51
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
52
|
Wahab R, Khan F, Kaushik N, Kaushik NK, Nguyen LN, Choi EH, Siddiqui MA, Farshori NN, Saquib Q, Ahmad J, Al-Khedhairy AA. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells. Toxicol In Vitro 2022; 85:105460. [PMID: 35998759 DOI: 10.1016/j.tiv.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Nano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 μg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized. The MTT assay revealed that the cytotoxic effects were dose-dependent (2.5 μg/mL-100 μg/mL) on ZnOMS-NCs. The diminished activity in cell viability induces the cytotoxicity response to the ZnOMS-NCs treatment of human cultured cells. The qPCR data showed that the cells (HepG2 and MCF-7) were exposed to ZnOMS-NCs and exhibited up-and downregulated mRNA expression of apoptotic and anti-apoptotic genes, respectively. In conclusion, flow cytometric data exhibited significant apoptosis induction in both cancer cell lines at low concentrations. The possible mechanism also describes the role of ZnOMS-NCs against cancer cells and their responses.
Collapse
Affiliation(s)
- Rizwan Wahab
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Farheen Khan
- Chemistry Department, Faculty of Science, Taibah University, Medina (Yanbu), Saudi Arabia
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Maqsood A Siddiqui
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nida Nayyar Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
53
|
Hao F, Yan ZY, Yan XP. Size- and shape-dependent cytotoxicity of nano-sized Zr-based porphyrinic metal-organic frameworks to macrophages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155309. [PMID: 35439516 DOI: 10.1016/j.scitotenv.2022.155309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The wide utilization of nano-sized metal-organic frameworks (NMOFs) leads to inevitable health risks to humans. Previous studies on health risks of NMOFs mainly focus on the cytotoxic tests of typical NMOFs,but lack sufficient studies on the effects of physiochemical characteristics of NMOFs on the cytotoxicity and the related mechanisms. Here, four kinds of Zr-based porphyrinic NMOFs (PCNs), including spherical 30, 90, and 180 nm PCN-224 and rod-like 90 nm PCN-222, were taken as a proof of the concept to investigate the effects of the size and shape of NMOFs on the cytotoxicity and related mechanisms to macrophages. The 30 nm spherical PCN-224 induced significant rupture of cell membrane and dissolved in lysosome, leading to the most significant cell necrosis among the studied other nano-sized PCNs. However, other studied PCNs showed insignificant membrane rupture and their dissolution in lysosome. Furthermore, the 90 nm-sized PCN-224 led to much more significant cell necrosis by inducing lysosome damage and inhibiting of autophagy flux than the rod-like 90 nm PCN-222. These findings reveal the size- and shape-dependent cytotoxicity of PCNs and the related mechanisms and are helpful to the assessment of the potential health risks of NMOFs and the safe application of NMOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
54
|
Lu D, Retama JR, Marin R, Marqués MI, Calderón OG, Melle S, Haro-González P, Jaque D. Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202452. [PMID: 35908155 DOI: 10.1002/smll.202202452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4 :Er3+ ,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20-45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity- a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometry.
Collapse
Affiliation(s)
- Dasheng Lu
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Jorge Rubio Retama
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| | - Manuel I Marqués
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Departamento de Física de Materiales and IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Oscar G Calderón
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Sonia Melle
- Departamento de Óptica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, 28037, Spain
| | - Patricia Haro-González
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Ctra. Colmenar km. 9.100, Madrid, 28034, Spain
| |
Collapse
|
55
|
Liu E, Lei L, Ye R, Deng D, Xu S. Improved relative temperature sensitivity of over 10% K -1 in fluoride nanocrystals via engineering the interfacial layer. Chem Commun (Camb) 2022; 58:9076-9079. [PMID: 35876695 DOI: 10.1039/d2cc02548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time in situ temperature sensing is of significance in the bio-medical field; however, the low relative temperature sensitivity Sr is one of the major obstacles in the development of nanothermometers. Herein, we provide an effective route that engineers the interfacial layer in a core/shell/shell nanostructure to enlarge the temperature-dependent luminescence intensity ratio (LIR) variations followed by an improved Sr. The CaF2 interlayer is employed to inhibit the interaction between the core and outer shell, and increase the interfacial phonon energy to enhance the negative thermal quenching effect (TQE) of Nd3+ ions in the outer shell and positive TQE of Er3+ ions in the core layer. Based on the temperature-dependent LIR variations of Er (650 nm) to Nd (800 nm), the maximum Sr of 10.01% K-1 and minimum Sr of % 2.56% K-1 are achieved.
Collapse
Affiliation(s)
- Enyang Liu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Lei Lei
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China. .,Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Renguang Ye
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Degang Deng
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
56
|
Paściak A, Marin R, Abiven L, Pilch-Wróbel A, Misiak M, Xu W, Prorok K, Bezkrovnyi O, Marciniak Ł, Chanéac C, Gazeau F, Bazzi R, Roux S, Viana B, Lehto VP, Jaque D, Bednarkiewicz A. Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33555-33566. [PMID: 35848997 PMCID: PMC9335407 DOI: 10.1021/acsami.2c08013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/01/2022] [Indexed: 05/20/2023]
Abstract
Functional colloidal nanoparticles capable of converting between various energy types are finding an increasing number of applications. One of the relevant examples concerns light-to-heat-converting colloidal nanoparticles that may be useful for localized photothermal therapy of cancers. Unfortunately, quantitative comparison and ranking of nanoheaters are not straightforward as materials of different compositions and structures have different photophysical and chemical properties and may interact differently with the biological environment. In terms of photophysical properties, the most relevant information to rank these nanoheaters is the light-to-heat conversion efficiency, which, along with information on the absorption capacity of the material, can be used to directly compare materials. In this work, we evaluate the light-to-heat conversion properties of 17 different nanoheaters belonging to different groups (plasmonic, semiconductor, lanthanide-doped nanocrystals, carbon nanocrystals, and metal oxides). We conclude that the light-to-heat conversion efficiency alone is not meaningful enough as many materials have similar conversion efficiencies─in the range of 80-99%─while they significantly differ in their extinction coefficient. We therefore constructed their qualitative ranking based on the external conversion efficiency, which takes into account the conventionally defined light-to-heat conversion efficiency and its absorption capacity. This ranking demonstrated the differences between the samples more meaningfully. Among the studied systems, the top-ranking materials were black porous silicon and CuS nanocrystals. These results allow us to select the most favorable materials for photo-based theranostics and set a new standard in the characterization of nanoheaters.
Collapse
Affiliation(s)
- Agnieszka Paściak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Riccardo Marin
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Lise Abiven
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris, UMR 7574, 4 Place Jussieu, F-75005 Paris, France
| | - Aleksandra Pilch-Wróbel
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Małgorzata Misiak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Wujun Xu
- Department
of Applied Physics, University of Eastern
Finland, 70211 Kuopio, Finland
| | - Katarzyna Prorok
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Oleksii Bezkrovnyi
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Łukasz Marciniak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Corinne Chanéac
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris, UMR 7574, 4 Place Jussieu, F-75005 Paris, France
| | - Florence Gazeau
- Université
Paris Cité, CNRS, Matière et Systèmes Complexes, F75006 Paris, France
| | - Rana Bazzi
- Institut
UTINAM, UMR 6213 CNRS-UBFC, Université
Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, Cedex, France
| | - Stéphane Roux
- Institut
UTINAM, UMR 6213 CNRS-UBFC, Université
Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, Cedex, France
| | - Bruno Viana
- Chimie
ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL Research University, 11 rue P. et M. Curie, F-75231 Paris, Cedex 05, France
| | - Vesa-Pekka Lehto
- Department
of Applied Physics, University of Eastern
Finland, 70211 Kuopio, Finland
| | - Daniel Jaque
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Artur Bednarkiewicz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
57
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
58
|
Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Adv Drug Deliv Rev 2022; 188:114419. [PMID: 35810884 DOI: 10.1016/j.addr.2022.114419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/24/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022]
Abstract
In the past decade, upconversion (UC) nanomaterials have been extensively investigated for the applications to photomedicines with their unique features including biocompatibility, near-infrared (NIR) to visible conversion, photostability, controllable emission bands, and facile multi-functionality. These characteristics of UC nanomaterials enable versatile light delivery for deep tissue biophotonic applications. Among various stimuli-responsive delivery systems, the light-responsive delivery process has been greatly advantageous to develop spatiotemporally controllable on-demand "smart" photonic medicines. UC nanomaterials are classified largely to two groups depending on the photon UC pathway and compositions: inorganic lanthanide-doped UC nanoparticles and organic triplet-triplet annihilation UC (TTA-UC) nanomaterials. Here, we review the current-state-of-art inorganic and organic UC nanomaterials for photo-medicinal applications including photothermal therapy (PTT), photodynamic therapy (PDT), photo-triggered chemo and gene therapy, multimodal immunotherapy, NIR mediated neuromodulations, and photochemical tissue bonding (PTB). We also discuss the future research direction of this field and the challenges for further clinical development.
Collapse
|
59
|
Light-responsive biomaterials for ocular drug delivery. Drug Deliv Transl Res 2022:10.1007/s13346-022-01196-5. [PMID: 35751001 DOI: 10.1007/s13346-022-01196-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
Light-responsive biomaterials can be used for the delivery of therapeutic drugs and nucleic acids, where the tunable/precise delivery of payload highlights the potential of such biomaterials for treating a variety of conditions. The translucency of eyes and advances of laser technology in ophthalmology make light-responsive delivery of drugs feasible. Importantly, light can be applied in a non-invasive fashion; therefore, light-triggered drug delivery systems have great potential for clinical impact. This review will examine various types of light-responsive polymers and the chemistry that underpins their application as ophthalmic drug delivery systems.
Collapse
|
60
|
Chakraborty S, Nalupurackal G, Gunaseelan M, Roy S, Lokesh M, Goswami J, Datta P, Mahapatra PS, Roy B. Facets of optically and magnetically induced heating in ferromagnetically doped-NaYF 4 particles. JOURNAL OF PHYSICS COMMUNICATIONS 2022; 7:065008. [PMID: 37398924 PMCID: PMC7614712 DOI: 10.1088/2399-6528/acde43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Upconverting particles like Yb and Er-doped NaYF4 are known to heat up after illumination with light at pump wavelength due to inefficient upconversion processes. Here we show that NaYF4 particles which have been co-doped not only with Yb and Er but also Fe improves the photothermal conversion efficiency. In addition, we show for the first time that alternating magnetic fields also heat up the ferromagnetic particles. Thereafter we show that a combination of optical and magnetic stimuli significantly increases the heat generated by the particles.
Collapse
Affiliation(s)
- Snigdhadev Chakraborty
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gokul Nalupurackal
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M Gunaseelan
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Physics, Rathinam Research Hub, Rathinam College of Arts and Science, Coimbatore, 641021, India
| | - Srestha Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Muruga Lokesh
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Jayesh Goswami
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Priyankan Datta
- Department of Mechanical engineering, Indian Institute of Technology Madras, India
| | | | - Basudev Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
61
|
Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022; 27:molecules27123914. [PMID: 35745035 PMCID: PMC9229065 DOI: 10.3390/molecules27123914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.
Collapse
|
62
|
Multifunctional cellulose fibers: Intense red upconversion under 1532 nm excitation and temperature-sensing properties. Carbohydr Polym 2022; 294:119782. [DOI: 10.1016/j.carbpol.2022.119782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
|
63
|
Bai Y, Liu X, Zhang S, Jiang H, Liu L, Din IU, Zhang J. Suppression of inner energy dissipation in Yb-doped NaErF4 upconversion nanocrystals through an energy cycling strategy. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
64
|
Balachandran YL, Wang W, Yang H, Tong H, Wang L, Liu F, Chen H, Zhong K, Liu Y, Jiang X. Heterogeneous Iron Oxide/Dysprosium Oxide Nanoparticles Target Liver for Precise Magnetic Resonance Imaging of Liver Fibrosis. ACS NANO 2022; 16:5647-5659. [PMID: 35312295 DOI: 10.1021/acsnano.1c10618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Challenges remain in precisely diagnosing the progress of liver fibrosis in a noninvasive way. We here synthesized small (4 nm) heterogeneous iron oxide/dysprosium oxide nanoparticles (IO-DyO NPs) as a contrast agent (CA) for magnetic resonance imaging (MRI) to precisely diagnose liver fibrosis in vivo at both 7.0 and 9.4 T field strength. Our IO-DyO NPs can target the liver and show an increased T2 relaxivity along with an increase of magnetic field strength. At a ultrahigh magnetic field, IO-DyO NPs can significantly improve spatial/temporal image resolution and signal-to-noise ratio of the liver and precisely distinguish the early and moderate liver fibrosis stages. Our IO-DyO NP-based MRI diagnosis can exactly match biopsy (a gold standard for liver fibrosis diagnosis in the clinic) but avoid the invasiveness of biopsy. Moreover, our IO-DyO NPs show satisfactory biosafety in vitro and in vivo. This work illustrates an advanced T2 CA used in ultrahigh-field MRI (UHFMRI) for the precise diagnosis of liver fibrosis via a noninvasive means.
Collapse
Affiliation(s)
- Yekkuni L Balachandran
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Wei Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Hongyi Yang
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haiyang Tong
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lulu Wang
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China
| | - Kai Zhong
- High Field Magnetic Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
65
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
66
|
Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14082004. [PMID: 35454910 PMCID: PMC9032169 DOI: 10.3390/cancers14082004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is a light-activated treatment modality, which is being clinically used and further developed for a number of premalignancies, solid tumors, and disseminated cancers. Nanomedicines that facilitate PDT (photonanomedicines, PNMs) have transformed its safety, efficacy, and capacity for multifunctionality. This review focuses on the state of the art in deep-tissue activation technologies for PNMs and explores how their preclinical use can evolve towards clinical translation by harnessing current clinically available instrumentation. Abstract With the continued development of nanomaterials over the past two decades, specialized photonanomedicines (light-activable nanomedicines, PNMs) have evolved to become excitable by alternative energy sources that typically penetrate tissue deeper than visible light. These sources include electromagnetic radiation lying outside the visible near-infrared spectrum, high energy particles, and acoustic waves, amongst others. Various direct activation mechanisms have leveraged unique facets of specialized nanomaterials, such as upconversion, scintillation, and radiosensitization, as well as several others, in order to activate PNMs. Other indirect activation mechanisms have leveraged the effect of the interaction of deeply penetrating energy sources with tissue in order to activate proximal PNMs. These indirect mechanisms include sonoluminescence and Cerenkov radiation. Such direct and indirect deep-tissue activation has been explored extensively in the preclinical setting to facilitate deep-tissue anticancer photodynamic therapy (PDT); however, clinical translation of these approaches is yet to be explored. This review provides a summary of the state of the art in deep-tissue excitation of PNMs and explores the translatability of such excitation mechanisms towards their clinical adoption. A special emphasis is placed on how current clinical instrumentation can be repurposed to achieve deep-tissue PDT with the mechanisms discussed in this review, thereby further expediting the translation of these highly promising strategies.
Collapse
|
67
|
Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, Wu HF, Taha EI, Elbagory I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1333. [PMID: 35458041 PMCID: PMC9031869 DOI: 10.3390/nano12081333] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/09/2023]
Abstract
This review tries to summarize the purpose of steadily developing surface-functionalized nanoparticles for various bio-applications and represents a fascinating and rapidly growing field of research. Due to their unique properties-such as novel optical, biodegradable, low-toxicity, biocompatibility, size, and highly catalytic features-these materials are considered superior, and it is thus vital to study these systems in a realistic and meaningful way. However, rapid aggregation, oxidation, and other problems are encountered with functionalized nanoparticles, inhibiting their subsequent utilization. Adequate surface modification of nanoparticles with organic and inorganic compounds results in improved physicochemical properties which can overcome these barriers. This review investigates and discusses the iron oxide nanoparticles, gold nanoparticles, platinum nanoparticles, silver nanoparticles, and silica-coated nanoparticles and how their unique properties after fabrication allow for their potential use in a wide range of bio-applications such as nano-based imaging, gene delivery, drug loading, and immunoassays. The different groups of nanoparticles and the advantages of surface functionalization and their applications are highlighted here. In recent years, surface-functionalized nanoparticles have become important materials for a broad range of bio-applications.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
| | - Amir Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan;
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ehab I. Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
68
|
Kunachowicz D, Ściskalska M, Jakubek M, Kizek R, Kepinska M. Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications. NANOIMPACT 2022; 26:100405. [PMID: 35560289 DOI: 10.1016/j.impact.2022.100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) are semi-conductor luminescent nanocrystals usually of 2-10 nm diameter, attracting the significant attention in biomedical studies since emerged. Due to their unique optical and electronic properties, i.e. wide absorption spectra, narrow tunable emission bands or stable, bright photoluminescence, QDs seem to be ideally suited for multi-colour, simultaneous bioimaging and cellular labeling at the molecular level as new-generation probes. A highly reactive surface of QDs allows for conjugating them to biomolecules, what enables their direct binding to areas of interest inside or outside the cell for biosensing or targeted delivery. Particularly protein-QDs conjugates are current subjects of research, as features of QDs can be combined with protein specific functionalities and therefore used as a complex in variety of biomedical applications. It is known that QDs are able to interact with cells, organelles and macromolecules of the human body after administration. QDs are reported to cause changes at proteins level, including unfolding and three-dimensional structure alterations which might hamper proteins from performing their physiological functions and thereby limit the use of QD-protein conjugates in vivo. Moreover, these changes may trigger unwanted cellular outcomes as the effect of different signaling pathways activation. In this review, characteristics of QDs interactions with certain human proteins are presented and discussed. Besides that, the following manuscript provides an overview on structural changes of specific proteins exposed to QDs and their biological and biomedical relevance.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Rene Kizek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
69
|
Yang R, Wang P, Lou K, Dang Y, Tian H, Li Y, Gao Y, Huang W, Zhang Y, Liu X, Zhang G. Biodegradable Nanoprobe for NIR-II Fluorescence Image-Guided Surgery and Enhanced Breast Cancer Radiotherapy Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104728. [PMID: 35170876 PMCID: PMC9036023 DOI: 10.1002/advs.202104728] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Indexed: 05/19/2023]
Abstract
Positive resection margin frequently exists in breast-conserving treatment (BCT) of early-stage breast cancer, and insufficient therapeutic efficacy is common during radiotherapy (RT) in advanced breast cancer patients. Moreover, a multimodal nanotherapy platform is urgently required for precision cancer medicine. Therefore, a biodegradable cyclic RGD pentapeptide/hollow virus-like gadolinium (Gd)-based indocyanine green (R&HV-Gd@ICG) nanoprobe is developed to improve fluorescence image-guided surgery and breast cancer RT efficacy. R&HV-Gd exhibits remarkably improved aqueous stability, tumor retention, and target specificity of ICG, and achieves outstanding magnetic resonance/second near-infrared (NIR-II) window multimodal imaging in vivo. The nanoprobe-based NIR-II fluorescence image guidance facilitates complete tumor resection, improves the overall mouse survival rate, and effectively discriminates between benign and malignant breast tissues in spontaneous breast cancer transgenic mice (area under the curve = 0.978; 95% confidence interval: 0.952, 1.0). Moreover, introducing the nanoprobe to tumors generated more reactive oxygen species under X-ray irradiation, improved RT sensitivity, and reduced mouse tumor progression. Notably, the nanoprobe is biodegradable in vivo and exhibits accelerated bodily clearance, which is expected to reduce the potential long-term inorganic nanoparticle toxicity. Overall, the nanoprobe provides a basis for developing precision breast cancer treatment strategies.
Collapse
Affiliation(s)
- Rui‐Qin Yang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Pei‐Yuan Wang
- Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouFujian350025China
| | - Kang‐Liang Lou
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Yong‐Ying Dang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Hai‐Na Tian
- Department of BiomaterialsCollege of MaterialsResearch Center of Biomedical Engineering of Xiamen and Key Laboratory of Biomedical Engineering of Fujian Province and Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamenFujian361005China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouFujian350025China
| | - Yi‐Yang Gao
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Wen‐He Huang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Yong‐Qu Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| | - Xiao‐Long Liu
- Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350000China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouFujian350025China
| | - Guo‐Jun Zhang
- Cancer Center and Department of Breast and Thyroid SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361100China
- Key Laboratory for Endocrine‐Related Cancer Precision Medicine of XiamenXiang'an Hospital of Xiamen UniversityXiamenFujian361100China
- Cancer Research CenterSchool of MedicineXiamen UniversityXiamenFujian361100China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid CancersXiamenFujian361100China
| |
Collapse
|
70
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Anal Bioanal Chem 2022; 414:4291-4310. [PMID: 35312819 DOI: 10.1007/s00216-022-03999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.
Collapse
|
72
|
Pini F, Francés-Soriano L, Peruffo N, Barbon A, Hildebrandt N, Natile MM. Spatial and Temporal Resolution of Luminescence Quenching in Small Upconversion Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11883-11894. [PMID: 35213132 DOI: 10.1021/acsami.1c23498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Luminescent upconversion nanocrystals (UCNCs) have become one of the most promising nanomaterials for biosensing, imaging, and theranostics. However, their ultimate translation into robust luminescent probes for daily use in biological and medical laboratories requires comprehension and control of the many possible deactivation pathways that cause upconversion luminescence (UCL) quenching. Here, we demonstrate that thorough modeling of UCL rise and decay kinetics using a freely accessible software can identify the UCL quenching mechanisms in small (<40 nm) UCNCs with spatial and temporal resolution. Applied to the most relevant β-NaYF4:Yb3+,Er3+ UCNCs, our model showed that only a few distinct nonradiative low-energy transitions were deactivated via specific solvent and ligand vibrations with a strong downstream effect on the population and depopulation dynamics of the emitting states. UCL quenching could penetrate ca. 4 nm inside the UCNC, which resulted in significant size-dependent changes of UCL intensities and spectra. Despite the large surface-to-volume ratios and UCL quenching via the UCNC surface, we found strong contributions of the outer layers to the overall UCL, which will be highly important for the design of UCNPs to investigate biomolecular interactions via distance-dependent energy transfer methods. Our advanced kinetic model is easily scalable to different UCNC architectures, environments, and energy transfer interactions such that relatively simple modeling of UCL kinetics can be used for efficiently optimizing UCNCs for their final application as practical luminescent probes.
Collapse
Affiliation(s)
- Federico Pini
- nanofret.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Reactivité et Analyse - UMR6014 & FR 3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Istituto di Chimica della Materia Condensata e Tecnologie dell'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), Via F. Marzolo 1, 35131 Padova, PD, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, 35131 Padova, PD, Italy
| | - Laura Francés-Soriano
- nanofret.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Reactivité et Analyse - UMR6014 & FR 3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
| | - Nicola Peruffo
- Istituto di Chimica della Materia Condensata e Tecnologie dell'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), Via F. Marzolo 1, 35131 Padova, PD, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, 35131 Padova, PD, Italy
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, 35131 Padova, PD, Italy
| | - Niko Hildebrandt
- nanofret.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Reactivité et Analyse - UMR6014 & FR 3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, 76000 Rouen, France
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Marta Maria Natile
- Istituto di Chimica della Materia Condensata e Tecnologie dell'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), Via F. Marzolo 1, 35131 Padova, PD, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, Via F. Marzolo 1, 35131 Padova, PD, Italy
| |
Collapse
|
73
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
74
|
Li Y, Jiang C, Chen X, Jiang Y, Yao C. Yb 3+-Doped Two-Dimensional Upconverting Tb-MOF Nanosheets with Luminescence Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8343-8352. [PMID: 35104398 DOI: 10.1021/acsami.2c00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we synthesized a Yb3+-doped two-dimensional (2-D) upconverting Tb metal-organic framework (Tb-MOF) (hereinafter referred to as Tb-UCMOF) by a one-step solvothermal method. The synthesized Tb-UCMOF is composed of stacks of 2-D nanosheets with an average width distributed between 250 and 300 nm, and these nanosheets can be exfoliated by a simple liquid ultrasound method. The structural characteristics of this flaky particle accumulation are confirmed by the type IV adsorption-desorption isotherm with a H3-type adsorption hysteresis loop, and the Brunauer-Emmett-Teller surface of Tb-UCMOF is 143.9257 m2·g-1. Tb-UCMOF has characteristic emissions of Tb3+ which are located at 490, 545, 585, and 621 nm under 980 nm excitation. The upconverting luminescence mechanism is attributed to that Yb3+ absorbs multiple photons and transfers the energy to Tb3+, causing its 4f electrons to jump to the excited state, and then the upconverting emissions are obtained when electrons return to the ground state. Since the Tb-UCMOF nanosheets have high dispersibility and an obvious upconverting luminescent signal, we explored their luminescence sensing properties. The luminescence intensity is found to gradually decrease with the addition of Cu2+, the linear range of Cu2+ sensing is 0-1.4 μM, and the detection limit is 0.16 μM. This rapid, highly selective, and sensitive Cu2+ sensing indicates that 2-D upconverting MOF nanosheets have great application prospects in luminescence sensing and also promote the research of 2-D upconverting MOFs with specific recognition for the application of biological and environmental luminescent sensors.
Collapse
Affiliation(s)
- Yingxue Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yuanhang Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
75
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
76
|
Wang C, Wang X, Zhang W, Ma D, Li F, Jia R, Shi M, Wang Y, Ma G, Wei W. Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107150. [PMID: 34897858 DOI: 10.1002/adma.202107150] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Indexed: 05/23/2023]
Abstract
Ferritin (Fn) is considered a promising carrier for targeted delivery to tumors, but the successful application in vivo has not been fully achieved yet. Herein, strong evidence is provided that the Fn receptor is expressed in liver tissues, resulting in an intercept effect in regards to tumor delivery. Building on these observations, a biomineralization technology is rationally designed to shield Fn using a calcium phosphate (CaP) shell, which can improve the delivery performance by reducing Fn interception in the liver while re-exposing it in acidic tumors. Moreover, the selective dissolution of the CaP shell not only neutralizes the acidic microenvironment but also induces the intratumoral immunomodulation and calcification. Upon multiple cell line and patient-derived xenografts, it is demonstrated that the elaboration of the highly flexible Fn@CaP chassis by loading a chemotherapeutic drug into the Fn cavity confers potent antitumor effects, and additionally encapsulating a photosensitizer into the outer shell enables a combined chemo-photothermal therapy for complete suppression of advanced tumors. Altogether, these results support Fn@CaP as a new nanoplatform for efficient modulation of the tumor microenvironment and targeted delivery of diverse therapeutic agents.
Collapse
Affiliation(s)
- Changlong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaojun Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, P. R. China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering and College of Engineering and BIC-ESAT, Peking University, Beijing, 100871, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
77
|
Fadilah NIM, Isa ILM, Zaman WSWK, Tabata Y, Fauzi MB. The Effect of Nanoparticle-Incorporated Natural-Based Biomaterials towards Cells on Activated Pathways: A Systematic Review. Polymers (Basel) 2022; 14:476. [PMID: 35160466 PMCID: PMC8838324 DOI: 10.3390/polym14030476] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The advancement of natural-based biomaterials in providing a carrier has revealed a wide range of benefits in the biomedical sciences, particularly in wound healing, tissue engineering and regenerative medicine. Incorporating nanoparticles within polymer composites has been reported to enhance scaffolding performance, cellular interactions and their physico-chemical and biological properties in comparison to analogue composites without nanoparticles. This review summarized the current knowledge of nanoparticles incorporated into natural-based biomaterials with effects on their cellular interactions in wound healing. Although the mechanisms of wound healing and the function of specific cells in wound repair have been partially described, many of the underlying signaling pathways remain unknown. We also reviewed the current understanding and new insights into the wingless/integrated (Wnt)/β-catenin pathway and other signaling pathways of transforming growth factor beta (TGF-β), Notch, and Sonic hedgehog during wound healing. The findings demonstrated that most of the studies reported positive outcomes of biomaterial scaffolds incorporated with nanoparticles on cell attachment, viability, proliferation, and migration. Combining therapies consisting of nanoparticles and biomaterials could be promising for future therapies and better outcomes in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8397, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
78
|
Yin XH, Xu YM, Lau ATY. Nanoparticles: Excellent Materials Yet Dangerous When They Become Airborne. TOXICS 2022; 10:50. [PMID: 35202237 PMCID: PMC8874650 DOI: 10.3390/toxics10020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Since the rise and rapid development of nanoscale science and technology in the late 1980s, nanomaterials have been widely used in many areas including medicine, electronic products, crafts, textiles, and cosmetics, which have provided a lot of convenience to people's life. However, while nanomaterials have been fully utilized, their negative effects, also known as nano pollution, have become increasingly apparent. The adverse effects of nanomaterials on the environment and organisms are mainly based on the unique size and physicochemical properties of nanoparticles (NPs). NPs, as the basic unit of nanomaterials, generally refer to the ultrafine particles whose spatial scale are defined in the range of 1-100 nm. In this review, we mainly introduce the basic status of the types and applications of NPs, airborne NP pollution, and the relationship between airborne NP pollution and human diseases. There are many sources of airborne NP pollutants, including engineered nanoparticles (ENPs) and non-engineered nanoparticles (NENPs). The NENPs can be further divided into those generated from natural activities and those produced by human activities. A growing number of studies have found that exposure to airborne NP pollutants can cause a variety of illnesses, such as respiratory diseases, cardiovascular diseases, and neurological disorders. To deal with the ever increasing numbers and types of NPs being unleashed to the air, we believe that extensive research is needed to provide a comprehensive understanding of NP pollution hazards and their impact mechanisms. Only in this way can we find the best solution and truly protect the safety and quality of life of human beings.
Collapse
Affiliation(s)
- Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
79
|
Hu Y, Lv S, Wan J, Zheng C, Shao D, Wang H, Tao Y, Li M, Luo Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B 2022; 10:4907-4934. [PMID: 35712990 DOI: 10.1039/d2tb00448h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current...
Collapse
Affiliation(s)
- Yongwei Hu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Wan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| | - Yun Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
80
|
MacKenzie LE, Alvarez-Ruiz D, Pal R. Low-temperature open-air synthesis of PVP-coated NaYF 4:Yb,Er,Mn upconversion nanoparticles with strong red emission. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211508. [PMID: 35116158 PMCID: PMC8767217 DOI: 10.1098/rsos.211508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Cubic (α-phase) NaYF4:Yb,Er upconversion nanoparticles (UCNPs) are uniquely suited to biophotonics and biosensing applications due to their near-infrared excitation and visible red emission (λ ex approx. 660 nm), enabling detection via thick overlying tissue with no bio-autofluorescence. However, UCNP synthesis typically requires high temperatures in combination with either high pressure reaction vessels or an inert atmosphere. Here, we report synthesis of α-phase NaYF4:Yb,Er,Mn UCNPs via the considerably more convenient PVP40-mediated route; a strategy that requires modest temperatures and relatively short reaction time (160°C, 2 h) in open air, with Mn2+ co-doping serving to greatly enhance red emission. The optimal Mn2+ co-doping level was found to be 35 mol %, which decreased the average maximum UCNP Feret diameter from 42 ± 11 to 36 ± 15 nm; reduced the crystal lattice parameter, a, from 5.52 to 5.45 Å; and greatly enhanced UCNP red/green emission ratio in EtOH by a factor of 5.6. The PVP40 coating enabled dispersal in water and organic solvents and can be exploited for further surface modification (e.g. silica shell formation). We anticipate that this straightforward UCNP synthesis method for producing strongly red-emitting UCNPs will be particularly beneficial for deep tissue biophotonics and biosensing applications.
Collapse
Affiliation(s)
- Lewis E. MacKenzie
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
- Department of Chemistry, Durham University, Durham, UK
| | - Diana Alvarez-Ruiz
- GJ Russell Microscopy Facility, Department of Physics, Durham University, Durham, UK
| | - Robert Pal
- Department of Chemistry, Durham University, Durham, UK
| |
Collapse
|
81
|
Zhou M, Zou X, Liu Y, Wang H, Su Q. Degradation of upconverting nanoparticles in simulated fluids evaluated by ratiometric luminescence. NEW J CHEM 2022. [DOI: 10.1039/d2nj00590e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of artificially simulated fluids on the optical properties of upconversion nanoparticles and the degradation mechanism was systematically studied.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xi Zou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
82
|
PATTNAIK SASANK, Mondal M, Mukhopadhyay L, Basak S, Rai VK, Giri R, Singh V. Frequency upconversion based thermally stable molybdate phosphors in temperature sensing probe. NEW J CHEM 2022. [DOI: 10.1039/d2nj01105k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Er3+-Yb3+ co-doped NaGd(MoO4)2 phosphors with different concentrations of Er3+ and Yb3+ ions have been successfully synthesized via a high-temperature solid-state reaction method. Phase confirmation and morphological studies have been done...
Collapse
|
83
|
Yeow E, Wu X. Exploiting the upconversion luminescence, Lewis acid catalytic and photothermal properties of lanthanide-based nanomaterials for chemical and polymerization reactions. Phys Chem Chem Phys 2022; 24:11455-11470. [DOI: 10.1039/d2cp00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide-based nanocrystals possess three unique physical properties that make them attractive for facilitating photoreactions, namely photon upconversion, Lewis acid catalytic activity and photothermal effect. When co-doped with suitable sensitizer and...
Collapse
|
84
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
85
|
Zhang Q, O'Brien S, Grimm J. Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics 2022; 6:184-194. [PMID: 34976593 PMCID: PMC8671952 DOI: 10.7150/ntno.65530] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to prepare nanomaterials of relatively smaller sizes has increased the likelihood of use in vivo. In this review, we summarize the different emerging applications of nanoparticles with rare earth elements as the host or doped elements for biomedical applications in the past three to four years, especially in the area of imaging and disease diagnosis. Researchers have made progress in utilizing surfactants and polymers to modify the surface of lanthanide nanoparticles to enhance biocompatibility. At the same time, specific antibodies and proteins can also be conjugated to these nanoparticles to increase targeting efficiency for specific tumor models. Finally, in the near-infrared II imaging window, lanthanide nanoparticles have been shown to exhibit extraordinary bright emission, which is an exciting development for image-guided surgery.
Collapse
Affiliation(s)
- Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Stephen O'Brien
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
86
|
Fu M, Yang M, Xu X. Upconversion fluorescent nanoprobe based on 4-NP reversible structure for a wide range of pH determination. NEW J CHEM 2022. [DOI: 10.1039/d2nj01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate detection of pH value has received more and more attention in various fields. However, most reported probes show pH values in the acidic or alkaline range and work within...
Collapse
|
87
|
Lei L, Liu E, Wang Y, Hua Y, Zhang J, Chen J, Mao R, Jia G, Xu S. Amplifying Upconversion by Engineering Interfacial Density of State in Sub-10 nm Colloidal Core/Shell Fluoride Nanoparticles. NANO LETTERS 2021; 21:10222-10229. [PMID: 34847665 DOI: 10.1021/acs.nanolett.1c03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving bright photon upconversion under low irradiance is of great significance and finds many stimulating applications from photovoltaics to biophotonics. However, it remains a daunting challenge to significantly intensify upconversion luminescence in small nanoparticles with a simple structure. Herein, we report the amplification of photon upconversion through engineering interfacial density of states between the core and the shell layer in sub-10 nm colloidal rare-earth ions doped fluoride nanocrystals. Through tuning of the metal cations in the shell layer of alkaline-earth-based core/shell nanoparticles, both the interfacial phonon frequency and the density of state are evidently decreased, resulting in the luminescence intensification of up to 8224 times. The generality of this upconversion enhancement strategy has been verified through expansion of this approach to alkali-based core/shell nanoparticles. The engineering of photon density of state in such core/shell nanoparticles enables dynamic display and high-level security information storage.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Enyang Liu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yubin Wang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Youjie Hua
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Junjie Zhang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jiayi Chen
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rundong Mao
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shiqing Xu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| |
Collapse
|
88
|
Lisjak D, Vozlič M, Kostiv U, Horák D, Majaron B, Kralj S, Zajc I, Žiberna L, Ponikvar-Svet M. NaYF 4-based upconverting nanoparticles with optimized phosphonate coatings for chemical stability and viability of human endothelial cells. Methods Appl Fluoresc 2021; 10. [PMID: 34883469 DOI: 10.1088/2050-6120/ac41ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
The increasing interest in upconverting nanoparticles (UCNPs) in biodiagnostics and therapy fuels the development of biocompatible UCNPs platforms. UCNPs are typically nanocrystallites of rare-earth fluorides codoped with Yb3+and Er3+or Tm3+. The most studied UCNPs are based on NaYF4but are not chemically stable in water. They dissolve significantly in the presence of phosphates. To prevent any adverse effects on the UCNPs induced by cellular phosphates, the surfaces of UCNPs must be made chemically inert and stable by suitable coatings. We studied the effect of various phosphonate coatings on chemical stability andin vitrocytotoxicity of the Yb3+,Er3+-codoped NaYF4UCNPs in human endothelial cells obtained from cellular line Ea.hy926. Cell viability of endothelial cells was determined using the resazurin-based assay after the short-term (15 min), and long-term (24 h and 48 h) incubations with UCNPs dispersed in cell-culture medium. The coatings were obtained from tertaphosphonic acid (EDTMP), sodium alendronate and poly(ethylene glycol)-neridronate. Regardless of the coating conditions, 1 - 2 nm-thick amorphous surface layers were observed on the UCNPs with transmission electron microscopy. The upconversion fluorescence was measured in the dispersions of all UCNPs. Surafce quenching in aqueous suspensions of the UCNPs was reduced by the coatings. The dissolution degree of the UCNPs was determined from the concentration of dissolved fluoride measured with ion-selective electrode after the ageing of UCNPs in water, physiological buffer (i.e., phosphate-buffered saline-PBS) and cell-culture medium. The phosphonate coatings prepared at 80 °C significantly suppressed the dissolution of UCNPs in PBS while only minor dissolution of bare and coated UCNPs was measured in water and cell-culture medium. The viability of human endothelial cells was significantly reduced when incubated with UCNPs, but it increased with the improved chemical stability of UCNPs by the phosphonate coatings with negligible cytotoxicity when coated with EDTMP at 80 °C.
Collapse
Affiliation(s)
- Darja Lisjak
- Jožef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maša Vozlič
- Jožef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Boris Majaron
- Jožef Stefan Institute, Department of Complex Matter, Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty for Mathematics and Physics, Jadranska 13, 1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Jožef Stefan Institute, Department for Materials Synthesis, Jamova 39, 1000 Ljubljana, Slovenia
| | - Irena Zajc
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Lovro Žiberna
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Maja Ponikvar-Svet
- Jožef Stefan Institute, Department of Inroganic Chemistry and Technology, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
89
|
Xiang J, Lin J, Wang Z, Zhou S, Wang Z, Yan Q, Liu Y, Fan H. Sustainable and invisible anti-counterfeiting inks based on waterborne polyurethane and upconversion nanoparticles for leather products. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Counterfeit leather products infringe the intellectual property rights of the business, cause enormous economic loss, and negatively influence the business enthusiasm for innovation. However, traditional anti-counterfeiting materials for leather products suffer from complicated fabrication procedures, photobleaching, and high volatile organic compound (VOC) emissions. Here, a sustainable and invisible anti-counterfeiting ink composed of waterborne polyurethane and water-dispersible lanthanide-doped upconversion nanoparticles (UCNPs) featuring ease of preparation, high photostability, non-toxicity, low VOC emissions, and strong adhesion strength for leather products is designed and synthesized. After decorating on the surface of leather products, the obtained patterns are invisible under normal light conditions. Upon irradiation at 808 nm, the invisible patterns can be observed by naked eyes due to the visible light emitted by 808 nm excited UCNPs. Our approach described here opens a new pathway to realize the long-term, stable anti-counterfeiting function of leather products.
Graphical Abstract
Collapse
|
90
|
Liu J, Kang W, Wang W. Photocleavage-based Photoresponsive Drug Delivery. Photochem Photobiol 2021; 98:288-302. [PMID: 34861053 DOI: 10.1111/php.13570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery has been extensively studied in the last decade, whereas both passive and active targeting strategies still face many challenges, such as off-target drug release. Light-responsive drug delivery systems have been developed with high controllability and spatio-temporal resolution to improve drug efficacy and reduce off-target drug release. Photoremovable protecting groups are light-responsive moieties that undergo irreversible photocleavage reactions upon light irradiation. They can be covalently linked to the molecule of interest to control its structure and function with light. In this review, we will summarize recent applications of photocleavage technologies in nanoparticle-based drug delivery for precise targeting and controlled drug release, with a highlight of strategies to achieve long-wavelength light excitation. A greater understanding of these mechanisms and emerging studies will help design more efficient photocleavage-based nanosystems to advance photoresponsive drug delivery.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weirong Kang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
91
|
|
92
|
Zhao Y, Wang X, Hu R, Li Y. Linear red/green ratiometric thermometry of Ho 3+/Cr 3+ co-doped red up-conversion tungstate materials. Dalton Trans 2021; 50:15821-15830. [PMID: 34708846 DOI: 10.1039/d1dt03211a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Existing optical thermometers are faced with the challenges of high sensitivity limited to a very narrow high temperature range, while also lacking low temperature sensing performance. A new linear up-conversion (UC) optical thermometer with high sensitivity over a wide temperature range was reported here. The introduction of Cr3+ optimized the red-green (R/G) ratio and improved the temperature sensing characteristics of Ho3+-doped tungstate materials. Notably, as a temperature-related parameter, the R/G emission intensity ratio of Ho3+/Cr3+ co-doped tungstate material fitted well linearly with temperature. The slope of the fitted line corresponded to the absolute sensitivity value; that is, the sensitivity was constantly 0.0217 K-1 over the wide range of 163-663 K. This new UC temperature sensor with high sensitivity extended a new field of optical temperature measurement and demonstrated the possibility of applying this linear sensitivity effect in sensing applications. Most importantly, from an optical temperature sensing point of view, this study provided a novel and effective strategy for linear optical temperature measurement.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Xusheng Wang
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Rui Hu
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China. .,The Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Li
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| |
Collapse
|
93
|
Ahmad MY, Yue H, Tegafaw T, Liu S, Ho SL, Lee GH, Nam SW, Chang Y. Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics 2021; 13:1890. [PMID: 34834305 PMCID: PMC8624040 DOI: 10.3390/pharmaceutics13111890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Recent progress in functionalized lanthanide oxide (Ln2O3) nanoparticles for tumor targeting, medical imaging, and therapy is reviewed. Among the medical imaging techniques, magnetic resonance imaging (MRI) is an important noninvasive imaging tool for tumor diagnosis due to its high spatial resolution and excellent imaging contrast, especially when contrast agents are used. However, commercially available low-molecular-weight MRI contrast agents exhibit several shortcomings, such as nonspecificity for the tissue of interest and rapid excretion in vivo. Recently, nanoparticle-based MRI contrast agents have become a hot research topic in biomedical imaging due to their high performance, easy surface functionalization, and low toxicity. Among them, functionalized Ln2O3 nanoparticles are applicable as MRI contrast agents for tumor-targeting and nontumor-targeting imaging and image-guided tumor therapy. Primarily, Gd2O3 nanoparticles have been intensively investigated as tumor-targeting T1 MRI contrast agents. T2 MRI is also possible due to the appreciable paramagnetic moments of Ln2O3 nanoparticles (Ln = Dy, Ho, and Tb) at room temperature arising from the nonzero orbital motion of 4f electrons. In addition, Ln2O3 nanoparticles are eligible as X-ray computed tomography contrast agents because of their high X-ray attenuation power. Since nanoparticle toxicity is of great concern, recent toxicity studies on Ln2O3 nanoparticles are also discussed.
Collapse
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| |
Collapse
|
94
|
Liu Y, Song Y, Zhang J, Yang Z, Peng X, Yan W, Qu J. Responsive Carbonized Polymer Dots for Optical Super-resolution and Fluorescence Lifetime Imaging of Nucleic Acids in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50733-50743. [PMID: 34670368 DOI: 10.1021/acsami.1c13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of advanced optical imaging methods including stimulated emission depletion (STED) and fluorescence lifetime imaging microscopy (FLIM) has provided powerful tools for real-time observation of submicrometer biotargets to achieve unprecedented spatial and temporal resolutions. However, the practical imaging qualities are often limited by the performance of fluorescent probes, leading to unsatisfactory results. In particular, long-term imaging of nucleic acids in living cells with STED and FLIM remained desirable yet challenging due to the lack of competent probes combining targeting specificity, biocompatibility, low power requirement, and photostability. In this work, we rationally designed and synthesized a nanosized carbonized polymer dot (CPD) material, CPDs-3, with highly efficient and photostable emission for the super-resolution and fluorescence lifetime imaging of nucleic acids in living cells. The as-fabricated nanoprobe showed responsive emission properties upon binding with nucleic acids, providing an excellent signal-to-noise ratio in both spatial and temporal dimensions. Moreover, the characteristic saturation intensity value of CPDs-3 was as low as 0.68 mW (0.23 MW/cm2), allowing the direct observation of chromatin structures with subdiffraction resolution (90 nm) at very low excitation (<1 μW) and depletion power (<5 mW). Owing to its low toxicity, high photonic efficiency, and outstanding photostability, CPDs-3 was capable of performing long-term imaging both with STED and FLIM setups, demonstrating great potential for the dynamic study of nucleic acid functionalities in the long run.
Collapse
Affiliation(s)
- Yanfeng Liu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| | - Yiwan Song
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| | - Jia Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| | - Zhigang Yang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| | - Xiao Peng
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| | - Wei Yan
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
95
|
Chu H, Cao T, Dai G, Liu B, Duan H, Kong C, Tian N, Hou D, Sun Z. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv 2021; 11:35472-35488. [PMID: 35493151 PMCID: PMC9043211 DOI: 10.1039/d1ra05638g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Upconversion nanoparticles (UCNPs) are a class of optical nanocrystals doped with lanthanide ions that offer great promise for applications in controllable tumor therapy. In recent years, UCNPs have become an important tool for studying the treatment of various malignant and nonmalignant cutaneous diseases. UCNPs convert near-infrared (NIR) radiation into shorter-wavelength visible and ultraviolet (UV) radiation, which is much better than conventional UV activated tumor therapy as strong UV-light can be damaging to healthy surrounding tissue. Moreover, UV light generally does not penetrate deeply into the skin, an issue that UCNPs can now address. However, the current studies are still in the early stage of research, with a long way to go before clinical implementation. In this paper, we systematically analysed recent advances in light-activated tumor therapy using functionalized UCNPs. We summarized the purpose and mechanism of UCNP-based photodynamic therapy (PDT), gene therapy, immunotherapy, chemo-therapy and integrated therapy. We believe the creation of functional materials based on UCNPs will offer superior performance and enable innovative applications, increasing the scope and opportunities for cancer therapy in the future.
Collapse
Affiliation(s)
- Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Tingming Cao
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Guangming Dai
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Bei Liu
- School of Science, Minzu University of China Beijing 100081 PR China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Chengcheng Kong
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Na Tian
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| | - Dailun Hou
- Department of Radiology, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University Beijing 101149 PR China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing 101149 PR China
| |
Collapse
|
96
|
Chen G, Wu Y, Jin K, Lu H, Tao M, Wang T, Zhang J, Zhu X, Liu J, Zhang Y. A Biosynthesized Near-Infrared-Responsive Nanocomposite Biomaterial for Antimicrobial and Antibiofilm Treatment. ACS APPLIED BIO MATERIALS 2021; 4:7542-7553. [PMID: 35006699 DOI: 10.1021/acsabm.1c00790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic inactivation (PDI) has become an appealing alternative strategy to treat infections without developing resistance to microbes. In PDI treatment, near-infrared (NIR) light is preferred because it causes less damage to normal tissues and leads to better penetration in deep tissues. Here, we develop an NIR-responsive nanomedicine for efficient broad-spectrum antimicrobial photodynamic treatment. By harnessing the biosynthetic capability of a bacterial cellulose-producing microorganism, we construct a nanocomposite biomaterial to deliver and recycle the nanomedicine. Our simple one-step biosynthetic approach does not impede the antimicrobial potency of the nanomedicine under NIR activation and requires no chemical modification. The resulting nanocomposite has been tested in antimicrobial treatment of different microorganisms, exhibiting a great potential to eliminate pathogens in biofilms and to treat in vivo infections.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Mingyue Tao
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Tiantian Wang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.,Department of Biomedical Engineering, National University of Singapore, 119077 Singapore
| |
Collapse
|
97
|
Tian R, Wang C, Chi W, Fan J, Du J, Long S, Guo L, Liu X, Peng X. Emerging Design Principle of Near-Infrared Upconversion Sensitizer Based on Mitochondria-Targeted Organic Dye for Enhanced Photodynamic Therapy. Chemistry 2021; 27:16707-16715. [PMID: 34648222 DOI: 10.1002/chem.202102866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 02/04/2023]
Abstract
Upconversion luminescent (UCL) triggered photodynamic therapy (PDT) affords superior outcome for cancer treatment. However, conventional UCL materials which all work by a multiphoton absorption (MPA) process inevitably need extremely high power density far over the maximum permissible exposure (MPE) to laser. Here, a one-photon absorption molecular upconversion sensitizer Cy5.5-Br based on frequency upconversion luminescent (FUCL) is designed for PDT. The unusual super heavy atom effect (SHAE) in Cy5.5-Br strongly enhances its spin-orbit coupling (0.23 cm-1 ), triplet quantum yield (11.1 %) and triplet state lifetime (18.8 μs) while the potential hot-band absorption of Cy5.5-Br is well maintained. Importantly, Cy5.5-Br can efficiently target the tumour site and kill cancer cells by destroying mitochondria under a biosafety MPE to 808 nm laser. The photostability and antitumor results are obviously superior to that of a Stokes process. This work provides a design criterion for FUCL dyes to realize effective PDT upon a biosafety optical density, possibly bringing more clinical benefits than conventional MPA materials.
Collapse
Affiliation(s)
- Ruisong Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian, 116044, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, People's Republic of China.,Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
98
|
Ferrera-González J, Francés-Soriano L, Galiana-Roselló C, González-Garcia J, González-Béjar M, Fröhlich E, Pérez-Prieto J. Initial Biological Assessment of Upconversion Nanohybrids. Biomedicines 2021; 9:1419. [PMID: 34680536 PMCID: PMC8533627 DOI: 10.3390/biomedicines9101419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as photoactive inorganic-organic hybrid scaffolds for biological applications. UCNPs, in general, are not considered to be highly toxic materials, but the release of fluorides and lanthanides upon their dissolution may cause cytotoxicity. To identify potential adverse effects of the nanoparticles, dehydrogenase activity of endothelial cells, exposed to various concentrations of the UCNPs, was determined. Data were verified by measuring lactate dehydrogenase release as the indicator of loss of plasma membrane integrity, which indicates necrotic cell death. This assay, in combination with calcein AM/Ethidium homodimer-1 staining, identified induction of apoptosis as main mode of cell death for both particles. The data showed that the UCNPs are not cytotoxic to endothelial cells, and the samples did not contain endotoxin contamination. Higher cytotoxicity, however, was seen in HeLa and RAW 264.7 cells. This may be explained by differences in lysosome content and particle uptake rate. Internalization of UCn and UC@CB[7] nanohybrids by cells was demonstrated by NIR laser scanning microscopy.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Jorge González-Garcia
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| |
Collapse
|
99
|
Wang J, Jiang Y, Liu J, Xu H, Zhang Y, Peng X, Kurmoo M, Ng SW, Zeng M. Discrete Heteropolynuclear Yb/Er Assemblies: Switching on Molecular Upconversion Under Mild Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jie Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
| | - Yue Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
| | - Jiao‐Yang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
| | - Hai‐Bing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yue‐Xing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
| | - Xu Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg CNRS-UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67070 Strasbourg France
| | | | - Ming‐Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei University Wuhan 430062 China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China
| |
Collapse
|
100
|
Wang J, Jiang Y, Liu JY, Xu HB, Zhang YX, Peng X, Kurmoo M, Ng SW, Zeng MH. Discrete Heteropolynuclear Yb/Er Assemblies: Switching on Molecular Upconversion Under Mild Conditions. Angew Chem Int Ed Engl 2021; 60:22368-22375. [PMID: 34383376 DOI: 10.1002/anie.202107637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/08/2021] [Indexed: 01/01/2023]
Abstract
The salts {[Ln2 Ln*(Hhmq)3 (OAc)3 (hfac)2 ]+ [Ln*(hfac)3 (OAc)(MeOH)]- } (Hhmq=2-methanolquinolin-8-oxide, hfac=hexafluoroacetylacetonate; Ln, Ln*=Er, Gd, Yb) feature a discrete heteronuclear cation consisting of two types of lanthanide atoms. The quinolinoxy O-atom serves as a μ2 -bridge to two Ln atoms and as a μ3 -bridge to all three atoms, with metal⋅⋅⋅metal distances being around 3.7 Å. For 1 ([Yb2 Er]+ ), near-infrared downshifted luminescence is switched to competitive upconversion luminescence upon irradiation by a 980 nm laser under an extremely low excitation power (0.288 W cm-2 ) through introduction of fluoride ions. The stability of 1 after addition of fluoride was confirmed by powder X-ray diffraction and multistage mass spectrometry, associated with the 1 H NMR of 6 ([La2 Eu]+ ). More importantly, the at least 20-fold enhancement of the quantum yield in non-deuterated solvents at room temperature under low power densities (2 W cm-2 ) is the highest among the few molecular examples reported.
Collapse
Affiliation(s)
- Jie Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yue Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jiao-Yang Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hai-Bing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yue-Xing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Xu Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67070, Strasbourg, France
| | | | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|