE, Lu Y. Evidence of a General Acid-Base Catalysis Mechanism in the 8-17 DNAzyme. Biochemistry 2018; 57:1517-1522. [PMID: 29389111 PMCID: PMC5879137 DOI: 10.1021/acs.biochem.7b01096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNAzymes are catalytic DNA molecules that can perform a variety of reactions. Although advances have been made in obtaining DNAzymes via in vitro selection and many of them have been developed into sensors and imaging agents for metal ions, bacteria, and other molecules, the structural features responsible for these enzymatic reactions are still not well understood. Previous studies of the 8-17 DNAzyme have suggested conserved guanines close to the phosphodiester transfer site may play a role in the catalytic reaction. To identify the specific guanine and functional group of the guanine responsible for the reaction, we herein report the effects of replacing G1.1 and G14 (G; p Ka,N1 = 9.4) with analogues with a different p Ka at the N1 position, such as inosine (G14I; p Ka,N1 = 8.7), 2,6-diaminopurine (G14diAP; p Ka,N1 = 5.6), and 2-aminopurine (G14AP; p Ka,N1 = 3.8) on pH-dependent reaction rates. A comparison of the pH dependence of the reaction rates of these DNAzymes demonstrated that G14 in the bulge loop next to the cleavage site, is involved in proton transfer at the catalytic site. In contrast, we did not find any evidence of G1.1 being involved in acid-base catalysis. These results support general acid-base catalysis as a feasible strategy used in DNA catalysis, as in RNA and protein enzymes.
Collapse
Affiliation(s)
- Marjorie Cepeda-Plaza
- Department of Chemical Sciences, School of Exact Sciences, Universidad Andres Bello, República 275, Santiago, Chile
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
88
|
Zhang J, Lin Y, Peng H, Hong N, Cheng L, Wei G, Fan H. Dual Signal Amplification Electrochemical Biosensor for Lead Cation. ELECTROANAL 2018. [DOI: 10.1002/elan.201700818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Zhang
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Yan Lin
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Hong Peng
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Nian Hong
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Lin Cheng
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Guobing Wei
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Hao Fan
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| |
Collapse
|
89
|
Zhang Q, Cui H, Xiong X, Chen J, Wang Y, Shen J, Luo Y, Chen L. QCM-nanomagnetic beads biosensor for lead ion detection. Analyst 2018; 143:549-554. [DOI: 10.1039/c7an01498h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A QCM biosensor combined with NMBs has been proposed for Pb2+detection with a lower detection limit of 0.3 pM.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Haixia Cui
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Xingliang Xiong
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Jun Chen
- School of Public Health and Management
- Chongqing Medical University
- Chongqing
- China
| | - Ying Wang
- School of Medical Information Engineering
- Jining Medical University
- China
| | - Jia Shen
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Yiting Luo
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| | - Longcong Chen
- Department of Biomedical Engineering
- Chongqing Medical University
- Chongqing
- China
| |
Collapse
|
90
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
91
|
Abstract
In addition to storage of genetic information, DNA can also catalyze various reactions. RNA-cleaving DNAzymes are the catalytic DNAs discovered the earliest, and they can cleave RNAs in a sequence-specific manner. Owing to their great potential in medical therapeutics, virus control, and gene silencing for disease treatments, RNA-cleaving DNAzymes have been extensively studied; however, the mechanistic understandings of their substrate recognition and catalysis remain elusive. Here, we report three catalytic form 8-17 DNAzyme crystal structures. 8-17 DNAzyme adopts a V-shape fold, and the Pb2+ cofactor is bound at the pre-organized pocket. The structures with Pb2+ and the modification at the cleavage site captured the pre-catalytic state of the RNA cleavage reaction, illustrating the unexpected Pb2+-accelerated catalysis, intrinsic tertiary interactions, and molecular kink at the active site. Our studies reveal that DNA is capable of forming a compacted structure and that the functionality-limited bio-polymer can have a novel solution for a functional need in catalysis.
Collapse
|
92
|
Fluorometric determination of lead(II) and mercury(II) based on their interaction with a complex formed between graphene oxide and a DNAzyme. Mikrochim Acta 2017; 185:2. [DOI: 10.1007/s00604-017-2585-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023]
|
93
|
Park Y, Lee CY, Park KS, Park HG. Enzyme-Free Colorimetric Detection of Cu2+by Utilizing Target-Triggered DNAzymes and Toehold-Mediated DNA Strand Displacement Events. Chemistry 2017; 23:17379-17383. [DOI: 10.1002/chem.201704346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yeonkyung Park
- Department of Chemical and Biomolecular; Engineering (BK21+ Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular; Engineering (BK21+ Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular; Engineering (BK21+ Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
94
|
Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang JH, Lu Y. Imaging Endogenous Metal Ions in Living Cells Using a DNAzyme-Catalytic Hairpin Assembly Probe. Angew Chem Int Ed Engl 2017; 56:8721-8725. [PMID: 28557357 PMCID: PMC5814595 DOI: 10.1002/anie.201703540] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Indexed: 12/16/2022]
Abstract
DNAzymes are a promising platform for metal ion detection, and a few DNAzyme-based sensors have been reported to detect metal ions inside cells. However, these methods required an influx of metal ions to increase their concentrations for detection. To address this major issue, the design of a catalytic hairpin assembly (CHA) reaction to amplify the signal from photocaged Na+ -specific DNAzyme to detect endogenous Na+ inside cells is reported. Upon light activation and in the presence of Na+ , the NaA43 DNAzyme cleaves its substrate strand and releases a product strand, which becomes an initiator that trigger the subsequent CHA amplification reaction. This strategy allows detection of endogenous Na+ inside cells, which has been demonstrated by both fluorescent imaging of individual cells and flow cytometry of the whole cell population. This method can be generally applied to detect other endogenous metal ions and thus contribute to deeper understanding of the role of metal ions in biological systems.
Collapse
Affiliation(s)
- Zhenkun Wu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Huanhuan Fan
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | - WenJing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry & Chemical Engineering, Nanjing University, N, anjing, 210093, P. R. China
| | - Ryan Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
95
|
Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang JH, Lu Y. Imaging Endogenous Metal Ions in Living Cells Using a DNAzyme-Catalytic Hairpin Assembly Probe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703540] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenkun Wu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| | - Huanhuan Fan
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| | | | - WenJing Wang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry & Chemical Engineering; Nanjing University, N; anjing 210093 P. R. China
| | - Ryan Lake
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics Institute of Chemical Biology and Nanomedicine and College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana Illinois 61801 USA
| |
Collapse
|
96
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
97
|
Xu L, Zhou W, Liu J. Enhanced DNA sensitized Tb 3+ luminescence in organic solvents for more sensitive detection. Anal Chim Acta 2017; 977:44-51. [PMID: 28577597 DOI: 10.1016/j.aca.2017.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
DNA-sensitized Tb3+ luminescence spectroscopy is a powerful method for probing nucleic acids and developing biosensors. Its performance in organic solvents has yet to be explored. In this study, Tb3+ luminescence with nucleosides, nucleotides and DNA oligonucleotides in various organic solvents is studied. Tb3+ emission with single nucleotides is quenched up to 88% in dimethyl formamide (DMF), while its emission with nucleosides is enhanced. For the four 15-mer DNA homopolymers, the strongest absolute emission enhancement was achieved with C15. Similar emission properties are observed in other solvents including DMF, DMSO, acetonitrile methanol, ethanol, isopropanol and ethylene glycol. A few DNAzymes are tested as random DNA sequences all showing 1.4-6.9-fold emission enhancement in ethanol. A previously reported optimized sequence in water (G3T)5 is further enhanced by the solvents. Using this sequence, a detection limit of 5.5 nm Hg2+ is achieved in 25% ethanol solution. A similar Hg2+ sensitivity is also observed in a lake water mixed with ethanol. Luminescence lifetime is longer in DMF than in water. This study indicates that DNA-sensitized Tb3+ luminescence can be measured in water miscible solvents and most likely, with even stronger emission than that in water.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China; Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
98
|
Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens Bioelectron 2017; 90:125-139. [DOI: 10.1016/j.bios.2016.11.039] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
|
99
|
Zhou Y, Zhang J, Tang L, Peng B, Zeng G, Luo L, Gao J, Pang Y, Deng Y, Zhang F. A label–free GR–5DNAzyme sensor for lead ions detection based on nanoporous gold and anionic intercalator. Talanta 2017; 165:274-281. [DOI: 10.1016/j.talanta.2016.12.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/23/2022]
|
100
|
|