51
|
Izgorodina EI, Seeger ZL, Scarborough DLA, Tan SYS. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem Rev 2017; 117:6696-6754. [PMID: 28139908 DOI: 10.1021/acs.chemrev.6b00528] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accurate prediction of physicochemical properties of condensed systems is a longstanding goal of theoretical (quantum) chemistry. Ionic liquids comprising entirely of ions provide a unique challenge in this respect due to the diverse chemical nature of available ions and the complex interplay of intermolecular interactions among them, thus resulting in the wide variability of physicochemical properties, such as thermodynamic, transport, and spectroscopic properties. It is well understood that intermolecular forces are directly linked to physicochemical properties of condensed systems, and therefore, an understanding of this relationship would greatly aid in the design and synthesis of functionalized materials with tailored properties for an application at hand. This review aims to give an overview of how electronic structure properties obtained from quantum chemical methods such as interaction/binding energy and its fundamental components, dipole moment, polarizability, and orbital energies, can help shed light on the energetic, physical, and spectroscopic properties of semi-Coulomb systems such as ionic liquids. Particular emphasis is given to the prediction of their thermodynamic, transport, spectroscopic, and solubilizing properties.
Collapse
Affiliation(s)
- Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Zoe L Seeger
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - David L A Scarborough
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Samuel Y S Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
52
|
Abstract
Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.
Collapse
Affiliation(s)
- Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Luiz F O Faria
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
53
|
Strate A, Niemann T, Ludwig R. Controlling the kinetic and thermodynamic stability of cationic clusters by the addition of molecules or counterions. Phys Chem Chem Phys 2017; 19:18854-18862. [DOI: 10.1039/c7cp02227a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We discuss the stability of cationic clusters when adding molecules or counterions, and predict their occurrence in gas phase experiments.
Collapse
Affiliation(s)
- Anne Strate
- Universität Rostock
- Institut für Chemie
- Abteilung für Physikalische Chemie
- Rostock
- Germany
| | - Thomas Niemann
- Universität Rostock
- Institut für Chemie
- Abteilung für Physikalische Chemie
- Rostock
- Germany
| | - Ralf Ludwig
- Universität Rostock
- Institut für Chemie
- Abteilung für Physikalische Chemie
- Rostock
- Germany
| |
Collapse
|
54
|
Strate A, Niemann T, Michalik D, Ludwig R. Anziehung gleich geladener Ionen in ionischen Flüssigkeiten: Kontrolle der Bildung kationischer Cluster über die Wechselwirkungsstärke der Gegenionen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anne Strate
- Universität Rostock; Institut für Chemie, Abteilung für Physikalische Chemie; Dr.-Lorenz-Weg 1 18059 Rostock Deutschland
| | - Thomas Niemann
- Universität Rostock; Institut für Chemie, Abteilung für Physikalische Chemie; Dr.-Lorenz-Weg 1 18059 Rostock Deutschland
| | - Dirk Michalik
- Leibniz-Institut für Katalyse an der; Universität Rostock e.V.; Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| | - Ralf Ludwig
- Universität Rostock; Institut für Chemie, Abteilung für Physikalische Chemie; Dr.-Lorenz-Weg 1 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse an der; Universität Rostock e.V.; Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
55
|
Strate A, Niemann T, Michalik D, Ludwig R. When Like Charged Ions Attract in Ionic Liquids: Controlling the Formation of Cationic Clusters by the Interaction Strength of the Counterions. Angew Chem Int Ed Engl 2016; 56:496-500. [DOI: 10.1002/anie.201609799] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Anne Strate
- Universität Rostock; Institut für Chemie, Abteilung für Physikalische Chemie; Dr.-Lorenz-Weg 1 18059 Rostock Germany
| | - Thomas Niemann
- Universität Rostock; Institut für Chemie, Abteilung für Physikalische Chemie; Dr.-Lorenz-Weg 1 18059 Rostock Germany
| | - Dirk Michalik
- Leibniz-Institut für Katalyse an der; Universität Rostock e.V.; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Ralf Ludwig
- Universität Rostock; Institut für Chemie, Abteilung für Physikalische Chemie; Dr.-Lorenz-Weg 1 18059 Rostock Germany
- Leibniz-Institut für Katalyse an der; Universität Rostock e.V.; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
56
|
Huang Y, Zhou G, Li Y, Yang Z, Shi M, Wang X, Chen X, Zhang F, Li W. Molecular dynamics simulations of temperature-dependent structures and dynamics of ethylammonium nitrate protic ionic liquid: The role of hydrogen bond. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
57
|
Knorr A, Stange P, Fumino K, Weinhold F, Ludwig R. Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding. Chemphyschem 2016; 17:458-62. [PMID: 26670942 PMCID: PMC4819523 DOI: 10.1002/cphc.201501134] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/02/2022]
Abstract
Direct spectroscopic evidence for hydrogen-bonded clusters of like-charged ions is reported for ionic liquids. The measured infrared O-H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion-corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like-charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT-D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces.
Collapse
Affiliation(s)
- Anne Knorr
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 1, 18059, Rostock, Germany
| | - Peter Stange
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 1, 18059, Rostock, Germany
| | - Koichi Fumino
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 1, 18059, Rostock, Germany
| | - Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 1, 18059, Rostock, Germany.
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany.
| |
Collapse
|
58
|
Zhao H. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2016; 91:25-50. [PMID: 26949281 PMCID: PMC4777319 DOI: 10.1002/jctb.4837] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 05/08/2023]
Abstract
There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the 'specific ion effect' instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|