51
|
Yu Y, Dong X, Chen P, Geng Q, Wang H, Li J, Zhou Y, Dong F. Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO 2 for Efficient CO 2 Photoreduction. ACS NANO 2021; 15:14453-14464. [PMID: 34469113 DOI: 10.1021/acsnano.1c03961] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synergy between metal alloy nanoparticles (NPs) and single atoms (SAs) should maximize the catalytic activity. However, there are no relevant reports on photocatalytic CO2 reduction via utilizing the synergy between SAs and alloy NPs. Herein, we developed a facile photodeposition method to coload the Cu SAs and Au-Cu alloy NPs on TiO2 for the photocatalytic synthesis of solar fuels with CO2 and H2O. The optimized photocatalyst achieved record-high performance with formation rates of 3578.9 for CH4 and 369.8 μmol g-1 h-1 for C2H4, making it significantly more realistic to implement sunlight-driven synthesis of value-added solar fuels. The combined in situ FT-IR spectra and DFT calculations revealed the molecular mechanisms of photocatalytic CO2 reduction and C-C coupling to form C2H4. We proposed that the synergistic function of Cu SAs and Au-Cu alloy NPs could enhance the adsorption activation of CO2 and H2O and lower the overall activation energy barrier (including the rate-determining step) for the CH4 and C2H4 formation. These factors all enable highly efficient and stable production of solar fuels of CH4 and C2H4. The concept of synergistic SAs and metal alloys cocatalysts can be extended to other systems, thus contributing to the development of more effective cocatalysts.
Collapse
Affiliation(s)
- Yangyang Yu
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Qin Geng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Ying Zhou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| |
Collapse
|
52
|
Zhu K, Xu X, Xu M, Deng P, Wu W, Ye W, Weng Z, Su Y, Wang H, Xiao F, Fang Z, Gao P. One‐Pot Synthesis of Tensile‐Strained PdRuCu Icosahedra toward Electrochemical Hydrogenation of Alkene. ChemElectroChem 2021. [DOI: 10.1002/celc.202100827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaili Zhu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Xudong Xu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Ping Deng
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Wenbo Wu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Zihui Weng
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Yue Su
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Huijie Wang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Fei Xiao
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Zeping Fang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| |
Collapse
|
53
|
Ling JL, Chen K, Wu CD. Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. RESEARCH 2021; 2021:9835935. [PMID: 34409301 PMCID: PMC8286356 DOI: 10.34133/2021/9835935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 11/06/2022]
Abstract
Incorporating metal nanoparticles (MNPs) inside metal-organic frameworks (MOFs) demonstrates superior catalytic properties in numerous reactions; however, the size and distribution of MNPs could not be well controlled, resulting in low product selectivity in catalysis by undergoing different catalytic reaction pathways. We report herein a facile strategy for integrating lattice-mismatched MOFs together to fabricate homogeneously distributed “dual-MOFs,” which are the ideal precursors for the preparation of MNPs@MOFs with unique catalytic properties. As a proof of concept, we successfully synthesize a dual-MOF HKUST-1/ZIF-8 for in situ creation of redox-active Cu NPs inside hierarchical porous ZIF-8 under controlled pyrolytic conditions. Combining the advantages of size-tunable Cu NPs in the molecular sieving matrix of ZIF-8, Cu@ZIF-8 demonstrates high activity and selectivity for transformation of alkynes into alkenes without overhydrogenation, which surpasses most of the catalysts in the literature. Therefore, this work paves a new pathway for developing highly efficient and selective heterogeneous catalysts to produce highly value-added chemicals.
Collapse
Affiliation(s)
- Jia-Long Ling
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Kai Chen
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
54
|
Spivey TD, Holewinski A. Selective Interactions between Free-Atom-like d-States in Single-Atom Alloy Catalysts and Near-Frontier Molecular Orbitals. J Am Chem Soc 2021; 143:11897-11902. [PMID: 34319717 DOI: 10.1021/jacs.1c04234] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the limit of dilute alloying-the so-called "single-atom alloy" (SAA) regime-certain bimetallic systems exhibit weak mixing between constituent metal wave functions, resulting in sharp, single-atom-like electronic states localized on the dilute component of the alloy. This work shows that when these sharp states are appropriately positioned relative to given molecular orbitals, selective hybridization is enhanced, in accordance with intuitive principles of molecular orbital theory. We demonstrate the phenomenon for activation pathways of crotonaldehyde, a model α,β-unsaturated aldehyde relevant to a wide range of chemical manufacturing. This analysis suggests new possible strategies for selectivity control in heterogeneous catalysis.
Collapse
Affiliation(s)
- Taylor D Spivey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
55
|
Guo W, Wang Z, Wang X, Wu Y. General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004287. [PMID: 34235782 DOI: 10.1002/adma.202004287] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/28/2020] [Indexed: 06/13/2023]
Abstract
As a new and popular material, single-atom catalysts (SACs) exhibit excellent activity, selectivity, and stability for numerous important reactions, and show great potential in heterogeneous catalysis due to their high atom utilization efficiency and the controllable characteristics of the active sites. The composition and coordination would determine the geometric and electronic structures of SACs, and thus greatly influence the catalytic performance. Based on atom economy, rational design and controllable synthesis of SACs have become central tasks in the fields of low-cost and green catalysis. Herein, an introduction to the recent progress in the precise synthesis of SACs including the regulation of the coordination structure and the choice of different systems is presented. Thereafter, the potentials of SACs in different applications are comprehensively summarized and discussed. Furthermore, a detailed discussion of the recent developments regarding the large-scale preparation of SACs is provided, including the major issues and prospects for industrialization. Finally, the main challenges and opportunities of rapid large-scale industrialization of SACs are briefly discussed.
Collapse
Affiliation(s)
- Wenxin Guo
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Zhiyuan Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xiaoqian Wang
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
56
|
Fu X, Liu J, Kanchanakungwankul S, Hu X, Yue Q, Truhlar DG, Hupp JT, Kang Y. Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene. NANO LETTERS 2021; 21:5620-5626. [PMID: 34170691 DOI: 10.1021/acs.nanolett.1c01124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly selective and active catalysts to catalyze an industrially important semihydrogenation reaction remains an open challenge. Here, we report the design of a bimetallic Pd/Cu(111) catalyst with Pd rafts confined in a Cu nanosheet, which exhibits desirable catalytic performance for acetylene semihydrogenation to ethylene with the selectivity of >90%. Theory calculations show that Pd atoms replacing neighboring Cu atoms in Cu(111) can improve the catalytic activity by reducing the energy barrier of the semihydrogenation reaction, as compared to unsubstituted Cu(111), and can improve the selectivity by weakening the adsorption of C2H4, as compared to a Pd(111) surface. The presence of Pd rafts confined in Cu nanosheets effectively turns on Cu nanosheets for semihydrogenation of acetylene with high activity and selectivity under mild reaction conditions. This work offers a well-defined nanostructured Pd/Cu(111) model catalyst that bridges the pressure and materials' gap between surface-science catalysis and practical catalysis.
Collapse
Affiliation(s)
- Xianbiao Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
57
|
Hannagan RT, Giannakakis G, Réocreux R, Schumann J, Finzel J, Wang Y, Michaelides A, Deshlahra P, Christopher P, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH. First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 2021. [DOI: 10.1126/science.abg8389] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rhodium atoms for alkane dehydrogenation
Nanoparticles of rhodium dispersed on metal oxides are generally poor catalysts for alkane dehydrogenation because the reactants bind too strongly to the metal. Hannagan
et al.
performed first-principle calculations indicating that single rhodium atoms in a copper surface should be stable and selective for conversion of propane to propene and hydrogen. Model studies of single rhodium atoms embedded in a copper (111) surface revealed a very high selectivity to propene and high resistance to the formation of surface carbon that would deactivate the catalyst.
Science
, abg8389, this issue p.
1444
Collapse
Affiliation(s)
- Ryan T. Hannagan
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Georgios Giannakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Romain Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Julia Schumann
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Jordan Finzel
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Yicheng Wang
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | |
Collapse
|
58
|
Sun D, Bi Q, Deng M, Jia B, Huang F. Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chem Commun (Camb) 2021; 57:5670-5673. [PMID: 33977994 DOI: 10.1039/d1cc00923k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Optimizing the active sites to balance the conversion and selectivity of the target reaction has long been a challenging quest in developing noble metal-based catalysts. By dispersing Pd and Ru in an amorphous zirconium hydrogen phosphate matrix cross-linked by ionic inorganic oligomers, highly diluted noble metal (<0.2 mol%) can be utilized as dual single-atom sites in oxides for the semi-hydrogenation of phenylacetylene with optimized conversion and selectivity (both >90%) to styrene. In situ DRIFT-IR results suggested the fast generation of surface hydroxyl groups during the catalytic reaction, indicating the high efficiency of the single-atom sites to dissociate bound H2. This work provides an easily scaled-up method for the production of cost-effective single-atom catalysts extendable to various oxide matrices.
Collapse
Affiliation(s)
- Du Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Mingxia Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Bingquan Jia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
59
|
Cordon MJ, Zhang J, Purdy SC, Wegener EC, Unocic KA, Allard LF, Zhou M, Assary RS, Miller JT, Krause TR, Lin F, Wang H, Kropf AJ, Yang C, Liu D, Li Z. Selective Butene Formation in Direct Ethanol-to-C3+-Olefin Valorization over Zn–Y/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michael J. Cordon
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Junyan Zhang
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Stephen C. Purdy
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kinga A. Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lawrence F. Allard
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mingxia Zhou
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rajeev S. Assary
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jeffrey T. Miller
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Theodore R. Krause
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - A. Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ce Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhenglong Li
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
60
|
Fonseca J, Lu J. Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01200] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Javier Fonseca
- Nanomaterial Laboratory for Catalysis and Advanced Separations, Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, United States
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
61
|
Hartwig C, Schweinar K, Jones TE, Beeg S, Schmidt FP, Schlögl R, Greiner M. Isolated Pd atoms in a silver matrix: Spectroscopic and chemical properties. J Chem Phys 2021; 154:184703. [PMID: 34241017 DOI: 10.1063/5.0045936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the past decade, single-atom alloys (SAAs) have been a lively topic of research due to their potential for achieving novel catalytic properties and circumventing some known limitations of heterogeneous catalysts, such as scaling relationships. In researching SAAs, it is important to recognize experimental evidence of peculiarities in their electronic structure. When an isolated atom is embedded in a matrix of foreign atoms, it exhibits spectroscopic signatures that reflect its surrounding chemical environment. In the present work, using photoemission spectroscopy and computational chemistry, we discuss the experimental evidence from Ag0.98Pd0.02 SAAs that show free-atom-like characteristics in their electronic structure. In particular, the broad Pd4d valence band states of the bulk Pd metal become a narrow band in the alloy. The measured photoemission spectra were compared with the calculated photoemission signal of a free Pd atom in the gas phase with very good agreement, suggesting that the Pd4d states in the alloy exhibit very weak hybridization with their surroundings and are therefore electronically isolated. Since AgPd alloys are known for their superior performance in the industrially relevant semi-hydrogenation of acetylene, we considered whether it is worthwhile to drive the dilution of Pd in the inert Ag host to the single-atom level. We conclude that although site-isolation provides beneficial electronic structure changes to the Pd centers due to the difficulty in activating H2 on Ag, utilizing such SAAs in acetylene semi-hydrogenation would require either a higher Pd concentration to bring isolated sites sufficiently close together or an H2-activating support.
Collapse
Affiliation(s)
- Caroline Hartwig
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Kevin Schweinar
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Travis E Jones
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Sebastian Beeg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | | | - Robert Schlögl
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Mark Greiner
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
62
|
Hensley AJR, Collinge G, Wang Y, McEwen JS. Guiding the design of oxidation-resistant Fe-based single atom alloy catalysts with insights from configurational space. J Chem Phys 2021; 154:174709. [PMID: 34241058 DOI: 10.1063/5.0048698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high activity and selectivity of Fe-based heterogeneous catalysts toward a variety of reactions that require the breaking of strong bonds are offset in large part by their considerable instability with respect to oxidative deactivation. While it has been shown that the stability of Fe catalysts is considerably enhanced by alloying them with precious metals (even at the single-atom limit), rational design criteria for choosing such secondary metals are still missing. Since oxidative deactivation occurs due to the strong binding of oxygen to Fe and reduction by adsorbed hydrogen mitigates the deactivation, we propose here to use the binding affinity of oxygen and hydrogen adatoms as the basis for rational design. As it would also be beneficial to use cheaper secondary metals, we have scanned over a large subset of 3d-5d mid-to-late transition metal single atoms and computationally determined their effect on the oxygen and hydrogen adlayer binding as a function of chemical potential and adsorbate coverage. We further determine the underlying chemical origins that are responsible for these effects and connect them to experimentally tunable quantities. Our results reveal a reliable periodic trend wherein oxygen binding is weakened greatest as one moves right and down the periodic table. Hydrogen binding shows the same trend only at high (but relevant) coverages and otherwise tends to have its binding slightly increased in all systems. Trends with secondary metal coverage are also uncovered and connected to experimentally tunable parameters.
Collapse
Affiliation(s)
- Alyssa J R Hensley
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Greg Collinge
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Jean-Sabin McEwen
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
63
|
Hartwig C, Schweinar K, Nicholls R, Beeg S, Schlögl R, Greiner M. Surface composition of AgPd single-atom alloy catalyst in an oxidative environment. J Chem Phys 2021; 154:174708. [PMID: 34241061 DOI: 10.1063/5.0045999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-atom alloys (SAAs) have recently gained considerable attention in the field of heterogeneous catalysis research due to their potential for novel catalytic properties. While SAAs are often examined in reactions of reductive atmospheres, such as hydrogenation reactions, in the present work, we change the focus to AgPd SAAs in oxidative environments since Pd has the highest catalytic activity of all metals for oxidative reactions. Here, we examine how the chemical reactivity of AgPd SAAs differs from its constituent Pd in an oxidative atmosphere. For this purpose, electronic structure changes in an Ag0.98Pd0.02 SAA foil in 1 mbar of O2 were studied by in situ x-ray photoemission spectroscopy and compared with the electronic structure of a Pd foil under the same conditions. When heated in an oxidative atmosphere, Pd in Ag0.98Pd0.02 partly oxidizes and forms a metastable PdOx surface oxide. By using a peak area modeling procedure, we conclude that PdOx on Ag0.98Pd0.02 is present as thin, possibly monolayer thick, PdOx islands on the surface. In comparison to the PdO formed on the Pd foil, the PdOx formed on AgPd is substantially less thermodynamically stable, decomposing at temperatures about 270 °C lower than the native oxide on Pd. Such behavior is an interesting property of oxides formed on dilute alloys, which could be potentially utilized in catalytic oxidative reactions such as methane oxidation.
Collapse
Affiliation(s)
- Caroline Hartwig
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Kevin Schweinar
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Rachel Nicholls
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Sebastian Beeg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Mark Greiner
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
64
|
Shumski AJ, Swann WA, Escorcia NJ, Li CW. Heterogeneous Hydroxyl-Directed Hydrogenation: Control of Diastereoselectivity through Bimetallic Surface Composition. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. Shumski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicole J. Escorcia
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
65
|
Rassolov AV, Mashkovsky IS, Bragina GO, Baeva GN, Markov PV, Smirnova NS, Wärnå J, Stakheev AY, Murzin DY. Kinetics of liquid-phase diphenylacetylene hydrogenation on “single-atom alloy” Pd-Ag catalyst: Experimental study and kinetic analysis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
66
|
Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
67
|
Han ZK, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko SV. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat Commun 2021; 12:1833. [PMID: 33758170 PMCID: PMC7988173 DOI: 10.1038/s41467-021-22048-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Single-atom-alloy catalysts (SAACs) have recently become a frontier in catalysis research. Simultaneous optimization of reactants' facile dissociation and a balanced strength of intermediates' binding make them highly efficient catalysts for several industrially important reactions. However, discovery of new SAACs is hindered by lack of fast yet reliable prediction of catalytic properties of the large number of candidates. We address this problem by applying a compressed-sensing data-analytics approach parameterized with density-functional inputs. Besides consistently predicting efficiency of the experimentally studied SAACs, we identify more than 200 yet unreported promising candidates. Some of these candidates are more stable and efficient than the reported ones. We have also introduced a novel approach to a qualitative analysis of complex symbolic regression models based on the data-mining method subgroup discovery. Our study demonstrates the importance of data analytics for avoiding bias in catalysis design, and provides a recipe for finding best SAACs for various applications.
Collapse
Affiliation(s)
- Zhong-Kang Han
- grid.454320.40000 0004 0555 3608Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Debalaya Sarker
- grid.454320.40000 0004 0555 3608Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Runhai Ouyang
- grid.39436.3b0000 0001 2323 5732Materials Genome Institute, Shanghai University, Shanghai, P.R. China
| | - Aliaksei Mazheika
- grid.6734.60000 0001 2292 8254Technische Universität Berlin, BasCat−UniCat BASF JointLab, Berlin, Germany
| | - Yi Gao
- grid.9227.e0000000119573309Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Sergey V. Levchenko
- grid.454320.40000 0004 0555 3608Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|
68
|
Liu K, Qin R, Zheng N. Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. J Am Chem Soc 2021; 143:4483-4499. [PMID: 33724821 DOI: 10.1021/jacs.0c13185] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterogeneous metal catalysts are distinguished by their structure inhomogeneity and complexity. The chameleonic nature of heterogeneous metal catalysts have prevented us from deeply understanding their catalytic mechanisms at the molecular level and thus developing industrial catalysts with perfect catalytic selectivity toward desired products. This Perspective aims to summarize recent research advances in deciphering complicated interfacial effects in heterogeneous hydrogenation metal nanocatalysts toward the design of practical heterogeneous catalysts with clear catalytic mechanism and thus nearly perfect selectivity. The molecular insights on how the three key components (i.e., catalytic metal, support, and ligand modifier) of a heterogeneous metal nanocatalyst induce effective interfaces determining the hydrogenation activity and selectivity are provided. The interfaces influence not only the H2 activation pathway but also the interaction of substrates to be hydrogenated with catalytic metal surface and thus the hydrogen transfer process. As for alloy nanocatalysts, together with the electronic and geometric ensemble effects, spillover hydrogenation occurring on catalytically "inert" metal by utilizing hydrogen atom spillover from active metal is highlighted. The metal-support interface effects are then discussed with emphasis on the molecular involvement of ligands located at the metal-support interface as well as cationic species from the support in hydrogenation. The mechanisms of how organic modifiers, with the ability to induce both 3D steric and electronic effects, on metal nanocatalysts manipulate the hydrogenation pathways are demonstrated. A brief summary is finally provided together with a perspective on the development of enzyme-like heterogeneous hydrogenation metal catalysts.
Collapse
Affiliation(s)
- Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
69
|
Qin F, Chen W. Copper-based single-atom alloys for heterogeneous catalysis. Chem Commun (Camb) 2021; 57:2710-2723. [PMID: 33616591 DOI: 10.1039/d1cc00062d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heterogeneous catalysts, as crucial industrial commodities, play an important role in industrial production, especially in energy catalysis. Traditional noble metal catalysts cannot meet the increasing demand. Therefore, the exploration of cost-effective catalysts with high activity and selectivity is important to promote chemical production. Single-atom alloy (SAA) catalysts reduce the use of precious metals compared with traditional catalysts. The unique structure of SAAs, extremely high atom utilization and high catalytic selectivity give them a prominent position in heterogeneous catalysis. SAAs are widely used in selective hydrogenation/dehydrogenation, carbon dioxide reduction reaction (CO2RR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitric oxide reduction reaction (NORR). Here, the applications and research progress of copper-based single-atom alloys in the various catalytic reactions mentioned above are mainly introduced, and the factors (such as synthesis method, composition content, etc.) affecting the catalytic performance are analyzed using a combination of various characterization and testing methods.
Collapse
Affiliation(s)
- Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
70
|
Darby MT, Stamatakis M. Single-Atom Alloys for the Electrochemical Oxygen Reduction Reaction. Chemphyschem 2021; 22:499-508. [PMID: 33387446 PMCID: PMC7986805 DOI: 10.1002/cphc.202000869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Single-atom alloys (SAAs) consisting of isolated transition-metal atoms doped in the surface of coinage metal hosts exhibit unique catalytic properties, harnessing the high activity of the dopant metals with the selectivity of the coinage metal hosts. Here we use density functional theory (DFT) to study SAAs comprised of Ni, Pd, Pt, Co and Rh doped into Ag and Au hosts, as candidate electrocatalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane (PEM) fuel-cells. Our calculations reveal that the PdAu SAA exhibits a slightly lower theoretical overpotential, enhanced selectivity for 4-e- ORR, and tolerance to CO-poisoning compared to Pt(111). While the number of active sites of PdAu SAA is lower than that of Pt(111), the aforementioned desirable properties could bring the overall catalytic performance thereof close to that of Pt/C, indicating that the PdAu SAA could be a viable material for electrocatalytic ORR in PEM fuel-cells.
Collapse
Affiliation(s)
- Matthew T. Darby
- Thomas Young Centre and Department of Chemical EngineeringUniversity College London, Roberts BuildingTorrington PlaceLondonWC1E 7JEUK
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical EngineeringUniversity College London, Roberts BuildingTorrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
71
|
Wei X, Rang X, Zhu W, Xiang M, Deng Y, Jiang F, Mao R, Zhang Z, Kong X, Wang F. Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Li J, Yan Z, Bao L, Sun C, Pang S. Controllable coordination of a phosphotungstic acid-modified carbon matrix for anchoring Pt species with different sizes: from single atoms and subnanoclusters to nanoparticles. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01385d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pt species with different sizes were uniformly dispersed on phosphotungstic acid-modified carbon, and Pt SAs0.5/PTA-C exhibited outstanding catalytic performance.
Collapse
Affiliation(s)
- Jiazhe Li
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Zhiyuan Yan
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Lingxiang Bao
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chenghui Sun
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Key Laboratory for Ministry of Education of High Energy Density Materials
| | - Siping Pang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Key Laboratory for Ministry of Education of High Energy Density Materials
| |
Collapse
|
73
|
Papanikolaou KG, Stamatakis M. The catalytic decomposition of nitrous oxide and the NO + CO reaction over Ni/Cu dilute and single atom alloy surfaces: first-principles microkinetic modelling. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00011j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Density functional theory calculations and microkinetic modelling reveal that well-engineered Ni/Cu dilute alloys are promising for the catalytic reduction of NO by CO.
Collapse
Affiliation(s)
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
74
|
Gholinejad M, Khosravi F, Afrasi M, Sansano JM, Nájera C. Applications of bimetallic PdCu catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02339f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic PdCu nanoparticles can be applied as catalysts in a wide range of chemical and electrochemical reactions.
Collapse
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)
| | - Faezeh Khosravi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Mahmoud Afrasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - José M. Sansano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Alicante
- E-03080 Alicante
- Spain
| |
Collapse
|
75
|
Xing Y, Guo Z, Su W, Wen W, Wang X, Zhang H. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. NEW J CHEM 2021. [DOI: 10.1039/d0nj05673a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bibliometric method was used to analyze the development trend and research hotspots in past 10 years since the concept of single-atom catalysis was proposed in 2011. This article can provide some guidance for future research of SACs.
Collapse
Affiliation(s)
- Yi Xing
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants
| | - Zefeng Guo
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Wei Su
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Key Laboratory of Knowledge Automation for Industrial Processes
| | - Wei Wen
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xiaona Wang
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Hui Zhang
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
76
|
Wang Y, Papanikolaou KG, Hannagan RT, Patel DA, Balema TA, Cramer LA, Kress PL, Stamatakis M, Sykes ECH. Surface facet dependence of competing alloying mechanisms. J Chem Phys 2020; 153:244702. [DOI: 10.1063/5.0034520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Yicheng Wang
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Konstantinos G. Papanikolaou
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - Ryan T. Hannagan
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Tedros A. Balema
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Laura A. Cramer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Paul L. Kress
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
77
|
Kim K, Kang DW, Choi Y, Kim W, Lee H, Lee JW. Improved H 2 utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol. RSC Adv 2020; 10:45159-45169. [PMID: 35516265 PMCID: PMC9058643 DOI: 10.1039/d0ra10033a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
Cobalt based catalysts having enhanced H2 dissociation and desorption were synthesized by inserting a trace amount of palladium. These catalysts were used for the reductive amination of polypropylene glycol (PPG) to polyetheramine (PEA). The catalytic activity toward PEA was significantly increased by incorporating an extremely low content of palladium (around 0.01 wt%) into cobalt based catalysts. The Pd inserted cobalt catalysts promoted reduction of cobalt oxide to cobalt metal and inhibited formation of cobalt nitride in the reductive amination. The Pd inserted cobalt catalysts not only enhanced hydrogen dissociation but also accelerated hydrogen desorption by increasing the electron density of cobalt through interaction between cobalt and palladium. These play a critical role in reducing cobalt oxide or cobalt nitride to cobalt metal as an active site for the reductive amination. Thus, the Pd inserted cobalt catalysts provide improved catalytic performance toward PEA production by maintaining the cobalt metal state.
Collapse
Affiliation(s)
- Kyungjun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Dong Woo Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Youngheon Choi
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Wanggyu Kim
- LOTTE CHEMICAL R&D Center Daejeon 34110 Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
78
|
Zhang T, Walsh AG, Yu J, Zhang P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem Soc Rev 2020; 50:569-588. [PMID: 33170202 DOI: 10.1039/d0cs00844c] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monometallic catalysts, in particular those containing noble metals, are frequently used in heterogeneous catalysis, but they are expensive, rare and the ability to tailor their structures and properties remains limited. Traditionally, alloy catalysts have been used instead that feature enhanced electronic and chemical properties at a reduced cost. Furthermore, the introduction of single metal atoms anchored onto supports provided another effective strategy to increase both the atomic efficiency and the chance of tailoring the properties. Most recently, single-atom alloy catalysts have been developed in which one metal is atomically dispersed throughout the catalyst via alloy bonding; such catalysts combine the traditional advantages of alloy catalysts with the new feature of tailoring properties achievable with single atom catalysts. This review will first outline the atomic scale structural analysis on single-atom alloys using microscopy and spectroscopy tools, such as high-angle annular dark field imaging-scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy. Next, progress in research to understand the electronic properties of single-atom alloys using X-ray spectroscopy techniques and quantum calculations will be presented. The catalytic activities of single-atom alloys in a few representative reactions will be further discussed to demonstrate their structure-property relationships. Finally, future perspectives for single-atom alloy catalysts from the structural, electronic and reactivity aspects will be proposed.
Collapse
Affiliation(s)
- Tianjun Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada.
| | | | | | | |
Collapse
|
79
|
Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem Rev 2020; 120:12217-12314. [DOI: 10.1021/acs.chemrev.0c00594] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongyang Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pengfei Xie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xianbiao Fu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dengke Zhao
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Xiaojing Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
80
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
81
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
82
|
Jiang L, Liu K, Hung SF, Zhou L, Qin R, Zhang Q, Liu P, Gu L, Chen HM, Fu G, Zheng N. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. NATURE NANOTECHNOLOGY 2020; 15:848-853. [PMID: 32747741 DOI: 10.1038/s41565-020-0746-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/24/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen spillover is a well-known phenomenon in heterogeneous catalysis; it involves H2 cleavage on an active metal followed by the migration of dissociated H species over an 'inert' support1-5. Although catalytic hydrogenation using the spilled H species, namely, spillover hydrogenation, has long been proposed, very limited knowledge has been obtained about what kind of support structure is required to achieve spillover hydrogenation1,5. By dispersing Pd atoms onto Cu nanomaterials with different exposed facets, Cu(111) and Cu(100), we demonstrate in this work that while the hydrogen spillover from Pd to Cu is facet independent, the spillover hydrogenation only occurs on Pd1/Cu(100), where the hydrogen atoms spilled from Pd are readily utilized for the semi-hydrogenation of alkynes. This work thus helps to create an effective method for fabricating cost-effective nanocatalysts with an extremely low Pd loading, at the level of 50 ppm, toward the semi-hydrogenation of a broad range of alkynes with extremely high activity and selectivity.
Collapse
Affiliation(s)
- Lizhi Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Sung-Fu Hung
- Department of Chemistry, Taiwan University, Taipei, Taiwan
| | - Lingyun Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Pengxin Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hao Ming Chen
- Department of Chemistry, Taiwan University, Taipei, Taiwan
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
83
|
Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. Proc Natl Acad Sci U S A 2020; 117:22657-22664. [PMID: 32879000 DOI: 10.1073/pnas.2010413117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound. This migration is driven by the population of weakly bound states on the palladium at high hydrogen atom coverages which are nearly isoenergetic with binding sites on the silver. The rate of hydrogen atom migration depends on the palladium-silver interface length, with smaller palladium islands more efficiently supplying hydrogen atoms to the silver. This study demonstrates that hydrogen atoms can migrate from a more strongly binding metal to a more weakly binding surface under special conditions, such as high dihydrogen pressure.
Collapse
|
84
|
Trimpalis A, Giannakakis G, Cao S, Flytzani-Stephanopoulos M. NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
85
|
Recent advances in single-atom catalysts and single-atom alloys: opportunities for exploring the uncharted phase space in-between. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
86
|
Garcia-Ortiz A, Vidal JD, Iborra S, Climent MJ, Cored J, Ruano D, Pérez-Dieste V, Concepción P, Corma A. Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
Qin R, Liu K, Wu Q, Zheng N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem Rev 2020; 120:11810-11899. [DOI: 10.1021/acs.chemrev.0c00094] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
88
|
Li J, Xu A, Li F, Wang Z, Zou C, Gabardo CM, Wang Y, Ozden A, Xu Y, Nam DH, Lum Y, Wicks J, Chen B, Wang Z, Chen J, Wen Y, Zhuang T, Luo M, Du X, Sham TK, Zhang B, Sargent EH, Sinton D. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat Commun 2020; 11:3685. [PMID: 32703956 PMCID: PMC7378828 DOI: 10.1038/s41467-020-17499-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Multi-carbon alcohols such as ethanol are valued as fuels in view of their high energy density and ready transport. Unfortunately, the selectivity toward alcohols in CO2/CO electroreduction is diminished by ethylene production, especially when operating at high current densities (>100 mA cm-2). Here we report a metal doping approach to tune the adsorption of hydrogen at the copper surface and thereby promote alcohol production. Using density functional theory calculations, we screen a suite of transition metal dopants and find that incorporating Pd in Cu moderates hydrogen adsorption and assists the hydrogenation of C2 intermediates, providing a means to favour alcohol production and suppress ethylene. We synthesize a Pd-doped Cu catalyst that achieves a Faradaic efficiency of 40% toward alcohols and a partial current density of 277 mA cm-2 from CO electroreduction. The activity exceeds that of prior reports by a factor of 2.
Collapse
Affiliation(s)
- Jun Li
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Aoni Xu
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengwang Li
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Ziyun Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Chengqin Zou
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Yuhang Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Dae-Hyun Nam
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Yanwei Lum
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Zhiqiang Wang
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Jiatang Chen
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Yunzhou Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Taotao Zhuang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Mingchuan Luo
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada
| | - Xiwen Du
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada.
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| |
Collapse
|
89
|
Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-Atom Alloy Catalysis. Chem Rev 2020; 120:12044-12088. [DOI: 10.1021/acs.chemrev.0c00078] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
90
|
Shan J, Giannakakis G, Liu J, Cao S, Ouyang M, Li M, Lee S, Flytzani-Stephanopoulos M. PdCu Single Atom Alloys for the Selective Oxidation of Methanol to Methyl Formate at Low Temperatures. Top Catal 2020. [DOI: 10.1007/s11244-020-01288-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
Rao KK, Do QK, Pham K, Maiti D, Grabow LC. Extendable Machine Learning Model for the Stability of Single Atom Alloys. Top Catal 2020. [DOI: 10.1007/s11244-020-01267-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
92
|
Yuk SF, Collinge G, Nguyen MT, Lee MS, Glezakou VA, Rousseau R. Selective acetylene hydrogenation over single metal atoms supported on Fe3O4(001): A first-principle study. J Chem Phys 2020; 152:154703. [DOI: 10.1063/1.5142748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
93
|
O'Connor CR, van Spronsen MA, Egle T, Xu F, Kersell HR, Oliver-Meseguer J, Karatok M, Salmeron M, Madix RJ, Friend CM. Hydrogen migration at restructuring palladium-silver oxide boundaries dramatically enhances reduction rate of silver oxide. Nat Commun 2020; 11:1844. [PMID: 32296065 PMCID: PMC7160204 DOI: 10.1038/s41467-020-15536-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Heterogeneous catalysts are complex materials with multiple interfaces. A critical proposition in exploiting bifunctionality in alloy catalysts is to achieve surface migration across interfaces separating functionally dissimilar regions. Herein, we demonstrate the enhancement of more than 104 in the rate of molecular hydrogen reduction of a silver surface oxide in the presence of palladium oxide compared to pure silver oxide resulting from the transfer of atomic hydrogen from palladium oxide islands onto the surrounding surface formed from oxidation of a palladium-silver alloy. The palladium-silver interface also dynamically restructures during reduction, resulting in silver-palladium intermixing. This study clearly demonstrates the migration of reaction intermediates and catalyst material across surface interfacial boundaries in alloys with a significant effect on surface reactivity, having broad implications for the catalytic function of bimetallic materials.
Collapse
Affiliation(s)
- Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Matthijs A van Spronsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tobias Egle
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fang Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Heath R Kersell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Judit Oliver-Meseguer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Mustafa Karatok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Robert J Madix
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
94
|
Atomically dispersed palladium catalyses Suzuki-Miyaura reactions under phosphine-free conditions. Commun Chem 2020; 3:43. [PMID: 36703416 PMCID: PMC9814916 DOI: 10.1038/s42004-020-0289-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/02/2020] [Indexed: 01/29/2023] Open
Abstract
Single-atom catalysts have emerged as a new frontier in catalysis science. However, their applications are still limited to small molecule activations in the gas phase, the classic organic transformations catalyzed by single-atom catalysts are still rare. Here, we report the use of a single-atom Pd catalyst for the classic Suzuki-Miyaura carbon-carbon coupling reaction under phosphine-free and open-air conditions at room temperature. The single-atom Pd catalyst is prepared through anchoring Pd on bimetal oxides (Pd-ZnO-ZrO2). The significant synergetic effect of ZnO and ZrO2 is observed. The catalyst exhibits high activity and tolerance of a wide scope of substrates. Characterization demonstrates that Pd single atoms are coordinated with two oxygen atoms in Pd-ZnO-ZrO2 catalyst. The catalyst can be fabricated on a multi-gram scale using a simple in situ co-precipitation method, which endows this catalytic system with great potential in practical applications.
Collapse
|
95
|
Baek S, Kim K, Kwon OS, Kim H, Han JW, Kwon OJ, Kim JJ. Pd–Cu alloy catalyst synthesized by citric acid-assisted galvanic displacement reaction for N2O reduction. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-019-01396-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
96
|
Persaud RR, Chen M, Dixon DA. Prediction of Structures and Atomization Energies of Coinage Metals, (M) n, n < 20: Extrapolation of Normalized Clustering Energies to Predict the Cohesive Energy. J Phys Chem A 2020; 124:1775-1786. [PMID: 32032484 DOI: 10.1021/acs.jpca.9b11801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The geometries of the group 11 coinage metals (n = 2-20) were optimized to determine the lowest energy isomers for each cluster size, singlets for even numbers and doublets for odd numbers. For copper and silver, 2-D (planar) geometries were favored up to n = 6. For gold, 2D (planar) geometries were favored up to n = 13. Normalized clustering energies were plotted as a function of cluster size (n-1/3, for n = 4-20) with various DFT functionals and the CCSD(T)-F12b method and were extrapolated to predict the bulk cohesive energy. In the case of copper and silver, there is excellent agreement between the cohesive energies predicted at the CCSD(T)-F12b level of theory and the experimental values. For gold, the CCSD(T)-F12b values needed to be corrected for spin-orbit relativistic effects to obtain good agreement with experiment. Electronic properties including the HOMO-LUMO gaps for the even clusters and the spin densities for the odd clusters were calculated. The lowest gap is predicted to occur for n = 16 where the HOMO and LUMO are very similar in shape.
Collapse
Affiliation(s)
- Rudradatt Randy Persaud
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Mingyang Chen
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.,Beijing Computational Science Research Center, Beijing 100193, China
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
97
|
Han B, Ling L, Zhang R, Liu P, Fan M, Wang B. Dimethyl oxalate synthesis via CO oxidation on Pd-doped Ag(111) surface: A theoretic study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
98
|
Basavegowda N, Patra JK, Baek KH. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020; 25:E1058. [PMID: 32120930 PMCID: PMC7179174 DOI: 10.3390/molecules25051058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, many pathogenic bacteria have become resistant to existing antibiotics, which has become a threat to infectious disease control worldwide. Hence, there has been an extensive search for new, efficient, and alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms. Numerous studies have reported the potential of both essential oils and metal/metal oxide nanocomposites with broad spectra of bioactivities including antioxidant, anticancer, and antimicrobial attributes. However, only monometallic nanoparticles combined with essential oils have been reported on so far with limited data. Bi- and tri-metallic nanoparticles have attracted immense attention because of their diverse sizes, shapes, high surface-to-volume ratios, activities, physical and chemical stability, and greater degree of selectivity. Combination therapy is currently blooming and represents a potential area that requires greater attention and is worthy of future investigations. This review summarizes the synergistic effects of essential oils with other antimicrobial combinations such as mono-, bi-, and tri-metallic nanocomposites. Thus, the various aspects of this comprehensive review may prove useful in the development of new and alternative therapeutics against antibiotic resistant pathogens in the future.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
99
|
Bao Z, Yang L, Cheng Z, Zhou Z. Selective Hydrogenation of the C 8 Aromatic Fraction of Pyrolysis Gasoline over NiZn 3/α-Al 2O 3: Experimental and Modeling Studies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhichang Bao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Yang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenmin Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiming Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
100
|
High-performance Pd/brass-fiber catalyst for selective hydrogenation of acetylene: Effect of calcination-assisted endogenous growth of ZnO-CuOx on brass-fiber. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|