51
|
Ji M, Chen X, Luo J, Wan Y. Improved blood compatibility of polysulfone membrane by anticoagulant protein immobilization. Colloids Surf B Biointerfaces 2019; 175:586-595. [DOI: 10.1016/j.colsurfb.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023]
|
52
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [PMID: 32255159 DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Heparin is the highest negatively charged biomolecule, which is a polysaccharide belonging to the glycosaminoglycan family, and its role as a regulator of various proteins, cells and tissues in the human body makes it an indispensable macromolecule. Heparin-based hydrogels are widely investigated in various applications including implantation, tissue engineering, biosensors, and drug-controlled release due to the 3D-constructs of hydrogels. However, heparin has supply and safety problems because it is usually derived from animal sources, and has the clinical limitations of bleeding and thrombocytopenia. Therefore, analogous heparin-mimicking polymers and hydrogels derived from non-animal and/or totally synthetic sources have been widely studied in recent years. In this review, the progress and potential biomedical applications of heparin-based and heparin-inspired hydrogels are highlighted. We classify the forms of these hydrogels by their size including macro-hydrogels, injectable hydrogels, and nano-hydrogels. Then, we summarize the various fabrication strategies for these hydrogels including chemical covalent bonding, physical conjugation, and the combination of chemical and physical interactions. Covalent bonding includes free radical polymerization of vinyl-containing components, amide bond formation reaction, Michael-type addition reaction, click-chemistry, divinyl sulfone crosslinking, and mussel-inspired coating. Hydrogels physically conjugated via host-guest interaction, electrostatic interaction, hydrogen bonding, and hydrophobic interaction are also discussed. Finally, we conclude with the challenges and future directions for the fabrication and the industrialization of heparin-based and heparin-inspired hydrogels. We believe that this review will attract more attention toward the design of heparin-based and heparin-inspired hydrogels, leading to future advancements in this emerging research field.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Alenazi NA, Alamry KA, Hussein MA, Elfaky MA, Asiri AM. Exploring the effect of organic–inorganic additives loaded on modified polyethersulfone membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noof A. Alenazi
- Faculty of Science, Department of ChemistryKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science, Department of ChemistryKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A. Hussein
- Faculty of Science, Department of ChemistryKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Faculty of Science, Chemistry Department, Polymer Chemistry LabAssiut University Assiut Egypt
| | - Mahmoud A. Elfaky
- Faculty of Pharmacy, Natural Products and Alternative Medicine DepartmentKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science, Department of ChemistryKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials ResearchKing Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
54
|
Photoreactive benzophenone as anchor of modifier to construct durable anti-platelets polymer surface. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
55
|
Facile and green fabrication of superhydrophobic sponge for continuous oil/water separation from harsh environments. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
56
|
Bray C, Gurnani P, Mansfield EDH, Peltier R, Perrier S. Sulfonated Copolymers as Heparin-Mimicking Stabilizer of Fibroblast Growth Factor: Size, Architecture, and Monomer Distribution Effects. Biomacromolecules 2019; 20:285-293. [PMID: 30543415 DOI: 10.1021/acs.biomac.8b01451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factors (FGF) are involved in a wide range of biological processes such as cell proliferation and differentiation. In living organisms, the binding of FGF to its receptors are mediated through electrostatic interactions between FGF and naturally occurring heparin. Despite its prevalent use in medicine, heparin carries notable limitations; namely, its extraction from natural sources (expensive, low yield and extensive purification), viral contamination, and batch-to-batch heterogeneity. In this work a range of synthetic homopolymers and copolymers of sodium 2-acrylamido-2-methylpropanesulfonate were evaluated as potential FGF stabilizers. This was studied by measuring the proliferation of BaF3-FR1c cells, as a model assay, and the results will be compared with the natural stabilization and activation of FGF by heparin. This study explores the structure-activity relationship of these polysulfonated polymers with a focus on the effect of molecular weight, comonomer type, charge dispersion, and polymer architecture on protein stabilization.
Collapse
Affiliation(s)
- Caroline Bray
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Pratik Gurnani
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Edward D H Mansfield
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Raoul Peltier
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Sébastien Perrier
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
- Warwick Medical School , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
57
|
Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.03.054] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
58
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
59
|
Joseph J, Deshmukh K, Tung T, Chidambaram K, Khadheer Pasha SK. 3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations. LECTURE NOTES IN BIOENGINEERING 2019. [DOI: 10.1007/978-3-030-04741-2_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
60
|
Ghlissi Z, Krichen F, Kallel R, Amor IB, Boudawara T, Gargouri J, Zeghal K, Hakim A, Bougatef A, Sahnoun Z. Sulfated polysaccharide isolated from Globularia alypum L.: Structural characterization, in vivo and in vitro anticoagulant activity, and toxicological profile. Int J Biol Macromol 2018; 123:335-342. [PMID: 30419328 DOI: 10.1016/j.ijbiomac.2018.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
A sulfated polysaccharide from Globularia alypum L. (GASP) was extracted with a yield of 14.2%. GASP is composed mostly of sulfate and total sugars (13.29% and 71.56%, respectively) with small amount of proteins and lipids. The chemical and structural characterization was studied by Infra-Red spectroscopic and gas chromatography-mass spectrometry (GC-MS). GASP composed of eight carbohydrates where galactose, glucose, and mannose are the major compounds (33.47%, 26.71% and 18.21%, respectively). The in vitro and in vivo anticoagulant activities in rats were tested using the standard coagulation assays activated partial thromboplastin time (aPTT), prothrombine time (TT) and thrombin time (PT) tests. Both doses of GASP (200 and 500 mg/kg b.w) displayed a significant in vitro (1.22 and 1.33-fold, 1.17 and 1.27-fold, and 1.21 and 1.26-fold, respectively) and in vivo (1.47 and 2.52-fold; 1.20 and 1.43-fold; 1.21 and 1.40-fold, respectively) compared with the control. Toxicity studies on liver performed by the catalytic activity of transaminases in plasma, oxidative stress markers and hepatic morphological changes indicated that GASP at both doses are not toxics. The important pharmacological and toxicological profile of GASP revealed that this compound may be used as a novel and effective drug.
Collapse
Affiliation(s)
- Zohra Ghlissi
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia.
| | - Fatma Krichen
- Laboratory of Plant Improvement and Valorization of Agro-Resources, ENIS, University of Sfax, 3038 Sfax, Tunisia
| | - Rim Kallel
- Anatomopathology Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Ikram Ben Amor
- Sfax Regional Blood Transfusion Center, El-Ain Road Km 0.5, 3003 Sfax, Tunisia
| | - Tahiya Boudawara
- Anatomopathology Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Jalel Gargouri
- Laboartory of Haematology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Khaled Zeghal
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Ahmed Hakim
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Ali Bougatef
- Laboratory of Plant Improvement and Valorization of Agro-Resources, ENIS, University of Sfax, 3038 Sfax, Tunisia
| | - Zouheir Sahnoun
- Research unit of pharmacology and toxicology of xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| |
Collapse
|
61
|
Wang Y, Huang X, He C, Li Y, Zhao W, Zhao C. Design of carboxymethyl chitosan-based heparin-mimicking cross-linked beads for safe and efficient blood purification. Int J Biol Macromol 2018; 117:392-400. [DOI: 10.1016/j.ijbiomac.2018.05.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
|
62
|
Bougatef H, Krichen F, Capitani F, Amor IB, Maccari F, Mantovani V, Galeotti F, Volpi N, Bougatef A, Sila A. Chondroitin sulfate/dermatan sulfate from corb (Sciaena umbra) skin: Purification, structural analysis and anticoagulant effect. Carbohydr Polym 2018; 196:272-278. [DOI: 10.1016/j.carbpol.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/18/2018] [Accepted: 05/06/2018] [Indexed: 01/17/2023]
|
63
|
Mi HY, Jing X, Thomsom JA, Turng LS. Promoting Endothelial Cell Affinity and Antithrombogenicity of Polytetrafluoroethylene (PTFE) by Mussel-Inspired Modification and RGD/Heparin Grafting. J Mater Chem B 2018; 6:3475-3485. [PMID: 30455952 PMCID: PMC6238965 DOI: 10.1039/c8tb00654g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When used as small-diameter vascular grafts (SDVGs), synthetic biomedical materials like polytetrafluoroethylene (PTFE) may induce thrombosis and intimal hyperplasia due to the lack of an endothelial cell layer. Modification of the PTFE in an aqueous solution is difficult because of its hydrophobicity. Herein, aiming to simultaneously promote endothelial cell affinity and antithrombogenicity, a mussel-inspired modification approach was employed to enable the grafting of various bioactive molecules like RGD and heparin. This approach involves a series of pragmatic steps including oxygen plasma treatment, dopamine (DA) coating, polyethylenimine (PEI) grafting, and RGD or RGD/heparin immobilization. Successful modification in each step was verified via Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Plasma treatment increased the hydrophilicity of PTFE, thereby allowing it to be efficiently coated with dopamine. Grafting of dopamine, RGD, and heparin led to an increase in surface roughness and a decrease in water contact angle due to increased surface energy. Platelet adhesion increased after dopamine and RGD modification, but it dramatically decreased when heparin was introduced. All of these modifications, especially the incorporation of RGD, showed favorable effects on endothelial cell attachment, viability, and proliferation. Due to strong cell-substrate interactions between endothelial cells and RGD, the RGD/heparin-grafted PTFE demonstrated high endothelial cell affinity. This facile modification method is highly suitable for all hydrophobic surfaces and provides a promising technique for SDVG modification to stimulate fast endothelialization and effective antithrombosis.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - Xin Jing
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - James A. Thomsom
- Morgridge Institute for Research, University of Wisconsin–Madison, WI, 53715, USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| |
Collapse
|
64
|
Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.106] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Jin S, Gu H, Chen X, Liu X, Zhan W, Wei T, Sun X, Ren C, Chen H. A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties. Colloids Surf B Biointerfaces 2018; 167:28-35. [PMID: 29625420 DOI: 10.1016/j.colsurfb.2018.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/27/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Clot and thrombus formation on surfaces that come into contact with blood is still the most serious problem for blood contacting devices. Despite many years of continuous efforts in developing hemocompatible materials, it is still of great interest to develop multifunctional materials to enable vascular cell selectivity (to favor rapid endothelialization while inhibiting smooth muscle cell proliferation) and improve hemocompatibility. In addition, biomaterial-associated infections also cause the failure of biomedical implants and devices. However, it remains a challenging task to design materials that are multifunctional, since one of their functions will usually be compromised by the introduction of another function. In the present work, the gold substrate was first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing chitosan (positively charged) and a copolymer of sodium 4-vinylbenzenesulfonate (SS) and the "guest" adamantane monomer 1-adamantan-1-ylmethyl methacrylate (P(SS-co-Ada), negatively charged) via electro-static interactions, referred to as Au-LbL. The chitosan and P(SS-co-Ada) were intended to provide, respectively, resistance to bacteria and heparin-like properties. Then, "host" β-cyclodextrin derivatives bearing seven lysine ligands (CD-L) were immobilized on the Au-LbL surface by host-guest interactions between adamantane residues and CD-L, referred to as Au-LbL/CD-L. Finally, a versatile surface coating with fibrinolytic activity (lysis of nascent clots), vascular cell selectivity and antibacterial properties was developed.
Collapse
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xuebo Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, PR China.
| | - Chuanlu Ren
- Department of Lab., No. 100 Hospital, CPLA, 4 Canglangting Street, Suzhou 215007, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| |
Collapse
|
66
|
Li R, Cai XM, Ye Y, Wu GZ. Influence of carboxyl and amide groups on in vitro
hemocompatibility of sulfonated polypropylene non-woven fabric. J Appl Polym Sci 2018. [DOI: 10.1002/app.45915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Xi-Ming Cai
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Yin Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Guo-Zhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
67
|
Wang H, Li J, Liu F, Li T, Zhong Y, Lin H, He J. Enhanced hemocompatibility of flat and hollow fiber membranes via a heparin free surface crosslinking strategy. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Ioniță M, Crică LE, Voicu SI, Dinescu S, Miculescu F, Costache M, Iovu H. Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications. Carbohydr Polym 2018; 183:50-61. [DOI: 10.1016/j.carbpol.2017.10.095] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/16/2023]
|
69
|
Chen X, Gu H, Lyu Z, Liu X, Wang L, Chen H, Brash JL. Sulfonate Groups and Saccharides as Essential Structural Elements in Heparin-Mimicking Polymers Used as Surface Modifiers: Optimization of Relative Contents for Antithrombogenic Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1440-1449. [PMID: 29231707 DOI: 10.1021/acsami.7b16723] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood compatibility is a long sought-after goal in biomaterials research, but remains an elusive one, and in spite of extensive work in this area, there is still no definitive information on the relationship between material properties and blood responses such as coagulation and thrombus formation. Materials modified with heparin-mimicking polymers have shown promise and indeed may be seen as comparable to materials modified with heparin itself. In this work, heparin was conceptualized as consisting of two major structural elements: saccharide- and sulfonate-containing units, and polymers based on this concept were developed. Copolymers of 2-methacrylamido glucopyranose, containing saccharide groups, and sodium 4-vinylbenzenesulfonate, containing sulfonate groups, were graft-polymerized on vinyl-functionalized polyurethane (PU) surfaces by free radical polymerization. This graft polymerization method is simple, and the saccharide and sulfonate contents are tunable by regulating the feed ratio of the monomers. Homopolymer-grafted materials, containing only sulfonate or saccharide groups, showed different effects on cell-surface interactions including platelet adhesion, adhesion and proliferation of vascular endothelial cells, and adhesion and proliferation of smooth muscle cells. The copolymer-grafted materials showed effects due to both sulfonate and saccharide elements with respect to blood responses, and the optimum composition was obtained at a 2:1 ratio of sulfonate to saccharide units (material designated as PU-PS1M1). In cell adhesion experiments, this material showed the lowest platelet and human umbilical vein smooth muscle cell density and the highest human umbilical vein endothelial cell density. Among the materials investigated, PU-PS1M1 also had the longest plasma clotting time. This material was thus shown to be multifunctional with a combination of properties, suggesting thromboresistant behavior in blood contact.
Collapse
Affiliation(s)
- Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - John L Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University , Hamilton, Ontario L8S4L7, Canada
| |
Collapse
|
70
|
Le Thi P, Lee Y, Kwon HJ, Park KM, Lee MH, Park JC, Park KD. Tyrosinase-Mediated Surface Coimmobilization of Heparin and Silver Nanoparticles for Antithrombotic and Antimicrobial Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20376-20384. [PMID: 28557441 DOI: 10.1021/acsami.7b02500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thrombus and infections are the most common causes for the failure of medical devices, leading to higher hospitalization costs and, in some cases, patient morbidity. It is, therefore, necessary to develop novel strategies to prevent thrombosis and infection caused by medical devices. Herein, we report a simple and a highly efficient strategy to impart antithrombotic and antimicrobial properties to substrates, by simultaneously immobilizing heparin and in situ-synthesized silver nanoparticles (Ag NPs) via a tyrosinase-catalyzed reaction. This consists of tyrosinase-oxidized phenolic groups of a heparin derivative (heparin-grafted tyramine, HT) to catechol groups, followed by immobilizing heparin and inducing the in situ Ag NP formation onto poly(urethane) (PU) substrates. The successful immobilization of both heparin and in situ Ag NPs on the substrates was confirmed by analyses of water contact angles, XPS, SEM, and AFM. The sustained silver release and the surface stability were observed for 30 days. Importantly, the antithrombotic potential of the immobilized surfaces was demonstrated by a reduction in fibrinogen absorption, platelet adhesion, and prolonged blood clotting time. Additionally, the modified PU substrates also exhibited remarkable antibacterial properties against both Gram-positive and Gram-negative bacteria. The results of this work suggest a useful, effective, and time-saving method to improve simultaneous antithrombotic and antibacterial performances of a variety of substrate materials for medical devices.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Ho Joon Kwon
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University , Incheon 22012, Republic of Korea
| | - Mi Hee Lee
- Department of Medical Engineering, Yonsei University College of Medicine , Seoul 120-752, Republic of Korea
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University College of Medicine , Seoul 120-752, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University , 5 Woncheon, Yeongtong, Suwon 443-749, Republic of Korea
| |
Collapse
|
71
|
In vitro anticoagulant activity of polyanionic graft chains modified poly(vinyl alcohol) particles. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
72
|
Liu Q, Lyu Z, Yu Y, Zhao ZA, Hu S, Yuan L, Chen G, Chen H. Synthetic Glycopolymers for Highly Efficient Differentiation of Embryonic Stem Cells into Neurons: Lipo- or Not? ACS APPLIED MATERIALS & INTERFACES 2017; 9:11518-11527. [PMID: 28287262 DOI: 10.1021/acsami.7b01397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To realize the potential application of embryonic stem cells (ESCs) for the treatment of neurodegenerative diseases, it is a prerequisite to develop an effective strategy for the neural differentiation of ESCs so as to obtain adequate amount of neurons. Considering the efficacy of glycosaminoglycans (GAG) and their disadvantages (e.g., structure heterogeneity and impurity), GAG-mimicking glycopolymers (designed polymers containing functional units similar to natural GAG) with or without phospholipid groups were synthesized in the present work and their ability to promote neural differentiation of mouse ESCs (mESCs) was investigated. It was found that the lipid-anchored GAG-mimicking glycopolymers (lipo-pSGF) retained on the membrane of mESCs rather than being internalized by cells after 1 h of incubation. Besides, lipo-pSGF showed better activity in promoting neural differentiation. The expression of the neural-specific maker β3-tubulin in lipo-pSGF-treated cells was ∼3.8- and ∼1.9-fold higher compared to natural heparin- and pSGF-treated cells at day 14. The likely mechanism involved in lipo-pSGF-mediated neural differentiation was further investigated by analyzing its effect on fibroblast growth factor 2 (FGF2)-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway which is important for neural differentiation of ESCs. Lipo-pSGF was found to efficiently bind FGF2 and enhance the phosphorylation of ERK1/2, thus promoting neural differentiation. These findings demonstrated that engineering of cell surface glycan using our synthetic lipo-glycopolymer is a highly efficient approach for neural differentiation of ESCs and this strategy can be applied for the regulation of other cellular activities mediated by cell membrane receptors.
Collapse
Affiliation(s)
- Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University , Suzhou 215006, P.R. China
| | - Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - You Yu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou 215000, P.R. China
| | - Zhen-Ao Zhao
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou 215000, P.R. China
| | - Shijun Hu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University , Suzhou 215000, P.R. China
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University , Suzhou 215006, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
73
|
Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater 2017; 51:479-494. [PMID: 28082114 DOI: 10.1016/j.actbio.2017.01.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
The design of self-sterilizing surfaces with favorable biocompatibility is acknowledged as an effective approach to deal with the bacterial infections of biomedical devices. In this study, we report an intriguing protocol for the large-scale fabrication of self-sterilizing and biocompatible surface film coatings by using polymer shielded silver nanoparticle loaded oxidized carbon nanotube (AgNPs@oCNT) nano-dispersions. To achieve the antibacterial coatings, the bioinspired positively charged and negatively charged AgNPs@oCNTs were alternately deposited onto substrates by spray-coating assisted layer-by-layer assembly. Then the bacterial inhibitory zones, optical density value monitoring, bacterial killing efficiency and adhesion were investigated; and all the results revealed that the AgNPs@oCNTs thin film coatings exhibited robust and long-term antibacterial activity against both Gram negative and Gram positive bacteria. Moreover, due to the shielding effects of polymer layers, the coatings showed extraordinary blood compatibility and limited toxicity against human umbilical vein endothelial cells. It is believed that the proposed large-scale fabrication of bactericidal, blood and cell compatible AgNPs@oCNT based thin film coatings will have great potential to forward novel operational pathogenic inhibition strategies to avoid undesired bacterial contaminations of biomedical implants or biological devices. STATEMENT OF SIGNIFICANCE Bacterial infection of medical devices has been considered to be a world-wide clinical threat towards patients' health. In this study, a bioinspired and biocompatible antibacterial coating was prepared via the spray-assisted layer-by-layer (LbL) assembly. The silver nanopartilces loaded oxidized carbon nanotube (AgNPs@oCNT), which were coated by functional polymers (chitosan and synthetic heparin mimicking polymers), were prepared via mussel inspired chemistry; and the spray-assisted assembly process allowed the fast construction on devices. Owing to the antibacterial efficiency of the loaded AgNPs, the coating showed robust bacterial killing activity and resistance towards bacterial adhesion. Moreover, since that the AgNPs were shielded by the polymers, the coating exhibited no clear toxicity at blood or cellular level. Benefiting from the universal and large-scale fabrication advancements of the spray assisted LbL coating; it is believed that the proposed strategy can be applied in designing many other kinds of self-sterilizing biomedical implants and devices.
Collapse
|
74
|
Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf B Biointerfaces 2017; 150:175-182. [DOI: 10.1016/j.colsurfb.2016.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
|
75
|
Liang S, Zhou N, Yu S, Polotakos N, Deng J, Moya SE, Gao C. Buildup of hyperbranched polymer/alginate multilayers and their influence on protein adsorption and platelet adhesion. J Appl Polym Sci 2017. [DOI: 10.1002/app.44769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Su Liang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ning Zhou
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shan Yu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - N. Polotakos
- Centre for Cooperative Research in Biomaterials; San Sebastian 20009 Gipuzkoa Spain
| | - Jun Deng
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Sergio Enrique Moya
- Centre for Cooperative Research in Biomaterials; San Sebastian 20009 Gipuzkoa Spain
| | - Changyou Gao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
76
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
77
|
Lyu Z, Shi X, Lei J, Yuan Y, Yuan L, Yu Q, Chen H. Promoting neural differentiation of embryonic stem cells using β-cyclodextrin sulfonate. J Mater Chem B 2017; 5:1896-1900. [DOI: 10.1039/c6tb02572b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Promoting neural differentiation of embryonic stem cells using inclusion complexes formed between β-cyclodextrin sulfonate and all-trans retinoic acid.
Collapse
Affiliation(s)
- Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiujuan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jiehua Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuqi Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
78
|
Paluck S, Nguyen TH, Maynard HD. Heparin-Mimicking Polymers: Synthesis and Biological Applications. Biomacromolecules 2016; 17:3417-3440. [PMID: 27739666 PMCID: PMC5111123 DOI: 10.1021/acs.biomac.6b01147] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/26/2016] [Indexed: 12/13/2022]
Abstract
Heparin is a naturally occurring, highly sulfated polysaccharide that plays a critical role in a range of different biological processes. Therapeutically, it is mostly commonly used as an injectable solution as an anticoagulant for a variety of indications, although it has also been employed in other forms such as coatings on various biomedical devices. Due to the diverse functions of this polysaccharide in the body, including anticoagulation, tissue regeneration, anti-inflammation, and protein stabilization, and drawbacks of its use, analogous heparin-mimicking materials are also widely studied for therapeutic applications. This review focuses on one type of these materials, namely, synthetic heparin-mimicking polymers. Utilization of these polymers provides significant benefits compared to heparin, including enhancing therapeutic efficacy and reducing side effects as a result of fine-tuning heparin-binding motifs and other molecular characteristics. The major types of the various polymers are summarized, as well as their applications. Because development of a broader range of heparin-mimicking materials would further expand the impact of these polymers in the treatment of various diseases, future directions are also discussed.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| |
Collapse
|
79
|
Xiong Z, Liu F, Lin H, Li J, Wang Y. Covalent Bonding of Heparin on the Crystallized Poly(lactic acid) (PLA) Membrane to Improve Hemocompability via Surface Cross-Linking and Glycidyl Ether Reaction. ACS Biomater Sci Eng 2016; 2:2207-2216. [PMID: 33465896 DOI: 10.1021/acsbiomaterials.6b00413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhu Xiong
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Fu Liu
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Haibo Lin
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Jinglong Li
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| | - Yi Wang
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan
West Road, Ningbo 315201, P.R. China
| |
Collapse
|
80
|
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. NANOSCALE 2016; 8:16819-16840. [PMID: 27704068 DOI: 10.1039/c5nr09078d] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
After more than four billion years of evolution, nature has created a large number of fascinating living organisms, which show numerous peculiar structures and wonderful properties. Nature can provide sources of plentiful inspiration for scientists to create various materials and devices with special functions and uses. Since Messersmith proposed the fabrication of multifunctional coatings through mussel-inspired chemistry, this field has attracted considerable attention for its promising and exiciting applications. Polydopamine (PDA), an emerging soft matter, has been demonstrated to be a crucial component in mussel-inspired chemistry. In this review, the recent developments of PDA for mussel-inspired surface modification are summarized and discussed. The biomedical applications of PDA-based materials are also highlighted. We believe that this review can provide important and timely information regarding mussel-inspired chemistry and will be of great interest for scientists in the chemistry, materials, biology, medicine and interdisciplinary fields.
Collapse
Affiliation(s)
- Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Ke Wang
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Lei Tao
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Xiaoyongzhang@
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
81
|
He M, Cui X, Jiang H, Huang X, Zhao W, Zhao C. Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/26/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Min He
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xiaofei Cui
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Huiyi Jiang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Xuelian Huang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- Fiber and Polymer Technology; School of Chemical Science and Engineering; Royal Institute of Technology (KTH); Teknikringen 56-58, SE-100 44 Stockholm Sweden
| | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
82
|
Faye A, Furtos A, Brisson J. Synthesis of High Molecular Weight Polyetherethersulfone-Allyl Copolymers of Controlled Glass Transition. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adrien Faye
- CERMA (Centre de Recherche sur les Matériaux Avancés) and CQMF (Centre Québécois sur les Matériaux Fonctionnels); Département de chimie; Faculté des Sciences et Génie; 1045 Avenue de la Médecine Université Laval Québec G1V 0A6 Canada
| | - Alexandra Furtos
- Département de chimie; Université de Montréal; C.P. 6128 Succursale Centre-ville Montréal Québec H3C 3J7 Canada
| | - Josée Brisson
- CERMA (Centre de Recherche sur les Matériaux Avancés) and CQMF (Centre Québécois sur les Matériaux Fonctionnels); Département de chimie; Faculté des Sciences et Génie; 1045 Avenue de la Médecine Université Laval Québec G1V 0A6 Canada
| |
Collapse
|
83
|
|
84
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
85
|
Wang X, Hu L, Li C, Gan L, He M, He X, Tian W, Li M, Xu L, Li Y, Chen Y. Improvement in physical and biological properties of chitosan/soy protein films by surface grafted heparin. Int J Biol Macromol 2016; 83:19-29. [DOI: 10.1016/j.ijbiomac.2015.11.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022]
|
86
|
Liu Y, Su Y, Zhao X, Zhang R, Ma T, He M, Jiang Z. Enhanced membrane antifouling and separation performance by manipulating phase separation and surface segregation behaviors through incorporating versatile modifier. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
Li J, Liu F, Yu X, Wu Z, Wang Y, Xiong Z, He J. APTES assisted surface heparinization of polylactide porous membranes for improved hemocompatibility. RSC Adv 2016. [DOI: 10.1039/c6ra04525a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Hep-APTES/PLA was synthesized through the amidation reaction and results showed that surface heparinization significantly improved the hemocompatibility of PLA porous membrane.
Collapse
Affiliation(s)
- Jinglong Li
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
- Tsingtao University of Science & Technology
| | - Fu Liu
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Xuemin Yu
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Ziyang Wu
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Yunze Wang
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Zhu Xiong
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Jidong He
- Tsingtao University of Science & Technology
- Qingdao
- P. R. China
| |
Collapse
|
88
|
Xiong Z, Liu F, Gao A, Lin H, Yu X, Wang Y, Wang Y. Investigation of the heat resistance, wettability and hemocompatibility of a polylactide membrane via surface crosslinking induced crystallization. RSC Adv 2016. [DOI: 10.1039/c5ra27030h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polylactide (PLA) has attracted much attention as a sustainable and environmentally friendly material.
Collapse
Affiliation(s)
- Zhu Xiong
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Fu Liu
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Ailin Gao
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Haibo Lin
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Xuemin Yu
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Yunze Wang
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| | - Yi Wang
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo
- P. R. China
| |
Collapse
|
89
|
Dey P, Hemmati-Sadeghi S, Haag R. Hydrolytically degradable, dendritic polyglycerol sulfate based injectable hydrogels using strain promoted azide–alkyne cycloaddition reaction. Polym Chem 2016. [DOI: 10.1039/c5py01326g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anionic degradable hydrogel based on a heparin mimetic polymer was prepared using PEG-PCL-DIC as a crosslinker.
Collapse
Affiliation(s)
- Pradip Dey
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
90
|
Zhao C, Shi Q, Hou J, Xin Z, Jin J, Li C, Wong SC, Yin J. Capturing red blood cells from the blood by lectin recognition on a glycopolymer-patterned surface. J Mater Chem B 2016; 4:4130-4137. [DOI: 10.1039/c6tb00606j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A glycopolymer-patterned surface selectively captures red blood cells from the blood by lectin recognition in a harmless manner.
Collapse
Affiliation(s)
- Chunyu Zhao
- Department of Polymer
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jianwen Hou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhirong Xin
- Department of Polymer
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chunming Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | | | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
91
|
He C, Shi ZQ, Cheng C, Lu HQ, Zhou M, Sun SD, Zhao CS. Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. Biomater Sci 2016; 4:1431-40. [DOI: 10.1039/c6bm00494f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GO based dual-layered membranes with superior hemocompatibility and antibacterial activity have potential application for clinical hemodialysis and many other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hua-Qing Lu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- Institute of Textile
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
92
|
Li SS, Xie Y, Xiang T, Ma L, He C, Sun SD, Zhao CS. Heparin-mimicking polyethersulfone membranes – hemocompatibility, cytocompatibility, antifouling and antibacterial properties. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
He C, Cheng C, Nie SQ, Wang LR, Nie CX, Sun SD, Zhao CS. Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. J Mater Chem B 2016; 4:6143-6153. [DOI: 10.1039/c6tb01855f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GO linked sulfonate-based polyanionic nanogel as a membrane modifier has application potential in clinical hemodialysis and other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Sheng-Qiang Nie
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province
- University of Guizhou Province
- College of Chemistry and Materials Engineering
- Guiyang University
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
94
|
Ma L, Cheng C, Nie C, He C, Deng J, Wang L, Xia Y, Zhao C. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J Mater Chem B 2016; 4:3203-3215. [DOI: 10.1039/c6tb00636a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We synthesized novel sodium alginate sulfates (SASs) with different sulfation degrees. All the SASs, DA-g-SASs, and coated substrates had good anticoagulant properties and biocompatibilit.
Collapse
Affiliation(s)
- Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jie Deng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Yi Xia
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
95
|
He C, Shi ZQ, Cheng C, Nie CX, Zhou M, Wang LR, Zhao CS. Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. RSC Adv 2016; 6:71893-71904. [DOI: 10.1039/c6ra14592b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The GO/heparin-analogue hydrogels with hemo- and cyto-compatibility could be used in various biomedical fields, such as drug and protein delivery, tissue regeneration scaffold, and other biomedical systems.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- Institute of Textile
- Sichuan University
- Chengdu 610065
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
96
|
Nie C, Cheng C, Peng Z, Ma L, He C, Xia Y, Zhao C. Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: bactericidal activity and mammal cell toxicity. J Mater Chem B 2016; 4:2749-2756. [DOI: 10.1039/c6tb00470a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Silver nanoparticle (AgNP)-based nanohybrids have been proposed as efficient antimicrobial agents because of their robust bactericidal activity.
Collapse
Affiliation(s)
- Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Zihang Peng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Yi Xia
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
97
|
Ma L, Cheng C, He C, Nie C, Deng J, Sun S, Zhao C. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26050-26062. [PMID: 26553500 DOI: 10.1021/acsami.5b09634] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and Staphylococcus aureus bacteria. Combined the above advantages, it is believed that the designed heparin-mimetic hydrogel thin films may show high potential for applications in various biological and clinical fields, such as long-term hemocompatible and drug-loading materials for implants.
Collapse
Affiliation(s)
- Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| | - Jie Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering and ‡National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610065, China
| |
Collapse
|
98
|
Wang L, Li H, Chen S, Nie C, Cheng C, Zhao C. Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. ACS Biomater Sci Eng 2015; 1:1183-1193. [PMID: 33429557 DOI: 10.1021/acsbiomaterials.5b00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we design the interfacial self-assembly of heparin-mimetic multilayer on poly(ether sulfone) (PES) membrane, which can endow the substrate with excellent cytocompatibility, highly hemocompatibility and enhanced antibacterial properties. The coated 3D sponge-like multilayer was fabricated by surface engineered layer by layer assembly of sulfonic amino polyether sulfone (SNPES) and quaternized chitosan (QC). The cell morphology observation and viability evaluation suggested that the assembled multilayer coating had remarkable cytocompatibility with endothelial cells due to the synergistic promotion of bovine serum albumin adsorption and heparin-mimetic groups; which further indicated that surface endothelialization could be achieved on the heparin-mimetic multilayer. The systematical tests of antithrombotic and blood activation indicated that the heparin-mimetic multilayer-coated membrane owned significantly suppressed adsorption of bovine serum fibrinogen, platelet adhesion and activation, prolonged clotting times, as well as lower activation of blood complement. Furthermore, the antibacterial test suggested the multilayer coated substrates exhibited obvious inhibition capability for both Escherichia coli and Staphylococcus aureus. Therefore, we believe that the developed SNPES/QC multilayer on PES membrane show great potential as a multifunctional coating toward versatile biomedical applications due to the integrated and highly effective antithrombotic, endothelialization, and antibacterial properties.
Collapse
Affiliation(s)
- Lingren Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Jiangsu Provincial Key Laboratory for Interventional Medical Devices. Huaiyin Institute of Technology, Huaian 223003, China
| | - Hao Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuai Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
99
|
Deng J, Liu X, Zhang S, Cheng C, Nie C, Zhao C. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9665-9674. [PMID: 26301434 DOI: 10.1021/acs.langmuir.5b02038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Xinyue Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Shuqing Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
100
|
Sun M, Deng J, Gao C. The correlation between fibronectin adsorption and attachment of vascular cells on heparinized polycaprolactone membrane. J Colloid Interface Sci 2015; 448:231-7. [DOI: 10.1016/j.jcis.2015.01.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
|